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The biodiversity function of the desert steppe ecosystem faces many challenges under the pressure 
of climate change and human activities. Accurate and efficient assessment of plant diversity is critical 
for guiding desert steppe restoration efforts. However, desert steppe vegetation has sparse leaves 
and sparse distribution. It is difficult to accurately distinguish micro-vegetation types based on a 
single spectrum, vegetation index or texture feature, and the resolution of satellite remote sensing 
cannot meet the needs of high-precision diversity assessment. To this end, this study proposed a novel 
method for assessing plant diversity index in degraded desert grassland based on multimodal UAV 
hyperspectral data and Encoder-CNN. Through experiments on different modal feature combinations, 
spatial spectra, vegetation indices and texture features were targeted and fused. Channel Attention 
Fusion (CAF) was introduced into Encoder to achieve cross-layer “soft” residual fusion, the Encoder and 
CNN models were fused to construct a global-local co-expression structure, and finally the quantitative 
calculation of the plant diversity index at the pixel level was realized. The results show that the 
vegetation types determined by the fusion of multimodal data and deep learning are consistent with 
the existing species, dominant species and sub-dominant species of the actual community, and the 
calculated diversity index results are also consistent with the actual situation. The use of multimodal 
data combining spatial spectral features with index features, combined with the Encode-CNN model, 
can provide the most accurate information on community composition. The overall accuracy of sparse 
vegetation classification can reach 90.01%, and the average accuracy can reach 85.23%, which is better 
than single mode or traditional 3DCNN, VIT models. This study demonstrates the application potential 
of UAV hyperspectral multimodal technology and deep learning in the assessment of desert steppe 
plant diversity, providing important technical support for ecological protection and conservation.

Keywords  Plant diversity, UAV hyperspectral imagery, Multimodal data, Deep learning, Desert steppe 
vegetation

Desert steppe is widely regarded as the last barrier preventing the transition of grasslands into deserts. It not 
only provides detailed data that reveal the current state and changing trends of vegetation diversity in grassland 
ecosystems can be provided1, but also the root causes and main driving forces of degradation can be timely 
identified2. However, with escalating human exploitation and the compounded effects of adverse environmental 
factors, grasslands are facing a serious threat of degradation, which weakens their ability to support biodiversity, 
ecosystem services, and the well-being of human beings3,4. As global demand for livestock products rises 
alongside growing concerns over ecological sustainability, the issue of grassland degradation has received 
considerable attention from scientific community5. A critical step toward the restoration and rehabilitation of 
ecosystems is the rigorous scientific assessment of grassland biodiversity6, which is essential in addressing the 
growing problem of grassland degradation.

In the assessment of grassland biodiversity, the structural composition and characteristics of vegetation 
communities serve as critical indicators of plant diversity7–9. The precision of these indicators directly influences 
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the scientific rigor and applicability of the assessment outcomes10. However, its short stature, sparse distribution, 
small and narrow leaves and staggered growth make it difficult to distinguish and present a major challenge 
to data collection and analysis. Traditional field survey methods are labor-intensive, costly, and inefficient for 
covering extensive grassland areas11. Remote sensing, as a pivotal tool for vegetation mapping and environmental 
surveillance12–14, has emerged as an essential method for monitoring grassland ecosystems15,16. Viable plant 
community research encompasses vegetation disease phenotyping17,18, classification mapping19,20, crop 
monitoring21–23, crop yield forecasting24, and parameter reliability estimation25–29 etc. Although these methods 
have been widely applied with success in forested areas and urban environments, most of the existing methods 
are applicable to the classification of vegetation with large areas and easily distinguishable boundaries, and the 
classification of sparse vegetation for desert steppe with narrow foliage and short plants still needs to be explored 
to a large extent, and requires high-resolution low-altitude remote sensing to acquire the data, coupled with 
representative and abundant features to achieve high-precision classification.

Compared to satellite and airborne remote sensing, Unmanned Aerial Vehicles (UAVs) offer distinct 
advantages, including rapid deployment, low operational costs, high temporal resolution particularly excelling 
in spatiotemporal resolution and mobility. Consequently, they are swiftly emerging as a widely adopted 
technological tool30–35. An increasing number of researchers are employing Unmanned Aerial Vehicle (UAV) 
remote sensing systems, combined with advanced technologies and methodologies, to conduct regional plant 
studies36–40. UAVs are capable of capturing diverse forms of remote sensing data, with hyperspectral imagery 
being widely used due to its ability to record continuous narrow spectral bands, effectively characterize structural 
and textural features, and invert extensive spectral information41–44. Vegetation in desert grasslands with leaf 
widths less than 2 cm and scattered and sparse vegetation distribution, and the resolution of satellite remote 
sensing is more than meters. UAV hyperspectral remote sensing has high resolution and can obtain surface 
vegetation spectral data with high spatial and spectral resolution, presenting new opportunities for extracting 
and analyzing sparse, small-scale vegetation information in desert steppe ecosystems.

With the widespread application of hyperspectral remote sensing technology in vegetation monitoring, deep 
learning (DL) has become a core means to improve classification accuracy and efficiency due to its significant 
advantages in complex feature extraction and pattern recognition45–48. However, traditional methods that rely 
only on a single spectrum or index or texture feature49–51, often fail to capture representative discriminant 
information. Therefore, many scholars have begun to integrate multiple index features (such as normalized 
vegetation index (NDVI), green normalized difference vegetation index (GNDVI), difference vegetation 
index (DVI), ratio vegetation index (RVI), soil-adjusted vegetation index (SAVI), enhanced vegetation 
index (EVI), etc52–54., and texture features55,56, to collaboratively mine multimodal data and provide richer 
and more interpretable feature expressions57–59. For example, Han et al. developed a deep learning network 
named residual-in-residual dense block (RRDB) NDVI reconstruction net (RDNRnet) to obtain optimal land 
cover type60. Qian et al. constructed a stacking ensemble model to perform wetland classification achieving 
the highest overall accuracy of 94.33%61. However, these methods still have difficulty in taking into account 
multimodal information, cross-layer multi-scale features, and deep interaction between global and local details 
in scenes with narrow leaves and sparse plants in desert steppes. To this end, this study proposes an Encoder-
CNN framework of fusion algorithms: through three mechanisms: feature adaptation for specific application 
scenarios, Innovations in the feature extraction and fusion module, and Global-local feature co-expression, 
spatial spectrum, index and texture features are specifically fused to achieve more accurate recognition of sparse 
small-scale vegetation.

