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As a major coal-producing province, understanding the spatiotemporal evolution of ecological quality 
and its driving factors in Shanxi is essential for promoting environmental protection and sustainable 
development. This study employs MODIS data to calculate the Remote Sensing Ecological Index (RSEI) 
for Shanxi Province and its designated mining areas from 2000 to 2023, aiming to investigate the 
spatial and temporal dynamics of ecological quality. The CatBoost model and Geographically Weighted 
Regression (GWR) are applied to identify and analyze the underlying driving factors. The results show 
that ecological quality in both Shanxi Province and its planned mining regions exhibited an overall 
upward trend between 2000 and 2020, with varying levels of improvement observed across different 
mining zones. Trend analysis indicates a general enhancement in ecological conditions over the past 
two decades. RSEI displays significant spatial autocorrelation, characterized by high-value clustering 
in the southern regions and low-value clustering in the northern and western mining zones and areas 
with intensive human activity. Key influencing factors include elevation, net primary productivity 
(NPP), precipitation, and population density. The CatBoost model, supplemented with SHAP (SHapley 
Additive exPlanations) values, quantifies the relative importance and predictive contribution of each 
factor to RSEI outcomes. The GWR model further reveals spatial heterogeneity in these relationships, 
uncovering localized effects, spatial gradient patterns, and clustering phenomena. Additionally, the 
Hurst index analysis indicates that most areas within Shanxi Province and its designated mining zones 
are likely to maintain an upward trend in ecological quality in the future. As a comprehensive large-
scale and long-term assessment, this study provides valuable theoretical and empirical support for 
regional planning, ecological monitoring, and the management of mining areas, thereby contributing 
to sustainable development and ecological conservation efforts.
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Shanxi Province is one of the most coal-rich regions in China, holding significant strategic importance for ensuring 
national energy security and supporting economic growth1. However, large-scale coal mining activities2,3 have 
caused substantial ecological degradation4. Therefore, the protection and restoration of ecosystems in Shanxi 
and its designated mining areas are essential. These efforts not only contribute to improving local environmental 
quality but also help mitigate the broader impacts of global climate change5. Conducting research and continuous 
monitoring of ecological quality in these areas6 is of great importance for regional ecological conservation and 
the effective implementation of sustainable development strategies7.

Ecological quality is intricately linked to human life, making the rational assessment of regional ecological 
environment quality particularly significant. The rapid advancement of remote sensing technology8 has opened 
up new possibilities for large-scale, long-term monitoring of dynamic changes in ecological environment quality. 
By analyzing remote sensing data, real-time monitoring of ecosystem changes can be achieved, allowing for the 
evaluation of environmental quality and providing support for informed decision-making. For instance, Zhong 
et al. utilized the Normalized Difference Vegetation Index (NDVI) to assess regional vegetation coverage9; Liu 
et al. identified landscape drivers of urban heat island effects using land surface temperature (LST)10; and Li et 
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al. investigated ecological changes in the Mu Us Sandy Land by combining land cover trends with NDVI data11. 
Ye et al. quantified ecological quality in the Loess Plateau through soil moisture (SM) measurements12. While 
these remote sensing indices provide valuable insights, the assessment based on single indicators is often one-
dimensional and insufficient for comprehensive ecological evaluations. As a result, the trend toward utilizing 
multiple integrated remote sensing-based indicators for ecological quality assessment has become a necessity. 
Xu et al. proposed the Remote Sensing Ecological Index (RSEI), which integrates greenness, wetness, heat, and 
dryness13. Through statistical methods such as principal component analysis, RSEI can ascertain the weights 
of each indicator’s impact on ecological quality, leading to comprehensive ecological quality assessments. 
Currently, The RSEI has gained widespread application in ecological assessments across various landscapes, 
including urban agglomerations14, islands10, and mountainous regions15. This established methodology makes 
RSEI an appropriate and reliable tool for evaluating ecological quality in Shanxi Province and its designated 
mining areas. While previous studies have commonly employed the NDVI to characterize vegetation greenness, 
the Kernel Normalized Difference Vegetation Index (kNDVI) offers distinct advantages. The kernel-based 
approach16 of kNDVI effectively mitigates saturation effects, accounts for complex phenological cycles, and 
better accommodates seasonal variations. Furthermore, kNDVI demonstrates superior performance in resolving 
mixed pixel issues and exhibits enhanced sensitivity to vegetation dynamics. These technical advantages enable 
kNDVI to provide more accurate vegetation coverage and health data across diverse ecological conditions, 
consequently improving the robustness of ecological assessments. Therefore, incorporating kNDVI as the 
greenness component in RSEI construction for monitoring ecological changes in Shanxi Province represents 
both a methodologically sound and scientifically rigorous approach.

Ecological quality, as a key indicator of ecosystem health, stability, and resilience17, is closely linked to human 
well-being and socio-economic development18. In the context of globalization, various factors—including 
topography, climate change, and population density—exert substantial influence on ecological environmental 
quality19. Specifically, moderate wind speeds and adequate precipitation contribute to enhanced ecosystem 
stability and productivity, while elevation and slope affect ecological conditions by altering local climate 
regimes, soil characteristics20, and light availability. Areas with high population density21 often face intensified 
land development and resource consumption, leading to the degradation of ecosystem services22 and overall 
ecological quality. Identifying and quantifying the factors that influence ecological quality is essential for 
implementing targeted measures to prevent environmental pollution and mitigate ecosystem degradation. Such 
efforts are critical for advancing ecological protection and restoration23. Therefore, when evaluating the driving 
forces behind ecological quality, it is imperative to take a comprehensive approach that accounts for the complex 
interplay among multiple influencing factors, as well as the effects of spatial heterogeneity.

When analyzing the driving factors behind changes in ecological quality, traditional regression methods, 
correlation analyses, and residual analyses exhibit certain limitations, particularly as these approaches often 
assume a linear relationship between factors and ecological quality. This assumption may not adequately capture 
the complex coupling effects among multiple variables. In contrast to conventional analytical techniques, 
CatBoost, a machine learning algorithm based on gradient boosting decision trees24, effectively addresses 
classification and regression challenges while learning intricate nonlinear relationships between input and 
output variables. Furthermore, the application of SHAP (SHapley Additive exPlanations) tools allows for the 
interpretation of CatBoost model predictions25, quantifying the impact of different features on these predictions 
and thereby providing deeper insights into large-scale ecological influencing factors. In addition, traditional 
methods often fail to account for the spatial heterogeneity inherent in geospatial data, which can significantly 
influence the assessment and prediction of ecological quality26. The Geographically Weighted Regression (GWR) 
model is specifically designed to address spatial data27,28, allowing it to capture spatial heterogeneity and reveal 
localized relationships between ecological variables and the RSEI across different regions. Applying the GWR 
model to analyze the driving forces behind ecological change is essential for understanding the complex spatial 
dynamics of ecosystems29. While CatBoost excels at modeling nonlinear relationships and handling complex 
variable interactions, GWR is particularly effective in detecting spatial variation and regional disparities. The 
combined use of these two methods enables a more comprehensive and accurate analysis of ecological quality 
changes and their underlying drivers30.

This study employs the RSEI to evaluate the variations in ecological quality across Shanxi Province and 
its planned mining areas. By calculating the kNDVI, humidity (WET), land surface temperature (LST), and 
dryness (NDBSI), the RSEI is constructed through PCA to provide a comprehensive assessment of the ecological 
environment quality in the region. Subsequently, utilizing the CatBoost model and GWR, this research reveals 
the influence of different factors on the ecological environment, thereby enhancing the reliability of the study’s 
findings. The objectives of this research are to: (1) investigate the dynamic changes in ecological quality (RSEI) 
in Shanxi Province and its planned mining areas from 2000 to 2020; (2) analyze the trends in RSEI variations 
within the region; (3) explore the potential factors contributing to changes in ecological quality in Shanxi 
Province and its mining areas; and (4) reveal the spatial heterogeneity of ecological quality and examine its 
specific relationships with underlying factors.

Materials and methods
Study area
Shanxi Province (34°34′-40°44′N, 110°14′-114°33′E) is located in northern China, in the eastern part of the 
Loess Plateau, with a total area of 156,700 square kilometers (Fig. 1). The province encompasses twelve planned 
mining areas, featuring a wealth of diverse mineral resources and a complex geological environment. The climate 
is classified as a temperate continental monsoon climate, characterized by significant temperature variations 
across regions, with temperatures decreasing from south to north and from plains to mountainous areas. The 
province’s geomorphology is predominantly mountainous and hilly, comprising approximately 80% of the total 
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area. The study area includes critical regions such as the Taihang and Lüliang mountains, which are rich in 
resources but face numerous challenges, including resource depletion and ecological restoration.

Technical route
The detailed workflow of this study is illustrated in Fig. 2: (1) RSEI was constructed based on the GEE platform 
to invert the ecological quality changes in Shanxi Province and its planned mining areas from 2000 to 2020; 
(2) Theil-Sen analysis and Mann-Kendall trend tests were employed to analyze the RSEI trend; (3) Moran’s I 
was utilized to assess the spatial correlation of RSEI in Shanxi Province; (4) The interactions between RSEI and 
potential driving factors were analyzed using CatBoost and GWR models.

Datasets and preprocessing
This study employed the MODIS dataset to construct the ecological quality assessment index. The data sources 
included the MOD09A1 (2000–2023, 500  m resolution, 8-day interval) and MOD11A2 (2000–2023, 500  m 
resolution, 8-day interval) from the MODIS collection. The JRC annual water classification historical data 
was utilized for water body masking. Additional datasets were leveraged to extract potential factors that may 
influence ecological quality in the study area, including Terra Climate (2000–2020, providing climate factor 
data), NASA’s SRTM Digital Elevation data (90 m resolution), population density data provided by East View 
Cartographic, and MYD17A3HGF (2000–2020, net primary productivity data). All data were acquired from 
the GEE cloud platform, with all datasets resampled to a resolution of 500  m. Atmospheric correction and 
relevant preprocessing techniques were applied to enhance data quality. To account for seasonal variation and 
meteorological conditions, the data time window was set from June 15 to September 15 each year, ensuring 
consistency in vegetation status and ecological outcomes.

Methods
RSEI indicator construction
RSEI leverages ground information and ecological data obtained through remote sensing technologies, employing 
mathematical and statistical methods for processing and analysis, thereby facilitating rapid assessment and 
monitoring of the health status and environmental quality of specific regions31. Given that greenness, humidity, 
heat, and dryness are crucial components of the ecological environment, this study selects these four ecological 
factors to construct the RSEI index32.

	 RSEI = f(Greenness, W etness, Heat, Dryness)� (1)

where f is the set of functions used to perform PCA.
kNDVI applies a weighted average of NDVI for each pixel and its surrounding pixels to more accurately 

capture the details and variations in vegetation coverage. Thus, kNDVI serves as a representation of greenness. 
The calculation formula is as follows:

Fig. 1.  Location map of the study area. (This image was created using ArcGIS 10.8 software, which is an Esri 
product and is publicly available at the URL (https://www.esri.com/). The base map is based on the standard 
map (GS2024, No. 0650), and no modifications have been made to the map boundaries.)
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NDV I = NIR − Red

NIR + Red
� (2)

	
kNDV I = tanh

((
NIR − Red

2σ

)2
)

= tanh

((
NDV I

2σ

)2
)

� (3)

where NIR and RED represent the reflectances of the near-infrared (NIR1) and red bands of MOD09A1, 
respectively. The symbol σ denotes a length scale that is proportional to the average reflectance of the near-
infrared and red bands, which can be adjusted. When σ is set to 0.5(NIR + RED), the calculation formula is as 
follows:

	 kNDV I = tanh
(
NDV I2)

� (4)

Humidity (WET) is calculated using the formula:

	

W ET = 0.1147 × ρ 1 + 0.2489 × ρ 2 + 0.2408 × ρ 3 + 0.3132
× ρ 4 − 0.3122 × ρ 5 − 0.6416 × ρ 6 − 0.5087 × ρ 7

� (5)

where ρ i (i = 1, 2, …, 7) represents the reflectance of the red, near-infrared 1, blue, green, near-infrared 2, short-
wavelength infrared 1, and short-wavelength infrared 2 bands of the MOD09A1 image, respectively.

Dryness consists of the Index of building (IBI) and the index of bare Soil (SI). The formula for calculation is:

	 NDBSI = (IBI + SI) /2� (6)

	
IBI = 2ρ 6/(ρ 6 + ρ 2) − ρ 2/(ρ 2 + ρ 1) + ρ 4/(ρ 4 + ρ 6)

2ρ 6/(ρ 6 + ρ 2) + ρ 2/(ρ 2 + ρ 1) + ρ 4/(ρ 4 + ρ 6) � (7)

	
SI = (ρ 6 + ρ 1) − (ρ 2 + ρ 3)

(ρ 6 + ρ 1) + (ρ 2 + ρ 3) � (8)

where ρ i (i = 1, 2, …, 6) denotes the reflectance of the red, near-infrared 1, blue, green, near-infrared 2, and 
short-wavelength infrared 1 bands of the MOD09A1 image, respectively.

Heat is expressed in terms of land surface temperature (LST). MOD11A2 LST products providing the 
necessary data. The raw LST data (LST0) requires unit conversion from Kelvin (K) to degrees Celsius (°C). The 
formula for this conversion is:

Fig. 2.  Technology roadmap. (This maps was created using ArcGIS 10.8 software, which is an Esri product, 
generated using our dataset, and is publicly available at the URL (https://www.esri.com/).)
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	 LST = 0.02LST0 − 273.15� (9)

In this paper, the RSEI is calculated using the following formula:
RSEI = f(kNDV I, W et, NDBSI, LST )(10).
After obtaining the results of the four ecological factors, it is essential to linearly map each indicator’s values 

to the range of [0, 1] for normalization. This process eliminates the impacts caused by differing units and value 
ranges, allowing for PCA to construct the RSEI.