The specific objectives are as follows: (1) To explore the contribution of three types of modal data, namely 
spatial-spectral, index and texture features, in the classification of desert steppe vegetation, and quantitatively 
compare the classification accuracy of single-modal and multi-modal combinations to determine which feature 
combination is most suitable for characterizing sparse vegetation types; (2) To construct a model combining 
Encoder and CNN, comprehensively learn local and global features, and introduce the CAF module to enhance 
feature dependence. Compare the model with conventional 3DCNN and VIT to verify the effectiveness of 
global-local feature collaborative learning; (3) To combine modal data and classification results, calculate the 
pixel-level vegetation diversity index, analyze and judge the vegetation community structure, and evaluate the 
feasibility of the proposed method in plant diversity evaluation. This study aims to explore the value of UAV 
hyperspectral and multimodal data in assessing the plant diversity of sparse vegetation in desert grasslands.

Materials and methods
Data acquisition
 As depicted in Fig. 1a, the area studied is located in a natural pasture within Shengli Team, Ertok Banner, Erdos 
City, Inner Mongolia Autonomous Region. Situated in the western Ordos Plateau, the area represents a typical 
desert steppe (Fig. 1a). The region is approximately 1,300 m above sea level, characterized by ample sunshine, 
an average annual precipitation of 250 mm, and an average annual evaporation of 2,300 mm. In the natural 
pasture, a 45 m × 45 m test area was selected, with the vertices A, B, C, and D marked clockwise using red, green, 
blue, and yellow flags, respectively. 20 vegetation plots, each measuring 1 m × 1 m, were selected as illustrated 
in Fig. 1b.

During the vegetation fruiting period, from July to September, 2023, field data collection occurred (Fig. 1c). 
First, the average reflectance values of the features in the test area were used as standard spectral data using a 
Lisen Optics iSpecField geo-spectrometer at 1.0 m above ground. Next, the vegetation condition of the 20 plots 
was recorded using a ground survey method to identify 10 different objects, include: 0) bare soil, (1) stone garlic, 
(2) Artemisia capillaris, (3) thistles, (4) Setaria viridis, (5) Caragana korshinskii, (6) dead Artemisia capillaris 
(referred to as dead grass), (7) Artemisia salina, (8) Corylus aurantium, and (9) colorful flags (hereafter labelled 
as T0-T9) (Fig. 1e). Vegetation data recorded included species, number, cover, height, canopy diameter/scrub 
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diameter, and site photographs. Then, Hyperspectral image (hereafter labeled as H2) was collected using Optosky 
ATH9010W UAV equipped with a hyperspectral imager over the designated test area. The UAV operated at an 
altitude of 20 m, with a speed of 2 m/s, sideward overlap of 50%. The images exhibited a spatial resolution of 
1.3 cm, spectral range from 392.59 nm to 1017.81 nm (480 distinct wavelengths). During the flight, there was less 
than 2% cloud cover, wind speeds of less than 5.4 m per second and temperatures of approximately 36° C. Finally, 
a DJI M300 drone photographed the study area from an altitude of 25 m at a speed of 10 m per second (Fig. 1 d).

Test setup
To ensure the quality of the data, we used a multi-stage quality assurance process during the field data collection 
and labelling process: A 1 × 1 m standard sample plot was established at each observation point and accurately 
subdivided into 10 × 10 sub-grids using white lines to improve the accuracy of spatial records. All species 
identifications were determined by two university teachers with an associate professor or above degree. After 
the sub-grid survey, each tagger is required to take high-resolution ground photographs from directly above the 
sample plot for auxiliary verification. If there is a disagreement between the two independent tagging results, the 
team will review them one by one at a central discussion meeting based on the actual photographs taken until a 
consensus is reached to ensure the consistency and scientific of the final tagging data.

The H2 images were preprocessed by ENVI, including radiometric correction, cropping, stitching and 
geometric correction, and finally the 45 m×45 m H2 images were obtained. Using the vegetation spectral curve 
collected by the geographic spectrometer as a reference standard, and cross-referencing with field images, 
regions of interest were labeled in ENVI on a pixel-by-pixel basis, yielding 25,600 pixel labels for each plot 
(Table S.1), with a total of 20 plots (hereafter referred to as P1-P20, Fig. S.1). During model training, the samples 
were partitioned into a training set and a validation set with a ratio of 3:7, ensuring minimal sample size while 
encompassing all categories. Each batch consisted of 32 samples, and the model was trained over a total of 100 
epochs, utilizing a learning rate of 0.0005. Data was randomly shuffled at the start of each epoch.

The experiment was completed in the following environment:
GPU: NVIDIA GeForce RTX 4060 Ti, 32.0 GB
CPU: Intel i7-12700 K, 12 cores, 3.60 GHz

Fig. 1.  The map illustrates the location of the study region (a) and the distribution of vegetation plots (b). 
Experimental equipment including hyperspectral UAV, DJI UAV, anemometer, geographic spectrometer, 
vegetation plots, record books (c). Experimental output data including hyperspectral image, RGB image, 
vegetation photos, field-based records, spectral curve (d). 10 ground objects in the test area (e). Figure 1a 
generated by the authors using ArcMap version 10.8 (Esri, https://www.esri.com).
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Memory: 32GB, D4 3200 MHz
Software environment: Python 3.9, PyTorch 2.1.2

Methods
The RF algorithm was used to rank the importance of wavelengths on a pixel-by-pixel basis and to analyze 
the relationship between wavelengths and vegetation physiology. Hyperspectral images were reconstructed by 
selecting the optimal wavelength combinations. The samples were then augmented by cropping, rotation and 
splicing, pixel mixing, denoising and noise reduction to ensure that each vegetation type was represented by 
at least 10,000 samples. The classification accuracy of single and combined features was then compared across 
the three dimensions of spatial-spectral, index and texture features to identify key features suitable for sparse 
vegetation analysis. Encoder from CAF transformer was used to extract high-level features, which were then fed 
into the CNN model to achieve highly accurate classification results. Finally, using the classification results and 
field survey data, the diversity of the vegetation community in the test area was calculated and analyzed using 
diversity parameter formulas, thus completing the assessment of the plant diversity of the desert steppe (Fig. 2).

Hyperspectral image dimensionality reduction
RF was employed to rank the importance of all spectral bands, optimize wavelength combinations, and analyze 
the correlation between wavelengths and vegetation physiology. Feature importance evaluation is calculating 
the average contribution of each wavelength across all trees in the forest. In this study, the Gini index was 
selected as the evaluation metric for feature importance. For the 20 plots, each H2 image contains 25,600 pixels. 
The importance of 480 wavelengths was calculated for the pixels within each plot, and the overall wavelength 
importance was derived by averaging the values across all plots. Subsequently, voting was conducted across all 
plots, and the voting results for the 20 plots were aggregated.

Sample augmentation
In this study, three main methods were used: cropping, mirroring, and rotation; mixed pixels; denoising and 
adding noise. Mixing pixels means randomly selecting three different image pixels of the same kind Pi, Pj, and Pk 
and using their linear combination to generate virtual samples with weighted noise.

	 Pijk = αiPi + αjPj + αkPk + λn, 0 < αi, αj , αk < 1, αi + αj + αk = 1� (1)

Where λn is the Gaussian noise with mean 0 and variance 0.001.
Denoising were determined through the peak signal-to-noise ratio (PSNR) of the combination of six 

wavelet basis functions (Daubechies 4-wavelet, Daubechies 6-wavelet, Haar wavelet, Symlets 4-wavelet, Coiflets 
1-wavelet, and Biorthogonal 1.3-wavelet) and three decomposition levels (2, 3, and 4). Gaussian noise with 
a mean of 0 and variances of 0.01 and 0.005 was introduced. With the sample sizes of other vegetation types 
exceeding tens of thousands, data expansion was primarily conducted on plots 1, 3, 6, 8, 10, and 20, focusing on 
types 3, 5, 7, 8, and 9 (Table S.2).

Feature selection
Three groups of features from multimodal data were selected: spatial-spectral features, index features, and 
texture features. All data were derived from the same spectral set of the same H2 image. The specific information 
of features is provided in Table 1. Regarding red-edge vegetation indices, accounting for the periodic fluctuations 
in growth stages and phenological traits of various vegetation types, the red-edge chlorophyll index (CIre), red-
edge normalized difference (NDRE), red-edge normalized difference vegetation index (RNDVI), and red-edge 
chlorophyll sensitivity index (MTCI) were selected. When integrated with 12 commonly utilized vegetation 
indices, a total of 16 red-edge vegetation index features were constructed. The texture features were calculated 
by gray level co-occurrence matrix (GLCM) on Environment for Visualizing Images (ENVI), extracting eight 
specific features. To ensure a consistent comparison of feature contributions under identical input conditions, 
the feature count for all three groups was standardized to 128.

Encoder - CNN model
The proposed model consists of two primary components: a high-order feature extraction module based on an 
encoder architecture, and a pixel-level classification module leveraging CNNs. The input comprises three types of 
multi-source feature images with identical spatial resolution: spatial-spectral features, index features, and texture 
features. Taking the spatial-spectral features as an example, the model first employs the encoder in combination 
with CAF module to jointly model and extract 128-dimensional high-order feature representation for each pixel. 
This process reconstructs a high-order feature image to enhance its representational capacity. At this stage, the 
spectral dimension is transformed from raw reflectance values into high-order feature representations, while the 
spatial structure is preserved. The high-order feature image is then fed into a classification network integrating 
both 3D-CNN and 2D-CNN architectures. The 3D-CNN captures local spectral-spatial details, while the 
2D-CNN further aggregates contextual spatial information, ultimately enabling precise pixel-level classification 
(Fig. 3).

The high-order feature extraction module is based on an enhanced Transformer Encoder architecture. It 
consists of a patch embedding layer, five Encoder blocks, CAF module and a feature transformation layer. The 
process begins by dividing the image into fixed-size patches and applying positional encoding. The embedding 
spectrum is formed by mapping the features to the input dimensions through linear layers. The Encoder is 
composed of five identical layers, each containing two sublayers: the first sublayer incorporates multi-head 
attention, a normalization layer, and residual connections, while the second sublayer comprises a feedforward 
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fully connected network, a normalization layer, and residual connections. In this case, the multi-head attention 
mechanism was configured with 4 heads. Each layer uses residual connections and layer normalization 
to mitigate gradient vanishing and enhance training stability. The CAF is a fusion module centered on two-
dimensional convolution. Specifically, it concatenates the outputs of two non-adjacent Encoder blocks along 
the feature dimension, and then applies a 1 × 2 convolution kernel to perform adaptive fusion. The resulting 
fused features are used as input to the subsequent encoder block, enabling the interaction and integration of 
information across different hierarchical levels. Finally, the feature transformation layer maps the Encoder 
output to the target spectral dimension, producing a high-order feature image with a feature dimension of 128 
that preserves the original spatial structure.

Fig. 2.  Framework for assessing plant diversity.
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Taking the input of Encoder4 as an example, the cross-layer fusion process in the CAF module can be 
described in the following five steps:

Step 1. Input preparation. Select the outputs z(l−2) of Encoder1 and the outputs z(l) of Encoder3 as the 
fusion targets. Both outputs have a tensor shape of B×P×D, where B denotes the batch size, P represents the 
number of patches plus one (in this model, a learnable classification token (CLS) is prepended to the input patch 
sequence, resulting in a sequence length of P + 1), and D indicates the feature dimension;

Step 2. Dimension expansion. Add an extra dimension to both inputs z(l−2) ∈ RB×P ×Dandz(l) ∈ RB×P ×D  
by performing an ‘unsqueeze’ operation, changing their shape to B×P×D×1. This prepares the tensors for 
subsequent concatenation and convolution operations;

Step 3. Feature concatenation. Concatenate the two inputs z(l)and z(l−2) along the feature dimension (D) 
to create a fused tensor x ∈ RB×P ×D×2 containing the combined feature:

Features Abbreviation Calculation formula Explanation

Spatial-spectral 
features Band 128wavelengths

Index features

CIre
CIre = ((NIR / Red_edge) − 1) Estimating chlorophyll content in 

leaves.

NDRE NDRE = (NIR − Red_edge) / (NIR + Red_edge) Reflecting the chlorophyll content of 
vegetation.

RNDVI RNDV I = (Red_edge − Red) / (Red_edge + Red) Detecting vegetation growth status and 
vegetation coverage.

MTCI MT CI = (NIR − Red_edge) / (Red_edge − Red) More sensitive to the chlorophyll 
content of plant leaves.

NDVI NDV I = (NIR − Red) / (NIR + Red)
Positive values ​​indicating vegetation 
cover and higher values ​​indicating 
denser vegetation or higher chlorophyll 
content.

GNDVI GNDV I = (NIR − Green) / (NIR + Green) Assessing vegetation growth.

OSAVI OSAV I = (NIR − Red) / (NIR + Red + 0.16) Considering soil effects.