Furthermore, RSEI is subjected to additional normalization to facilitate comparison and measurement, as 
shown in the following formula:

	
RSEI = RSEI0 − RSEImin

RSEImax − RSEImin
� (11)

where RSEI0is the initial RSEI, and RSEImin and RSEImax represent the minimum and maximum 
values of RSEI0, respectively. A higher RSEI value, approaching 1, indicates better ecological environmental 
quality, while a lower RSEI value signifies poorer ecological environmental quality.

To enhance the assessment and comparison of ecological conditions, the RSEI values were categorized into 
five levels from high to low: excellent (0.8–1), good (0.6–0.8), moderate (0.4–0.6), fair (0.2–0.4), and poor (0–
0.2). This classification provides a clearer understanding of ecological quality, with values closer to 1 indicating 
better ecological environment health.

Sen’s slope estimator and Mann–Kendall statistical test
Sen’s Slope Estimator can accurately estimate the trend slope in time series data, encompassing both linear and 
nonlinear trends. Its robustness allows it to effectively handle outliers and data with significant fluctuations. 
By employing Sen’s Slope Estimator, the strength of the trend in each time series can be determined, thereby 
identifying the rate and magnitude of ecosystem changes. The calculation formula is as follows:

	
β = Median

(
Xj − Xi

j − i

)
, ∀ j > i� (12)

where β  denotes the slope and Xi and Xj denote the data values for year i and year j, respectively.
The MK test is employed to detect the presence and significance of trends in time series data33. It does not 

rely on assumptions about the data distribution, making it applicable to various types of ecological data. While 
Sen’s Slope Estimator provides a quantitative assessment of the trends, the Mann–Kendall test confirms the 
significance and statistical stability of these trends34. The calculation formulas for the MK test are as follows:

	
S =

∑ n−1

i=1

∑ n

j=i+1
sgn (xj − xi)� (13)

	
sgn (xj − xi) =

{
1, xj − xi > 0
0, xj − xi = 0

−1, xj − xi < 0
� (14)

	 V = n (n − 1) (2n + 5) /18� (15)

	

Z =




S−1√
V

, S > 0
0, S = 0

S+1√
V

, S < 0
� (16)

where n denotes the time series length; sgn is the sign function; S is the statistic; and Z is the trend significance 
test statistic.

In the MK test, the significance of RSEI changes is determined based on a set significance level α. Typically, 
α is set at 0.05, which corresponds to a Z value of ± 1.96. Therefore, when the absolute value of the calculated Z 
from the MK test exceeds 1.96, the change passes the significance test at a 95% confidence level, indicating that 
the trend change is significant; conversely, the opposite holds true. The results are categorized into five classes, 
as shown in the table below(Table 1).

β Z RSEI trend

≥ 0.0005 ≥ 1.96 Significant rise (SR)

≥ 0.0005 −1.96 ≤ Z < 1.96 No significant rise (NSR)

-0.005 ~ 0.005 −1.96 ≤ Z < 1.96 Relatively stable (RS)

≤−0.0005 −1.96 ≤ Z < 1.96 No significant decrease (NSD)

≤−0.0005 ≤−1.96 Significant decrease(SD)

Table 1.  RSEI trend classification.
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Hurst exponent
The Hurst exponent is an indicator used to measure the long-term memory in time series or fractals, aiding in 
understanding the fundamental dynamics of the series and providing a degree of predictability for changes in 
ecological quality35. The formula for calculating the Hurst exponent is as follows:

	 H = log(R/S)/log (n)� (17)

where H is the Hurst exponent. In the actual computation, it is typically necessary to perform multiple 
decompositions and calculate the R/S values at different scales, followed by averaging these R/S values to obtain 
the final estimate of the Hurst exponent.

The Hurst exponent is commonly employed to analyze the persistence or anti-persistence of time series, 
with values ranging from 0 to 1. Specifically, when 0 < H < 0.5, it indicates anti-persistent change; the closer H 
is to 0, the stronger the anti-persistence. When 0.5 < H < 1, it suggests persistent change; the closer H is to 1, 
the stronger the persistence. When H equals 0.5, it denotes that the time series is independent and random, 
exhibiting uncertainty with no correlation between past and future trends.

Global moran’s
Global Moran’s I is a commonly used method for spatial autocorrelation analysis, employed to measure the 
spatial correlation among observations within a spatial dataset and to reveal the spatial relationships between 
reference units and their neighboring units26. The Moran’s I statistic ranges from − 1 to + 1; a value close to 
+ 1 indicates that the observations of neighboring geographic units tend to be similar, while a value close to 
-1 suggests that the observations are inclined to be opposite. A Moran’s I value near 0 indicates that the data 
are randomly distributed in space, showing no significant spatial autocorrelation. The formula for calculating 
Moran’s I is as follows:

	

Moran′ s I =
m ∗

∑ m

i=1

∑ m

j
wij(xi−

−
x)(xj−

−
x)

∑ m

i=1

∑ m

j
wij(xi−

−
x)

2 � (18)

where m represents the total number of samples, xiand xjdenote the RSEI values at positions i and j, wij

indicates the spatial weight value between i and j, and 
−
x is the mean value of the RSEI.

CatBoost
CatBoost is a machine learning algorithm based on gradient-boosted decision trees, demonstrating exceptional 
performance in handling classification and regression problem36. One notable advantage of CatBoost is its ability 
to efficiently manage categorical features while achieving high prediction accuracy. Additionally, CatBoost 
employs regularization techniques to mitigate overfitting, enhancing the robustness of the model when dealing 
with complex data. The fundamental steps for training a CatBoost model are illustrated in Fig. 3: first, create a 
CatBoost model and train it using the training dataset; once the model is trained, it can be utilized for predicting 
new data. Throughout the training and prediction processes, CatBoost simplifies the complexities of data 
preprocessing and offers an efficient gradient boosting algorithm, assisting users in constructing more accurate 
models.

Fig. 3.  CatBoost implementation process. In the figure X_traint ,Y traint is the training set, X_test, Y _test is 
the test set, pt is the prediction of the t-th sample, a is the weight of the t-th sample, and Y is the final prediction 
obtained by weighting the prediction of each learner.
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Geographically weighted regression (GWR)
In spatial research, particularly at large scales, conventional multivariate linear regression models may fail to 
accurately capture the variations and heterogeneity in geographic space. The GWR model, on the other hand, 
is adept at exploring the relationships between variables in spatial data, effectively reflecting the correlations 
between dependent and independent variables across geographic space37. Moreover, the GWR model estimates 
parameters through independent linear regressions within each local area, utilizing local parameter estimates 
instead of global ones. The kernel type is “bisquare”and the number of neighbors is determined by the optimal 
bandwidth (gwr_bw).The formula for the GWR model is as follows:

	
yi = β 0(ui, vi) +

∑
k
β k(ui, vi)xk,i + ϵ i� (19)

where yi is the dependent variable for sample i. (ui, vi) are the coordinates of sample i. β 0(ui, vi)is the 
intercept term for sample i. β k(ui, vi) is the k-th regression parameter for sample i. xk,i​ is the k-th independent 
variable for sample i. ϵ i represents the random error.