LCI LCI = (NIR − Red_edge) / (NIR + Red) Determining the chlorophyll and 
nitrogen content of plant leaves.

EVI EV I = 2.5 × (NIR − Red) / (NIR + 6 × Red − 7.5 × Blue + 1) More sensitive to vegetation canopy 
structure.

DVI DV I = NIR − Red More sensitive to vegetation cover.

RVI RV I = NIR / Red Reflecting the relative coverage of 
vegetation.

SAVI SAV I = ((NIR − Red) / (NIR + Red + 0.5)) × (1 + 0.5) Considering the influence of soil.

MSAVI MSAV I = (2 × NIR + 1 −
√

(2 × NIR + 1)2 − 8(NIR − Red))
/

2 Mitigating soil influence on results.

GCI GCI = NIR / Green − 1 Estimating the amount of chlorophyll 
in various plants.

TVI T V I = 60 × (NIR − Green) − 100 × (Red − Green)
Reflecting the difference between 
vegetation reflection in visible 
light, near-infrared bands and soil 
background.

MTVI2 MIV I = 1.5 ×
(

1.2 × (NIR − Green)−
2.5 × (Red − Green)

)/√
(2 × NIR + 1)2−
(6 × NIR − 5

√
Red) − 0.5 Multi-temporal vegetation index.

Texture 
features

GLCM_M Mean

GLCM_V Variance

GLCM_H Homogeneity

GLCM_C Contrast

GLCM_D Dissimilarity

GLCM_E Entropy

GLCM_SM Second Moment

GLCM_C Correlation

Table 1.  The specific information of features. Notes: NIR: Near-Infrared — Captures wavelengths just beyond 
visible light, often used to assess vegetation health and water content. Red_edge: Red-Edge — The transition 
area between red and near-infrared light, sensitive to changes in vegetation structure and chlorophyll content. 
Red: Red — A visible light band that is useful for identifying plant stress, soil, and water clarity. Green: Green 
— Captures the visible green light band, often related to vegetation vitality and chlorophyll content. Blue: Blue 
— The shortest visible wavelength, useful for water and atmospheric studies like detecting water quality or 
atmospheric particles.
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	 x = Concat
[
z(l−2), z(l)]� (2)

Step 4. Convolution-based fusion. Pass the tensor x into the corresponding 2D convolution module within ‘self.
skipcat’. This convolution uses a kernel size of 1 × 2, a stride of (1, 1), and no padding. The operation slides over 
the last two dimensions, performing a linear weighted fusion of the two concatenated cross-layer features. The 
convolution kernel weights are trainable parameters. They adaptively adjust to integrate information from the 
skip connection through learning:

	
ẑ(l) ← ω

(
z(l−2)

z(l)

)
= ω1 × z(l−2) + ω2 × z(l)� (3)

Where ω  represents the network parameter for adaptive learning, ω 1 is the weight of z(l−2), ω 2 is the weight 
of z(l).

Step 5. Dimension restoration. Finally, apply a ‘squeeze’ operation to ẑ(l) remove the redundant dimension 
and restore the tensor shape to ××. This completes the cross-layer feature fusion process.

The pixel-level classification module based on CNNs mainly consists of 3D convolutional layers and 2D 
convolutional layers. The 3D-CNN performs local window modelling on the multidimensional feature image 
via 3D convolution, capturing the correlation between spatial continuity and spectral features. The 2D-CNN 
further improves the representation of spatial structures to support precise pixel-wise classification. This module 
combines the strengths of 3D and 2D convolutional structures. By preserving the coupled representation of 
spatial and feature information, it enhances the model’s ability to distinguish between different land cover 
classes. As shown in Eq. (4), each element of 3D convolutional kernel is multiplied by the corresponding element 
of the input data block and subsequently summed. After the bias term is added, the output is generated via the 
activation function.

	
Yxyz = f

(∑m−1

i=0

∑m−1

j=0

∑m−1

k=0
X (x + i, y + j, z + k) × Kijk + bij

)
� (4)

Here, Yxyz represents the output value at position (x, y, z), Xxyz denotes the input value at position (x, y, z), Kijk 
corresponds to the weight of the convolution kernel at position (i, j, k), m refers to the size of the convolution 
kernel, bij represents the bias term for adjusting the output offset, and f is the activation function.

Assessment of vegetation diversity
Plant diversity was analyzed from three dimensions: species composition, quantitative characteristics, and 
composite traits. Based on taxonomic data, community members were identified, and fundamental ecological 
metrics such as abundance, density, cover, frequency, importance value, and dominance were calculated. In 
addition, widely accepted biodiversity indices such as the Shannon-Wiener index, Simpson index, and evenness 
were incorporated to enhance the comprehensiveness and scientific rigor of the diversity assessment. A vegetation 

Fig. 3.  Encoder - CNN model.
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community classification table was subsequently constructed to systematically characterize community structure 
and species diversity patterns, providing a sound basis for ecosystem status evaluation and functional analysis.

The formulas of data characteristics, abundance (A), density(Di), coverage(C), and frequency(F), used for 
these calculations are presented as follows:

	 A = n� (5)

	
Di = n

AS
� (6)

	
C = AC

At
× 100%� (7)

	
F = PS

Pt
× 100%� (8)

Where: n = Total number of individuals of a species; As​ = Sampled area or volume; At​ = Total area sampled; AC​ 
= Area covered by the species; Ps​ = Number of plots where the species is present; Pt​ = Total number of plots 
sampled.

The relative density (RD), relative coverage (RC), and relative frequency (RF) are presented as follows:

	
RD = Di

Dt
× 100%� (9)

	
RC = Ci

Ct
× 100%� (10)

	
RF = Fi

Ft
× 100%� (11)

Where: Di​ = Density of the individual species; Dt​ = Total density of all species in the sampled area; Ci​ = Coverage 
of the individual species; Ct​ = Total coverage of all species in the sampled area; Fi​ = Frequency of the individual 
species; Ft​ = Total frequency of all species in the sampled area.

The Shannon-Wiener index (H), Simpson index (D), and evenness (E) calculation formula are as follows:

	
H = −

S∑
I=1

(pi ln pi)� (12)

	
D = 1 −

(∑
n (n − 1)

N (N − 1)

)
� (13)

	
E = H

Hmax
= H

ln S
� (14)

Where: S = Number of species in the community; Pi​ = Proportion of ith species to all species; N = Total number 
of individuals of all species in the population.