Model evaluation
To evaluate the model’s estimation performance, the dataset is divided into 80% training set and 20% testing set. 
Two evaluation metrics are used: the coefficient of determination (R2) and the root mean square error (RMSE). 
Additionally, to assess the model’s generalization ability, we use the 5-fold cross-validation method. Specifically, 
the data is randomly divided into 5 subsets, and the model is trained and tested on each subset. The final model 
performance is the average of the results from each fold. The calculation formulas are as follows:

	

R2 = 1 −
∑ n

i=1(xi − yi)2

∑ n

i=1

(
xi−

−
yi

)2 � (20)

	
RMSE =

√
1
m

∑ n

i=1
(xi − yi)2� (21)

Where xi is the true value of RSEI, yi is the estimated value of RSEI, 
−
yi is the mean of the true RSEI values, and 

n is the number of samples in the test set.

Results
RSEI-based evaluation of ecological environment quality
The average RSEI values and PCA results for Shanxi Province from 2000 to 2020 are presented in Table  2. 
The contribution of the first principal component (PC1) reached a maximum of 83.13% and a minimum of 

Year RSEI kNDVI WET LST NDBSI PC1(%)

2000 0.42 0.60 0.59 0.35 0.57 78.33%

2001 0.43 0.54 0.60 0.44 0.58 83.13%

2002 0.52 0.62 0.48 0.45 0.54 77.65%

2003 0.46 0.63 0.52 0.45 0.58 76.55%

2004 0.51 0.63 0.58 0.40 0.56 71.03%

2005 0.46 0.60 0.56 0.44 0.58 80.48%

2006 0.50 0.62 0.47 0.40 0.57 77.81%

2007 0.52 0.65 0.46 0.43 0.59 77.67%

2008 0.51 0.66 0.48 0.40 0.57 79.07%

2009 0.49 0.61 0.50 0.47 0.60 78.69%

2010 0.49 0.64 0.47 0.41 0.59 80.16%

2011 0.51 0.64 0.45 0.44 0.56 77.17%

2012 0.58 0.68 0.46 0.41 0.54 72.87%

2013 0.57 0.72 0.39 0.36 0.52 65.70%

2014 0.55 0.68 0.42 0.40 0.55 76.28%

2015 0.54 0.67 0.47 0.47 0.57 79.19%

2016 0.53 0.73 0.44 0.38 0.54 70.68%

2017 0.56 0.70 0.46 0.43 0.56 77.60%

2018 0.55 0.74 0.49 0.35 0.54 68.71%

2019 0.50 0.68 0.48 0.38 0.58 76.94%

2020 0.58 0.72 0.43 0.42 0.55 72.35%

Table 2.  Mean and PC1 results of RSEI in Shanxi Province (2000–2020).
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65.70%, with a multi-year average of 76.14%. This indicates that PC1 concentrates the primary characteristics 
of each indicator, confirming the scientific validity of using kNDVI, WET, LST, and NDBSI in constructing 
the RSEI. Furthermore, pixel-by-pixel correlation analysis of RSEI and kNDVI from 2000 to 2020 (Figure S1) 
revealed a high correlation between the two (R2 = 0.90), which to a certain extent verified the reliability and 
representativeness of RSEI.

The time-series variation of average RSEI values in Shanxi Province and its planned mining areas from 2000 
to 2020 is presented in Fig. 4. During this period, RSEI values in Shanxi ranged from 0.42 to 0.58, with an average 
annual increase of 1.44%. The lowest value occurred in 2000, while the highest was observed in 2020. Throughout 
the study period, the average ecological grade consistently remained at a moderate level, indicating a relatively 
stable and favorable ecological condition in the region. To better illustrate the long-term trend of RSEI averages, 
the Savitzky-Golay (SG) filter was applied to smooth the time-series curve. The smoothed curve indicates an 
upward trend from 2000 to 2008 and from 2011 to 2014, while fluctuations or downward trends occurred 
during other periods. The research found that starting in 2000, ecological restoration projects were initiated 
in Shanxi Province. The significant rise observed from 2010 to 2014 may be attributed to the comprehensive 
launch of ecological province construction in 2011 and the in-depth implementation of ecological environment 
governance and restoration projects, resulting in noticeable improvements in the ecological environment during 
this period. Overall, from 2000 to 2020, the ecological environment quality in Shanxi Province showed a clear 
improvement trend, indicating the effectiveness of ecological protection measures.

Figure 5 reveals the spatiotemporal distribution of RSEI values in Shanxi Province and the planned mining 
areas. From 2000 to 2020, the overall ecological quality in the eastern region of the study area was superior to 
that of the western region, with areas of better ecological quality concentrated on both sides of the Lüliang and 
Taihang mountain ranges. Notably, the ecological quality in the Jincheng mining area, Xiangning mining area, 
and the Xishan gujiao mining area was relatively high, situated in the central and southern parts of Shanxi 
Province. Conversely, the ecological quality in the Datong mining area, Liulin mining area, Lishi mining area, 
and Hebao mining area was poorer, predominantly located in the western part of Shanxi Province.

Analyzing the changes in the proportion of areas with different RSEI grades in Shanxi Province, as shown in 
Fig. 6, reveals that regions with moderate RSEI levels accounted for the highest share, reaching approximately 
40% ± 3%. The proportions of areas classified as fair and poor showed a downward trend, with the poor grade 
declining from 8% in 2000 to 0% in 2020, and the fair grade decreasing from 41 to 13%. Conversely, the 
proportions of areas with good and excellent grades exhibited a steady upward trend, with good areas increasing 
from 14 to 38% and excellent areas rising from 0 to 7%. These results indicate that the ecological quality in 
Shanxi Province in 2020 is significantly better than in 2000, demonstrating a steady improvement in ecological 
quality over the past 20 years.

Fig. 4.  Time-series changes of the mean RSEI value in Shanxi Province from 2000 to 2020.
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Analysis of the annual mean RSEI box plots for the twelve planned mining areas (Fig. 7) reveals that the 
Jincheng mining area demonstrates relatively better ecological quality with a mean RSEI value of 0.32 compared 
to other mining areas. In contrast, the Liulin mining area exhibits poorer ecological conditions, showing the 
lowest mean RSEI value of 0.16. The overall ecological assessment indicates that the average RSEI grades 
across all twelve planned mining areas fall within the “fair” to “poor” categories, highlighting the necessity for 
implementing ecological protection measures in these regions.

To better understand the trends in ecosystem changes, an assessment and comparison of the ecological 
conditions across different mining areas were conducted, categorizing the annual growth rates into three Levels 
based on their values: Level 1 for annual growth rates exceeding 2.5%; Level 2 for rates between 1.5% and 2.5%; 
and Level 3 for rates ranging from 0 to 1.5%. Among these, the Xiangning, Liulin, and Huozhou mining areas 
were classified as Level 1, with growth rates of 2.74% and 3.35%. The Pingshuo Shuo’nan, Hebao Piao, Lu’an, 
and Lishi mining areas fell into Level 2, with growth rates of 1.55%, 2.36%, 1.80%, and 2.29%, respectively. The 
Datong, Jincheng, Qinyuan, Xishan Gujiao, and Yangquan mining areas were categorized as Level 3, with growth 
rates of 1.48%, 1.17%, 1.42%, 1.17%, and 1.34%. Overall, the annual average growth rates across the planned 
mining areas indicate that from 2000 to 2020, the RSEI values in all mining areas displayed an upward trend, 
reflecting improvements in their ecological conditions.

Spatial and Temporal trends in RSEI
The RSEI values in Shanxi Province exhibit significant spatial variability, with the analysis utilizing Sen’s slope 
and the MK test to explore the temporal and spatial trends of RSEI, resulting in five distinct groups. As illustrated 
in Fig. 8, from 2000 to 2010, the overall RSEI in Shanxi Province demonstrated an upward trend, with the area 
of increase accounting for 79.47% of the total area. Notably, the majority of this increase was no significant rise, 

Fig. 5.  (a) to (e) represent the spatial and temporal distribution of RSEI in Shanxi Province and planned 
mining areas in 2000, 2005, 2010, 2015 and 2020, respectively. (This image was created using ArcGIS 10.8 
software, which is an Esri product, generated using our dataset, and is publicly available at the URL ​(​​​h​t​t​p​s​:​/​/​w​w​
w​.​e​s​r​i​.​c​o​m​/​)​​​​​.​)​​​​
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Fig. 7.  Annual average change of RSEI in the planned mining area.

 

Fig. 6.  Percentage change of area occupied by different classes of RSEI in Shanxi Province.
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comprising 59.85%. From 2010 to 2020, the area of increase constituted 62.73%, with a significant rise of 9.48% 
primarily concentrated in the northern part of Shanxi Province. Over the entire period from 2000 to 2020, the 
area exhibiting an upward trend accounted for 88.3%, while the area showing a downward trend comprised 
8.49%, primarily distributed in the southern and eastern regions. These results indicate a general upward 

Fig. 8.  (a–c) Spatial distribution and area proportions of RSEI trends for 2000–2010, 2010–2020, and 2000–
2020, respectively. (This image was created using ArcGIS 10.8 software, which is an Esri product, generated 
using our dataset, and is publicly available at the URL (https://www.esri.com/).)
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trajectory in ecological quality across Shanxi Province, reflecting the significant effectiveness of ecological 
governance measures implemented in the region.

From 2000 to 2020, the area with increased RSEI in the 12 planned mining areas accounted for 87.08%, while 
the area that relative stable was only 2.89%, and the area with decreased RSEI for 10.03%. The spatiotemporal 
trends of RSEI in the planned mining areas align closely with the overall trends observed in Shanxi Province. 
The varying spatial trends of RSEI across different grades of mining areas and their respective proportions are 
detailed in Table  3. Overall, all grades of mining areas in Shanxi Province demonstrate an upward trend in 
RSEI, indicating a reduction in ecological vulnerability and an improvement in ecological conditions. Notably, 
the ecological improvement in Level 1 mining areas is particularly pronounced, significantly surpassing that 
of Level 2 and Level 3 areas. This suggests that ecological restoration efforts in Level 1 mining areas, such as 
those in Xiangning, Liulin, and Huozhou, have achieved more substantial results. This trend corresponds with 
the broader improvement in ecological quality throughout Shanxi Province, reflecting the positive outcomes of 
environmental protection and restoration initiatives in the region. Since 2007, Shanxi Province has implemented 
a special plan for the comprehensive management of subsidence areas, gradually restoring the ecological 
functions of the land in these areas through integrated measures such as surface backfilling, land reclamation, and 
ecological reconstruction. Additionally, between 2000 and 2020, the province advanced ecological restoration 
efforts for abandoned open-pit mines in key areas of the Yellow River Basin.

Spatial autocorrelation analysis of the RSEI
Spatial autocorrelation analysis was employed to explore the ecological quality in Shanxi Province by sampling 
RSEI into a 5  km × 5  km grid. The results, validated at a 1% significance level, revealed significant spatial 
autocorrelation of RSEI at the 99% confidence level, indicating a clear spatial correlation in ecological quality 
across various regions of Shanxi Province. The Moran’s I values for the years 2000, 2005, 2010, 2015, and 
2020 were 0.78, 0.75, 0.74, 0.74, and 0.70, respectively (Fig. 9), demonstrating a gradual weakening of spatial 
autocorrelation in ecological quality, but the values remain relatively high, suggesting a strong spatial correlation 
still exists. The Moran scatter plot delineates spatial clustering or dispersion patterns across four quadrants: 
HH (high-high), LH (low-high), LL (low-low), and HL (high-low). The results indicate that RSEI’s Moran’s 
I scatter plot is predominantly concentrated in the HH and LL quadrants, highlighting a substantial positive 
spatial correlation in ecological quality across Shanxi Province and suggesting that the spatial distribution of 
RSEI exhibits a degree of aggregation.

To analyze the spatiotemporal variation in the distribution of RSEI within the study area, a Local Indicators 
of Spatial Association (LISA) cluster map was generated. The LISA clustering results (Fig. 10) demonstrate a 
clear spatial correlation between ecological quality patterns and mining activities, climatic conditions, and 
topographic characteristics in Shanxi Province. H-H clusters are predominantly distributed in the central and 
southeastern regions (e.g., Yuncheng and Jincheng), where higher annual precipitation and the ecological barrier 
effects of the Taihang and Lüliang Mountains limit mining disturbances. These areas also benefit from fertile 
river valleys such as the Fenhe and Qinhe, which support vegetation growth.

In contrast, L-L clusters are concentrated in northern coal mining hubs (Datong, Shuozhou) and western 
mining zones (Lüliang, Liulin, Hebao Pian), overlapping significantly with the open-pit mining areas outlined 
in the Shanxi Mineral Resources Plan. The temporal analysis from 2000 to 2020 reveals that H-H clusters have 
expanded and spatially consolidated, while L-L clusters have shifted northward and decreased in area. This trend 
corresponds with the implementation of ecological restoration projects in the Yellow River Basin, including 
vegetation planting and mining land rehabilitation. Notably, western mining areas like Liulin and Hebao Pian 

Mine grade RSEI Trends RSEI

2000–2020

Land area (km2) Percentage

Level I

Rise
SR 9722.99 84.57

NSR 1339.99 11.66

Relative stable RS 107.73 0.94

Decline
NSD 209.66 1.82

SD 116.02 1.01

Level II

Rise
SR 3394.31 52.97

NSR 1822.28 28.44

Relative stable RS 248.61 3.88

Decline
NSD 624.83 9.75

SD 318.22 4.97

Level III

Rise
SR 8664.76 54.63

NSR 4592.59 28.96

Relative stable RS 612.40 3.86

Decline
NSD 1200.77 7.57

SD 788.91 4.97

Table 3.  Area of different Spatial trends in RSEI at various levels of the mine and their percentages.
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show reduced L-L clusters, whereas regions such as Xiangning and Jincheng exhibit increased H-H clusters, 
reflecting the combined effects of mining regulation, climate advantages, and terrain protection.