Fig. 4.  (a) Spectral curves of different ground objects. (b) Voting results produced by the algorithm, where the 
wavelength importance is greater than 5 votes.
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Results and discussion
Hyperspectral image dimensionality reduction
H2 images are rich in spectral information and redundant, so we use Random Forest (RF) algorithm to reduce 
dimensionality and determine the final 128 wavelengths by comparing them to the standard spectra acquired 
by the geo-spectrometer.

Notes: The feature groups and corresponding wavelengths from Fig. 4(b) are presented in the Table S.3.
The band with yellow background in Fig. 4(a) demonstrates the extraction of 128 significant wavelengths 

using RF on H2 images of 20 plots. Vegetation-dominated images with characteristic wavelengths concentrated 
at 430–480 nm, 580 nm, 630–690 nm and 760 nm. For example, T6 dead vegetation-dominated images with 
characteristic wavelengths concentrated at 690 nm and 720 nm, and the T8 Cynanchum otophyllum-dominated 
image with characteristic wavelengths concentrated at 480 nm and 650 nm. Images dominated by bare soil (e.g. 
T14 with 70% bare soil) have characteristic wavelengths concentrated at 610 nm and 760 nm.

In our experiments, we evaluated the effect of different numbers of wavelengths on the results-20, 32, 64, 128, 
160, 256 and 480 (Table 2). Classification accuracy progressively improved as the number of features increased, 
peaking at 90.01% with 128 wavelengths. However, only marginal improvements in accuracy were observed with 
further increases to 160, 256, and 480 wavelengths, yielding gains of 0.56% (90.57%), 1% (91.01%), and 1.3% 
(91.31%), respectively. Therefore, 128 wavelengths were selected for the results of the wavelength importance 
voting for all plots, which match those expressed by the vegetation types and can effectively represent the overall 
spectral features.

Influence of single and combined features on classification results
To assess the contribution of multimodal data to sparse vegetation classification, this study developed both 
single and combined feature sets for classification accuracy validation, as presented in Table  3. The results 
revealed that the combination of spatial-spectral features and index features achieved the highest classification 
accuracy, reaching 90.01%. In contrast, three feature combinations performed moderately well, affected by 
redundant and irrelevant features, resulting in a slight decrease in classification accuracy, and too many features 
can lead to model over-fitting, where the model remembers training data containing noise rather than capturing 
valid information. Although texture features are able to capture the subtle differences between vegetation and 
background, the limited information available makes the feature representation weak and the accuracy low 
because it uses only 16 wavelengths of information. Index features can sensitively capture vegetation changes 
and effectively reflect vegetation growth and health, and their importance can also be seen in the classification 
results, so index information is still an important complement to spectral information.

Serial number Feature groups OA (%) AA (%) Kappa

1 Spatial-spectral features + Index features 90.01 85.23 0.8334

2 Spatial-spectral features 88.82 79.93 0.8113

3 Texture features + Index features 87.04 81.27 0.7854

4 Spatial-spectral features + Texture features + Index features 82.90 67.79 0.7067

5 Spatial-spectral features + Texture features 80.79 60.32 0.6736

6 Index features 67.94 30.63 0.4292

7 Texture features 66.09 33.25 0.3964

Table 3.  Classification results based on feature groups.

 

The number of wavelengths 20 32 64 128 160 256 480

Classification accuracy for each category (%)

0 81.34 83.57 88.44 91.75 92.26 94.05 93.42

1 63.67 72.33 84.17 88.21 88.53 86.73 90.77

2 69.59 74.83 85.20 90.44 91.04 89.84 89.73

3 60.87 58.06 81.98 82.12 83.17 76.37 75.12

4 47.14 51.45 71.67 75.98 76.79 77.10 78.87

5 40.00 79.02 82.67 88.87 88.67 85.87 87.85

6 69.25 74.08 82.20 84.46 84.86 84.03 86.74

7 47.26 58.13 73.77 82.78 84.80 83.42 84.28

8 61.64 68.91 70.99 75.51 79.56 80.84 84.00

9 96.42 95.48 95.84 94.91 93.52 90.46 92.73

OA (%) 76.60 79.87 86.41 90.01 90.57 91.01 91.31

AA (%) 41.16 51.46 77.53 85.23 86.13 88.80 87.69

Kappa 0.5885 0.6522 0.7706 0.8334 0.8430 0.8523 0.8560

Table 2.  Classification results for different numbers of wavelengths.
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Comparative results of different models
This study employed six models for performance comparison. These include the traditional Transformer model 
(referred to as VIT), the enhanced Transformer model with CAF (referred to as CAF) and a CNN-based model, 
as well as two advanced models: ResNet-18 and U-Net, along with the proposed Encoder-CNN model. VIT 
performs global dependency modelling by dividing the input features into patches and applying multiple layers 
of self-attention. CAF builds on VIT by introducing cross-layer feature interaction to improve multi-scale 
information representation. The CNN model adopts a hybrid structure combining 3D and 2D convolutions 
to strengthen local feature learning. ResNet-18 employs residual connections for deep convolutional feature 
extraction, while U-Net uses an encoder–decoder structure with downsampling to achieve multi-scale feature 
aggregation. The architecture details and parameter configurations of all models are summarized in Table S.4.

1. Model performance assessment.
The performance metrics employed for evaluation include overall accuracy (OA), average accuracy (AA), 

kappa coefficient, and confusion matrix, as detailed in Table 4; Fig. 5.
Among the six models, Encoder-CNN achieved the best performance, with overall accuracy reaching 90.01% 

and average accuracy of 85.23%, followed closely by the standard CNN. These results confirm that convolution-
based methods are highly effective for hyperspectral classification. This is likely due to their ability to capture 
local spatial-spectral structures, which are crucial for distinguishing complex vegetation types. By contrast, 
Transformer-based models performed poorly. The VIT baseline yielded the lowest accuracy, indicating that 
global attention alone is insufficient for modelling fine-grained spatial variability in scenarios with limited 
samples. Although the CAF-enhanced Transformer offered moderate improvements via cross-layer fusion, it 
still lagged behind CNN-based approaches. This suggests that attention mechanisms require deeper integration 
with local encoding strategies. While ResNet-18 achieved competitive accuracy, its deeper structure resulted in 
longer training times. U-Net demonstrated lower accuracy and the highest computational cost, which is likely 
due to redundant upsampling and inefficient feature reuse. In terms of computational efficiency and model 
complexity, Encoder–CNN achieved a balance between performance and training cost.