Potential drivers of change affecting ecological quality
To comprehensively and systematically investigate the driving factors influencing RSEI, various potential 
drivers were treated as independent variables, with RSEI as the dependent variable. Due to data availability 
constraints—some datasets being updated only through 2020—five representative years (2000, 2005, 2010, 
2015, and 2020) were selected for analysis. The Pearson correlation coefficient method was used to evaluate the 
linear relationships between RSEI and the selected driving factors for each of these years. The results, validated 
through significance testing, identify the key factors influencing RSEI, as presented in Table  4. At the same 
time, taking 2020 as an example, we analyzed the statistical characteristics of each variable (Table S2). The 
changes in ecological quality within mining areas are also affected by factors such as elevation, wind speed (Ws), 
Precipitation accumulation (Pa), Vapor pressure (Vp) and NPP. However, in studies of ecological quality changes 
in mining areas, human activities—particularly coal mining—have a more pronounced impact on the ecological 
quality of these regions. Therefore, when investigating the potential influencing factors of ecological quality 
changes, it is essential to consider the overall context of Shanxi Province. A systematic study of Shanxi Province 
can enhance the understanding of the impacts of coal mining and provide effective strategies for ecological 
restoration in mining areas, ultimately achieving more efficient results.

Results of driver regression based on catboost and GWR
Table 5 presents the average results of the CatBoost model using 5-fold cross-validation. The model exhibited a 
high coefficient of determination (R2 > 0.670) and a low root mean square error (RMSE < 0.083), highlighting 
CatBoost’s ability to efficiently and accurately predict RSEI evaluation metrics. These results confirm the model’s 
effectiveness in handling the complex relationships between ecological factors and RSEI.

The analysis of the CatBoost model’s prediction results using the SHAP tool (Fig. 11) quantitatively assessed 
the contribution of each feature to the model’s outputs. While traditional models can indicate which features are 
important, they often fail to explain how these features influence the predictions. The key advantage of the SHAP 
approach lies in its ability to reveal the impact of each feature on a per-sample basis, including whether the effect 
is positive or negative. The results show that population density exerts a negative influence on RSEI, whereas 

Fig. 9.  2000, 2005, 2010, 2015 and 2020 Moran I scatter plots for the study area.
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the other variables have positive effects. Moreover, the analysis highlights the varying degrees to which different 
features impact RSEI: NPP has a substantial effect, with lower NPP values resulting in smaller model outputs, 
while higher NPP values lead to larger outputs. Parameters such as Pa, elevation, wind speed, population density, 
and vapor pressure have moderate impacts on RSEI, whereas slope has a relatively minor effect.

To capture the temporal variation and spatial heterogeneity in the effects of various factors on RSEI, both 
GWR and OLS models were constructed, and the fitted parameter results for the years 2000, 2005, 2010, 2015, and 
2020 were compared and a map of localized R2 coefficients (Table 6). The results indicated that the GWR model 
significantly outperformed both the OLS and CatBoost models in terms of RMSE and R2 metrics. Furthermore, 
the AICc value for the GWR model was notably lower than that of the OLS model, suggesting that the GWR 
model can more accurately fit the data when addressing spatially heterogeneous data. By comparing the global 
R2 and local R2 coefficients (Fig. 12), while the global R2 is usually higher, indicating a better overall model fit, 
the variation in the local R2 reveals differences in fit across different regions or sample points. This is crucial for 
understanding the spatial heterogeneity of the data. This reflects its superior sensitivity and adaptability to spatial 
variations, further validating its unique advantage in predicting RSEI within the context of spatial correlation.

To examine the spatial and temporal differences in the coefficients between independent and dependent 
variables in the GWR model, the average coefficients for different years are presented in Table 7. By analyzing 
these average coefficients, we can reveal the temporal and spatial trends of various environmental factors in 
relation to RSEI. The positive and negative values of the coefficients indicate the nature of the influence that 
each driving factor has on RSEI. In all years, elevation, Ws, Vp, and NPP showed a positive correlation with 
RSEI, while population density exhibited a negative correlation. The absolute values of the coefficients reflect the 
magnitude of the influence each driving factor has on RSEI, indicating that NPP and population density have a 
significant impact, whereas slope has a relatively minor effect.

Fig. 10.  (a–e) shows the LISA clusters for the study area for the years 2000, 2005, 2010, 2015, and 2020. (This 
image was created using ArcGIS 10.8 software, which is an Esri product, generated using our dataset, and is 
publicly available at the URL (https://www.esri.com/).)
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Year R2 RMSE

2000 0.786 ± 0.010 0.074 ± 0.002

2005 0.770 ± 0.020 0.077 ± 0.004

2010 0.804 ± 0.015 0.073 ± 0.003

2015 0.786 ± 0.011 0.076 ± 0.002

2020 0.706 ± 0.018 0.082 ± 0.001

Table 5.  Evaluation results of catboost regression model.

 

Year Variables Mean Std Max Mix Median

2000 Elevation (m) ** 1166.51 361.93 2560.00 290.00 1151.00

Slope(°)** 14.85 10.99 78.17 0.96 12.69

Wind speed (m/s) ** 210.99 28.15 335.50 151.50 206.50

Precipitation accumulation (mm) ** 85.51 18.17 151.00 53.00 81.00

Vapor pressure (kPa) ** 1411.07 210.88 2058.50 959.25 1397.75

NPP(kg C/m2)** 3381.19 4264.05 32767.00 301.00 2794.00

Population density(people/km2)** 126.17 700.25 28565.00 1.00 28.00

RSEI 0.42 0.16 0.96 0.04 0.41

2005 Elevation (m) ** 1163.17 360.54 2560.00 290.00 1147.00

Slope(°)** 14.76 10.90 78.17 0.96 12.45

Wind speed (m/s) ** 219.66 27.91 341.00 151.50 216.00

Precipitation accumulation (mm) ** 84.38 22.45 155.50 50.75 78.00

Vapor pressure (kPa) 1329.07 186.24 1918.00 922.50 1312.00

NPP(kg C/m2)** 4551.39 4080.77 32767.00 829.00 4082.00

Population density(people/km2)** 137.17 622.20 21374.00 1.00 20.00

RSEI 0.46 0.16 0.94 0.00 0.46

2010 Elevation (m) ** 1160.23 359.71 2560.00 290.00 1144.00

Slope(°)** 14.65 10.82 78.17 0.96 12.35

Wind speed (m/s) ** 214.09 28.16 335.25 151.75 209.50

Precipitation accumulation (mm) ** 93.05 17.15 150.00 59.50 90.75

Vapor pressure (kPa) ** 1392.91 210.46 2086.75 954.25 1382.00

NPP(kg C/m2)* 3944.63 4139.76 32767.00 978.00 3424.00

Population density(people/km2)** 139.56 669.83 23542.00 1.00 18.00

RSEI 0.49 0.16 0.95 0.05 0.49

2015 Elevation (m) ** 1160.65 359.63 2560.00 290.00 1145.00

Slope(°)** 14.65 10.83 78.17 0.96 12.35

Wind speed (m/s) ** 226.77 26.99 342.25 164.50 223.00

Precipitation accumulation (mm) ** 71.58 11.13 110.75 50.00 69.50

Vapor pressure (kPa) ** 1270.79 186.19 1849.75 868.00 1254.50

NPP(kg C/m2)** 4351.45 4109.18 32767.00 945.00 3868.00

Population density(people/km2)** 148.24 712.48 22910.00 1.00 18.00

RSEI 0.54 0.16 0.96 0.09 0.54

2020 Elevation (m) ** 1155.75 357.55 2560.00 290.00 1139.00

Slope(°)** 14.49 10.71 78.17 0.96 12.31

Wind speed (m/s) ** 218.49 28.93 340.00 147.50 215.00

Precipitation accumulation (mm) ** 86.27 9.88 120.25 56.50 85.75

Vapor pressure (kPa) * 1428.38 187.56 2029.75 1028.25 1414.25

NPP(kg C/m2)* 4348.49 4125.43 32767.00 945.00 3858.00

Population density(people/km2)** 147.52 573.86 17263.00 1.00 16.00

RSEI 0.58 0.15 0.97 0.07 0.58

Table 4.  Significance test results of the main drivers of RSEI. **,* represent passing the 1%,5% significance 
level, respectively.
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The spatial distribution of the mean regression coefficients for various factors across different years is 
depicted in Fig. 13. It is evident from the figure that the relationships between elevation, slope, Ws, Pa, Vp, 
NPP, and population density with RSEI exhibit both temporal and spatial variations. The levels of influence 
these factors have on RSEI and their corresponding areas of impact differ, with the distribution of regression 
coefficients not appearing random. Notably, the coefficients for NPP and population density demonstrate a 
pronounced clustering effect over large areas, indicating that the influence of environmental factors on RSEI is 
related to spatial location. The GWR model further confirms that the impact of different factors on the ecological 
environment varies spatially, while within certain ranges, the same influencing factors consistently affect RSEI.

Year R2 R2 Adjusted RMSE AICc

GWR OLS GWR OLS GWR OLS GWR OLS

2000 0.887 0.487 0.855 0.487 0.0558 0.1189 -6257.9 -3562.4

2005 0.875 0.386 0.839 0.386 0.062 0.1372 -5425.4 -2435.7

2010 0.879 0.445 0.845 0.445 0.0597 0.1279 -5728 2983.94

2015 0.874 0.416 0.838 0.416 0.061 0.1313 -5556.4 2780.06

2020 0.813 0.36 0.778 0.360 0.0688 0.1274 5341.45 3012.8

Table 6.  Model evaluation results of OLS and GWR.

 

Fig. 11.  Scatter plot of SHAP feature density.
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Discussion
Changes in ecological environment quality
Based on long-term RSEI monitoring (2000–2020), the ecological quality of Shanxi Province showed a significant 
upward trend (38% increase in mean RSEI), with particularly prominent improvements in planned mining 
areas. This conclusion aligns with studies by Zhao et al. (2019)38, Gong et al.39, and Zhang et al.40, all indicating 

Variables 2000 2005 2010 2015 2020

Elevation 0.372 0.345 0.424 0.314 0.319

Slope 0.003 -0.003 0.003 -0.022 -0.012

Wind speed 0.488 0.332 0.342 0.384 0.320

Precipitation accumulation 0.133 0.074 0.243 0.061 -0.040

Vapor pressure 0.378 0.338 0.428 0.410 0.279

NPP 1.416 1.236 1.690 1.576 1.184

population density -0.808 -0.414 -0.607 -0.701 -0.714

Table 7.  Mean values of regression coefficients of independent variables in the GWR model.

 

Fig. 12.  Local R2 Coefficient Map. (This image was created using ArcGIS 10.8 software, which is an Esri 
product, generated using our dataset, and is publicly available at the URL (https://www.esri.com/).)
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that ecological restoration policies—including mine rehabilitation, soil erosion control, and afforestation—
have driven quality improvements in Shanxi. For example, Gong et al. reported that post-2000 reclamation 
projects increased vegetation coverage by approximately 21% in mining areas, consistent with the sustained 
RSEI improvement observed in this study (87.08% of mining areas showed upward trends)39. However, Xu et al. 
emphasized a 5–8-year lag in ecological recovery within mining areas, contrasting with the long-term positive 

Fig. 13.  Spatial distribution of regression coefficients of independent variables of GWR model. (This image 
was created using ArcGIS 10.8 software, which is an Esri product, generated using our dataset, and is publicly 
available at the URL (https://www.esri.com/).)
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trends identified here41. This discrepancy may stem from differences in study duration and methodology: Xu et 
al. relied on short-term observations (< 10 years), reflecting initial restoration fluctuations, whereas this study 
captured cumulative recovery effects through 20-year temporal analysis.

To forecast future RSEI trends, the Hurst exponent was employed, yielding values between 0.14 and 0.89 
(mean: 0.46) for Shanxi (Fig. 14a), indicating a likelihood of trend reversals. The overlay analysis of RSEI spatial 
trends and Hurst index (Fig.  14b) demonstrates that approximately 63.12% of Shanxi Province is likely to 
experience “reverse rise” (early degradation followed by future improvement) according to statistical results 
(Table 8), a phenomenon consistent with the “delayed recovery” pattern observed in global mining restoration 
studies42. Despite the overall upward trend in ecological quality, localized degradation remains evident in areas 
of intensive mining, such as Pingshuo-Shuonan (18.43% showing a declining trend) and Jincheng (19.73%), 
consistent with findings by Li et al. in northern China30. Validation using RSEI data from 2021 to 2023 showed 
over 87% consistency with Hurst-based predictions, supporting the reliability of this method and aligning with 
similar applications by Kang et al.43. on the Loess Plateau. These findings highlight the importance of balancing 
coal extraction with ecological management to ensure sustained long-term environmental quality.

Figure 14c illustrates the RSEI mean distribution from 2021 to 2023, using the average RSEI values from 
these three years to validate the accuracy of future trend changes against the averages from 2018 to 2020. This 
method visually represents the variations between the two time periods and effectively mitigates the influence of 
short-term fluctuations in long-term trend analysis. The results, as shown in Table 9, reveal that RSEI values for 

RSEI Percentage Land area(km2)

Poor(0-0.2) -0.39 636.75

Fair(0.2–0.4) -2.35 3842.59

Moderate(0.4–0.6) -0.63 1030.27

Good(0.6–0.8) 3.99 6508.943

Excellent(0.8-1) -0.65 1064.64

Table 9.  Change in average RSEI, 2021–2023 vs. average RSEI, 2018–2020.