Analysis of the confusion matrix revealed that vegetation classes in general were frequently misclassified 
as bare soil, reflecting the strong influence of background interference. Among these, T2 and T6 exhibited 
particularly high confusion, which can be attributed to their spectral similarity and the fact that they are variants 
of the same vegetation type. In contrast, the high misclassification rate observed in T4 is likely due to the limited 
number of original samples. Although data augmentation was employed, synthetic data may not fully capture 
the spectral variability of real-world conditions, thereby reducing classification accuracy for underrepresented 
classes.

2. Vegetation mapping of desert steppe.
The pixel-level desert vegetation map of 20 plots is shown here, due to the large amount of data in the research 

field (Fig. 6).
Although the overall classification was effective, the distinction between vegetation and bare soil was unclear 

in some areas, leading to misclassifications, particularly along the edges of vegetation patches. The VIT found 
it difficult to capture small or fragmented vegetation patches. For example, the yellow vegetation in P1 and 
the cyan vegetation in P20 were largely missed, suggesting that it is not very adaptable to fine-scale spatial 
patterns. The CAF showed modest improvement by incorporating cross-layer spatial information, resulting 
in better structural continuity, though detailed features remained insufficiently captured. The CNN model 
performed consistently across vegetation types, but continued to underperform in boundary delineation, 
particularly in transition zones. ResNet-18 introduced noticeable noise within otherwise homogeneous regions, 
such as scattered misclassifications in the cyan vegetation of P2 and P19, indicating reduced spatial consistency. 
U-Net exhibited the weakest performance, with pronounced boundary blurring and misclassification of sparse 
vegetation. In contrast, the proposed Encoder–CNN model produced the most accurate and spatially coherent 
classification maps. Despite minor misclassifications along certain edges due to background interference, it 
significantly outperformed all other models and proved highly effective for mapping sparse vegetation in desert 
steppe environments.

3. Misclassification analysis of T2 and T6.
In the classification results, we noticed that there was a notable misclassification between the T2 and T6. This 

phenomenon can be attributed to the fact that T2 and T6 actually represent different physiological states of the 
same species, corresponding to healthy and partially withered vegetation individuals, respectively. Although 
this distinction is important in ecological terms, the spectral differences between these states in hyperspectral 
imagery are relatively subtle, making them difficult to distinguish through spectral signatures alone.

Figure 7a presents the spectral reflectance curves composed of 128 bands for the two target types. It can be 
seen from the figure that, the surface reflectance f two types exhibit a high degree of overlap. To further investigate 
this similarity, we extracted the 128 key features identified by the Encoder for each type and plotted the mean 

VIT CAF CNN ResNet-18 U-Net Encoder - CNN

OA (%) 84.72 87.00 89.62 88.31 85.96 90.01

AA (%) 78.35 82.94 84.19 79.63 78.86 85.23

Kappa 0.7433 0.7846 0.8255 0.8026 0.7684 0.8334

Run time(h/100epoch) 4.6 6.1 3.5 h 18.3 60.6 11.2 h

Table 4.  Algorithm performance metrics comparison.
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spectral curves (Fig.  7b). The results reveal substantial overlap in the key spectral features: only six features 
exhibited opposite trends between the two types, while ten displayed similar trends with notable magnitude 
differences. The remaining features showed minimal variation, which increases the difficulty of subsequent 
3DCNN model discrimination. In addition, since the vegetation patches sampled in the field often have mixed 
physiological states, that is, healthy branches and withered branches may exist in the same bush at the same 
time, this spatial interlacing is averaged by the camera during the image acquisition stage, further introducing 

Fig. 5.  Confusion matrices for various models. (a) VIT Model. (b) CAF Model. (c) CNN Model. (d) 
ResNet-18. (e) U-Net. (f) Encoder-CNN Model.
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systematic bias. To address this issue, future studies will consider the integration of thermal infrared remote 
sensing data to enable pre-classification separation of vegetation health status, thereby reducing misclassification.

Pixel-level classification results for sparse vegetation
Figure 8 shows the vegetation classification results for the 20 samples, from which it can be seen that most of 
the features can be correctly distinguished, but the spectrally similar vegetation is misclassified. The bare ground 
background interfered with the reflectivity of the image, causing the vegetation in the image to be misclassified.

Fig. 6.  Vegetation mapping of desert steppe. (a) VIT Model. (b) CAF Model. (c) CNN Model. (d) ResNet-18. 
(e) U-Net. (f) Encoder-CNN Model.
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The classification report (Table 5) shows an accuracy of 90.01%, an average prediction accuracy of 85.50%, 
an average recall of 85.23%, and an F1 score of 85.29%. The spatial resolution and spectral resolution of remote 
sensing data interact with each other, and the original H2 image has a spectral dimension of 480, which has a 
low spatial resolution, and information such as radiance and video data can be considered to be added later. 
For desert grassland, the training samples of small vegetation are insufficient, especially in the case of uneven 
distribution of vegetation species, the training effect is not good. For instance, Setaria viridis had a width of 

Classification Accuracy Recall F1-scoer Support

T0 0.9175 0.9262 0.9218 207,355

T1 0.8821 0.8626 0.8722 22,402

T2 0.9044 0.8954 0.8998 79,943

T3 0.8212 0.8107 0.8159 544

T4 0.7598 0.6756 0.7152 6720

T5 0.8887 0.8808 0.8847 671

T6 0.8446 0.8269 0.8357 34,131

T7 0.8278 0.8300 0.8289 1112

T8 0.7551 0.8857 0.8152 4723

T9 0.9491 0.9290 0.9390 803

Accuracy 0.9001 358,404

Macro avg 0.8550 0.8523 0.8529 358,404

Weighted avg 0.8999 0.9001 0.8999 358,404

Table 5.  Classification report.

 

Fig. 8.  (a) shows the vegetation pixel labels for 20 plots, (b) shows the pixel-level classification results for 20 
plots.

 

Fig. 7.  (a) 128 wavelengths of T2 and T6. (b) 128 key features of T2 and T6.
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approximately 0.1 cm and a length ranging from 0.1 cm to 3 cm, resulting in a classification accuracy of only 
75.98% and a recall rate of 67.56%.

Uncertainty analysis of the model
To assess the robustness of the model under conditions of uncertainty, we employed a Monte Carlo simulation 
approach. By introducing controlled perturbations to the original input data, we generated multiple realizations 
of possible model outputs and evaluated the resulting classification error. Specifically, we randomly selected 5 
plots, constructed a normal distribution model based on their original spectral data, and used the mean and 
standard deviation of the pixels as parameters to generate 25,600 simulated pixels for each plot. The simulation 
process was repeated five times to enhance statistical reliability. All simulated data were subsequently fed into the 
pre-trained Encoder-3DCNN, and classification outputs under varying perturbation scenarios were recorded.