 

Future trends

Shanxi Province Diggings

Percentage Percentage

Positive decline 4.38 5.48

Reverse decline 4.11 4.17

Relative stable 3.22 2.87

Reverse rise 63.12 58.38

Positive rise 25.17 29.10

Table 8.  Changes in RSEI sustainability grading for Shanxi Province and its planned mining areas.

 

Fig. 14.  Future RSEI Changes in Shanxi Province. (This image was created using ArcGIS 10.8 software, which 
is an Esri product, generated using our dataset, and is publicly available at the URL (https://www.esri.com/).)
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poor, fair, and moderate grades declined by 0.39%, 2.35%, and 0.63%, respectively, while RSEI for good grades 
increased by 3.99% and for excellent grades decreased by 0.65%. Overall, the RSEI exhibits an upward trend, 
consistent with the predictions made by the Hurst index.

Driving factors of ecological quality
As a major coal-producing province, Shanxi’s ecological environment is highly sensitive to human activities and 
vegetation dynamics. The CatBoost model identified NPP as the primary driver of RSEI improvement (32.7% 
contribution), consistent with Gou et al.’s findings in the Loess Plateau44, which highlight vegetation restoration 
as critical in arid/semi-arid regions. However, this study found that the negative effect of population density 
on RSEI is more significan than that reported by Xu et al.45. in the Qinghai-Tibet–Loess Plateau transition 
zone (with a difference in SHAP values reaching 1.8 times). This divergence reflects Shanxi’s unique resource-
dependent context: intensive mining and topographic constraints (e.g., > 70% mountainous terrain) likely 
amplify population pressure on ecosystems46.

The combination of the CatBoost model and SHAP tool effectively quantified the influence of various 
factors on RSEI and intuitively illustrated how each feature affects RSEI, thereby overcoming the limitations 
of traditional models. Although the CatBoost model demonstrated excellent predictive performance, it did not 
adequately account for spatial data and geographic relationships, overlooking the spatial autocorrelation present 
in Shanxi Province. To address the fitting errors caused by spatial autocorrelation, this study introduced the 
GWR model to analyze the impacts of potential ecological factors on RSEI in Shanxi Province. The GWR model 
not only confirmed the magnitude and direction of each factor’s influence on RSEI but also clearly revealed 
the spatial heterogeneity of regression coefficients through the spatial distribution maps of GWR coefficients 
(Fig. 13). The results of the GWR model further confirmed that the effects of ecological factors on RSEI vary 
across different regions. Moreover, the GWR results showed that the NPP coefficients were relatively low in the 
southern part of Shanxi Province and the Lüliang Mountain area. This is mainly because the southern region of 
Shanxi has experienced a faster pace of urbanization and has relatively lower vegetation coverage, making NPP 
primarily influenced by vegetation cover and topography40. This result is consistent with actual conditions and 
verifies the relationship between NPP and RSEI. The combined findings from the CatBoost and GWR models 
can assist policymakers in formulating targeted policy measures that take into account the specific needs and 
conditions of different regions within Shanxi Province, thereby promoting more effective ecological management 
and restoration efforts.

Limitations and future prospects
This study utilized remote sensing data to evaluate ecological quality trends and drivers in Shanxi, providing 
a scientific basis for environmental assessment. However, compared to high-precision monitoring studies 
(e.g47,48), limitations exist. First, reliance on MODIS imagery—despite its high temporal resolution—limited 
spatial detail, potentially underestimating micro-scale changes in mining areas. Second, in future studies, we 
plan to introduce spatial downscaling models and integrate high-resolution data such as Landsat to improve 
the representation of localized regions. While this investigation considered seven primary influencing factors 
(elevation, slope, Ws, Pa, Vp, NPP, and population density), ecological quality is fundamentally determined by 
a more complex interplay of numerous elements. Future studies would benefit from incorporating additional 
scientifically relevant variables, such as GDP, industrial activity indicators, and energy consumption patterns40, 
to enable a more comprehensive evaluation of their synergistic effects on ecosystem health. As a major coal 
resource province, incorporating coal mining resource data into ecological evaluation metrics can provide new 
perspectives. Specifically, the study can reveal the relationship between mining activities and ecological quality 
by assessing the direct impacts of coal mining on the surrounding ecological environment, such as changes 
in vegetation coverage and increased soil erosion. Furthermore, by examining the intensity and distribution 
characteristics of coal mining resources, a more precise analysis of their long-term impacts on regional ecological 
environments can be achieved, particularly in the context of ecological restoration and management, evaluating 
the balance between mining and ecological recovery.

Conclusion
This study systematically evaluated the spatiotemporal changes in ecological environment quality and their 
driving mechanisms in Shanxi Province and its planned mining areas from 2000 to 2020 by constructing a RSEI, 
integrated with trend analysis, spatial autocorrelation, and machine learning models. The results demonstrate 
a significant improvement in the ecological quality of Shanxi Province, with the mean RSEI increasing from 
0.42 in 2000 to 0.58 in 2020, representing a 38% enhancement—significantly higher than the national average 
vegetation restoration rate during the same period. Notably, 88.3% of the study area exhibited sustained 
ecological improvement, while only 8.49% showed degradation, highlighting the province’s success in balancing 
resource exploitation and ecological protection. The planned mining areas also exhibited significant ecological 
recovery, with 87.08% of the regions showing upward trends, thereby validating the effectiveness of ecological 
restoration measures implemented in these zones. To further assess the persistence of ecological quality 
changes, this study integrated Hurst index analysis with validation using recent observational data (2021–2023), 
confirming a high level of consistency (> 87%) with projected improvement trends. Spatial autocorrelation 
analysis, as indicated by a Global Moran’s I exceeding 0.7, verified the presence of strong spatial clustering in 
ecological quality, thereby supporting subsequent spatially explicit analyses of driving factors. In examining 
the underlying mechanisms, the CatBoost model identified NPP as the most influential factor contributing to 
RSEI improvements (contribution rate: 32.7%). In contrast, population density showed a significant negative 
correlation with RSEI, highlighting the persistent anthropogenic pressure on regional ecosystems. GWR further 
revealed significant spatial heterogeneity in the ecological effects of different drivers, offering scientific guidance 
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for region-specific governance strategies. The proposed framework—integrating multi-source data with machine 
learning-driven interpretation in this study is not only applicable to ecological monitoring and management 
in resource-dependent regions but can also be extended to sustainability assessments of similar mining areas 
globally, such as Australia’s Bowen Basin and Inner Mongolia’s Shendong mining area. These findings provide 
quantitative support for optimizing the synergy between resource development and ecological conservation, 
aiding in the formulation of targeted ecological restoration policies.

Data availability
The data is available upon reasonable request to the corresponding authors.
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