As illustrated in Fig.  9, the simulated samples exhibited marked differences in classification probability 
distributions under perturbed conditions. Among the five samples, P1 has the best simulation classification 
results, with an average accuracy of approximately 83%. This superior performance is likely attributable to the 
predominance of dominant vegetation types within P1, which were well-represented in the training dataset and 
thus facilitated more effective feature learning by the model. In contrast, P3 has the worst simulation results, 
and its classification accuracy is only 65.79% on average in the five simulations. Further analysis found that P3 
contains some vegetation types (such as colorful flags) with very few samples in the training set, which makes 
the model unable to fully learn its feature expression, resulting in poor simulation results. The remaining three 
samples achieved relatively stable accuracies around 72%, though misclassification still occurred to some extent, 
indicating that there is still room for improvement in the model’s response to some boundary samples or mixed 
patches.

Overall, the simulation results demonstrate that the model exhibits robust classification stability for 
dominant vegetation types. However, in cases where training data are limited or species exhibit ambiguous 
spectral characteristics, classification deviations may still occur. Future model improvements should therefore 
prioritize enhancing the model’s discriminative capacity for rare or underrepresented classes.

Analysis of plant diversity in sparse vegetation
Based on the classification results, the species present in each plot were identified, the pixel count for each 
species was calculated, and plotted the species-pixel number curve for the same vegetation type across different 
plots (Fig. 10).

The pixel count for T0, T1, T2, and T6 was relatively high, ranging from 2,000 to 18,000, whereas the pixel 
counts in T3, T4, T5, T7, T8, and T9 were comparatively lower, ranging from 0 to 1,500. T0 exhibits a high 
pixel count in each plot, suggesting sparse vegetation and extensive bare soil. The pixel count for T2 and T6 is 
relatively high, suggesting that Artemisia ordosica dominates the community. The pixel count for T1 ranged from 
500 to 5,000, suggesting that Sphenostylis stenocarpa occupies the dominant ecological niche. As can be seen 
in the localized zoomed-in image, The number of T4 pixels in most of the plots is in the range of 200 to 1300, 
and Q18 had 2,913 pixels, suggesting that Setaria viridis is subordinate to the dominant species. Nevertheless, it 
still plays a key role in shaping the community’s structure and influencing environmental regulation. The pixel 
count for other categories was small and mainly coexisted with the dominant species. Artemisia ordosica, as an 
indicator species of degradation, accounted for a significant proportion in each plot, indirectly reflecting the 
intensification of grassland desertification.

Figure 11 showed the diversity indicators of ground objects. As illustrated in Fig. 11b, bare soil coverage was 
the highest at 58.5%, signifying an abundance of exposed soil with sparse vegetation. Figure 11a and c show 
that, T2 had the highest count, with substantial coverage and frequency, indicating it as the dominant vegetation 
type. T6 was also present in significant numbers, further affirming the ecological significance of Artemisia 
ordosica, with some individuals having perished due to climatic conditions. Additionally, T1 exhibited a high 
count, with 6.1% coverage and a frequency of 0.7, suggesting that Sphenostylis stenocarpa occupies a prominent 

Fig. 9.  Classification outputs of all simulated data.
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ecological niche, consisting of medium-sized plants. T4, despite being relatively abundant, had low coverage 
and a frequency of 0.6, indicating that Setaria officinalis is a small, sparsely distributed species, yet it still exerts 
some influence on the community. Other vegetation types exhibited low numbers, minimal frequency, and weak 
adaptability.

Fig. 11.  Diversity indicators: abundance, density, coverage, frequency, and relative density, relative coverage, 
relative frequency.

 

Fig. 10.  Species-pixel number curves of the same vegetation type in different plots.
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Figure  11(d) showed that, T2 had the highest proportion in the community, signifying that Artemisia 
ordosica is the dominant community-forming species. It efficiently utilizes available resources, stabilizes soil 
structure, and provides crucial habitats for animals. T6 exhibited high relative frequency but low relative density 
and cover, suggesting that the growth of Artemisia ordosica is sparse, with frequent die-offs, potentially due to 
environmental stressors. T1 displayed high relative frequency, with medium relative density and cover, indicating 
that Sphenostylis stenocarpa is an ecologically significant species, exhibiting both ubiquity and ecological 
adaptability. Nevertheless, its growth conditions and resource utilization may be restricted, and is classified as 
dominant species. T4 exhibited high relative density and frequency but low relative cover, suggesting that Setaria 
officinalis is short yet abundant, with moderate ecological significance, potentially facing competition, and is 
classified as a sub-dominant species. The remaining species (T3, T5, T7, and T8) were few in number, in a 
vulnerable state, and are likely to function as companion species.

The diversity indicators of the vegetation communities were compiled, resulting in the vegetation community 
classification table for 20 plots, as presented in Table S.5. Artemisia ordosica is the predominant plant species 
in the experimental area. Although some of them have died due to climatic and environmental factors, their 
diversity index is high and they dominate the competition, thus being classified as a community-forming 
species. Sphenostylis stenocarpa exhibits rapid growth and fulfills important ecological roles as a nitrogen-fixing 
species. With high abundance and coverage, it has established itself as a dominant species within the community. 
Setaria viridis is a small yet abundant species, playing a crucial role in enhancing soil structure and mitigating 
soil erosion, thus classified as a sub-dominant species.

We calculated the Shannon–Wiener index, Simpson index, and species evenness for 20 plots to assess 
biodiversity and community structure (Fig. 12). The results showed that the Shannon-Wiener index ranged from 
0.799 to 1.199, with the majority of plots concentrated between 0.90 and 1.10, indicating that the community 
has a certain species richness, which is at a moderate level overall. The Simpson index values fell between 0.466 
and 0.667, suggesting the presence of dominant or co-dominant species in some plots, which may reduce overall 
community stability. Species evenness ranged from 0.56 to 0.86, reflecting heterogeneous distribution patterns 
among plots. Specifically, P2 and P4 exhibited relatively high evenness (~ 0.85), indicating more uniform species 
abundance, whereas P1 and P10 showed lower evenness (~ 0.57), pointing to a more uneven distribution of 
species.

Specifically, P2 exhibited the highest Shannon–Wiener index (1.199) and species evenness (0.865), along with 
a relatively high Simpson index (0.667), indicating that this plot had rich species diversity, even distribution, 
and a more desirable community structure. In contrast, P15 recorded lower values for both the Shannon index 
(0.799) and Simpson index (0.497), indicating that the number of species in its community was lower or the 
distribution among species was uneven, which might be disturbed to a certain extent or the degree of species 
dominance was higher.

Overall, a positive correlation was observed between the Shannon–Wiener and Simpson indices, indicated 
that plots with a higher number of species tended to be characterized by a lower distribution of dominance as 
well. Additionally, the strong alignment between the Shannon index and species evenness (E) indicating that the 
high diversity values mainly came from rich and evenly distributed communities.

Challenge of cross-regional generalization
The test site of this study is located in Ordos, Inner Mongolia, covering an area of approximately 45 m × 45 m. The 
dominant species include Artemisia ordosica and Stipa breviflora, with vegetation cover typically below 20%. The 
soil type is primarily light chestnut calcareous sandy loam, and the climate is semi-arid, with an annual rainfall 
of around 400 mm62,63. However, pronounced ecological heterogeneity across different regions is exhibited by 
desert steppe ecosystems. For example, the typical desert steppe in Xinjiang is dominated by medium-tall grass 
species such as Stipa klemenzii, Agropyron michnoi, and Cleistogenes squarrosa, and has a higher vegetation 
cover of 30–50%. The region’s soils are mostly sandy loam or saline-alkali, and it is strongly affected by wind 
erosion and desertification processes64,65. By contrast, the desert steppe of the Qinghai Plateau is characterized 
by sparse vegetation, frequent permafrost in the soil, a fragile ecosystem and harsh climatic conditions, as well 
as highly seasonal precipitation66,67. These substantial differences in vegetation composition, soil properties, 
and disturbance regimes result in distinct spatial-spectral feature distributions across regions. This affects the 
model’s decision boundaries and generalization performance. Consequently, the high level of accuracy observed 
at the current test site cannot be extrapolated directly to other desert steppe regions. Furthermore, the dataset’s 
limited spatial coverage increases the risk of overfitting.

Fig. 12.  Diversity indicators of plot: Shannon-Wiener index, Simpson index, and evenness.
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Ecological significance of the study
The restoration of degraded grassland often involves decisions on species selection, restoration prioritization, 
and restoration methods. Through accurate plant diversity assessment, we can identify the species composition 
and ecological characteristics of different areas and provide targeted restoration strategies for managers. For 
example, in more severely degraded areas, we can analyze the growth, coverage, and health of different plant 
species based on H2 data, and use DL models to assess which areas have strong restoration potentials and 
prioritize them for restoration.

In addition, with long-term ecological monitoring, we can control the dynamic changes of vegetation 
restoration in a timely manner, so as to adjust the management strategy. For example, data from different seasons 
or years can help identify key factors in the restoration process (e.g., water, soil, climate, etc.) and optimize 
restoration strategies based on this information, including artificial rainfall during dry spells, the application 
of soil amendments to improve nutrient retention, and the selection of stress-tolerant native species suited 
to projected climatic conditions. Such interventions ensure that restoration strategies remain adaptive and 
ecologically aligned over time.

In conclusion, the integration of H2 data and DL for assessing plant diversity in desert grasslands not only 
improves the accuracy of plant diversity assessment, but also provides strong technical support for restoration 
planning in degraded areas.

Conclusion
In this study, we demonstrated a new plant diversity index assessment method, using UAV hyperspectral 
multimodal data and Encoder-CNN, we efficiently and quantitatively identified regional feature species and 
quantities, and accurately assessed the degraded desert grassland plant diversity. It was found that among all 
combinations of multimodal data, the community composition obtained by fusing spatial spectral features 
and index features was the most accurate, suggesting that the index information can be used as an effective 
supplement when spectral information is insufficient. In addition, the Encoder-CNN model combines global 
features with local features to improve the accuracy of sparse vegetation classification. Our study not only 
explores the potential of multimodal data and deep learning in the analysis of sparse vegetation communities, 
but also provides a technical support for quantitative evaluate the plant diversity of degraded desert grassland.

Future and prospect
In this study, we developed a classification model for desert steppe vegetation by integrating spectral–spatial 
information, vegetation indices, and texture features. The model demonstrated promising performance in a 
representative test area. However, several limitations remain, and future research may expand and refine the 
framework in the following directions:

First, the current experimental area was selected from the Shengli Team of Ordos City, Inner Mongolia, 
and although the area is representative in terms of climate, vegetation and ecological disturbances, its spatial 
coverage is limited. To address this limitation, a feasible multi-site validation plan will be implemented in future 
work. This plan will cover typical desert steppe regions in Inner Mongolia, Xinjiang and Qinghai. These regions 
were chosen because of their distinctive differences in vegetation composition, soil types, disturbance intensities 
and climatic conditions. Multi-source remote sensing data and ground truth measurements will be collected 
across these sites to create a comprehensive, cross-regional training and testing dataset. This approach will allow 
the model’s adaptability and generalization across heterogeneous ecological contexts to be evaluated thoroughly. 
Furthermore, sensitivity analysis will be employed as a key method to evaluate the robustness of the model by 
examining its performance under different levels of vegetation cover, disturbance and environmental conditions. 
While the current dataset lacks sufficient ecological gradients for such analyses, future research involving 
expanded multi-regional and multi-condition data will leverage sensitivity analysis to quantitatively characterize 
and enhance model generalization and optimization.

Second, for the special climate-induced situation that some branches of the same species are withered and 
some are healthy, we propose the integration of thermal infrared remote sensing data. With the help of the 
thermal infrared band information that has significant differences, a pre-classification step will be introduced to 
separate vegetation health states, thereby substantially improving the model’s discriminatory power.

In addition, we plan to establish a long-term ecological monitoring program to systematically collect 
vegetation data across multiple spatial and temporal scales in desert steppe ecosystems. This effort will enable the 
capture of dynamic vegetation responses to environmental drivers such as climate variability, land use change, 
and restoration interventions. The resulting time-series datasets will serve as a foundation for temporal model 
validation, trend analysis, and the development of more adaptive and resilient classification frameworks.

Finally, the current model remains susceptible to background soil effects, especially in desert grassland, 
where large areas of soil are exposed, and the camera usually collects based on the average value of the area, so 
it may also introduce systematic errors. Future efforts will consider the incorporation of soil-adjusted vegetation 
indices, as well as advanced correction techniques using neural networks, to mitigate these confounding 
influences and enhance model reliability in real-world applications.

Data availability
The codes used in this study are available at https://github.com/15204718180/encoder-cnn. The datasets ​s​u​p​p​o​r​
t​i​n​g the results of this study are available on reasonable request from the corresponding author.
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