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High-voltage switchgear is a critical component in modern power systems, yet it remains vulnerable 
to insulation degradation and other faults under complex operating conditions. To address these 
challenges, a digital twin-based online fault diagnosis method is proposed for high-voltage switchgear, 
integrating thermal and electric field analysis. A three-dimensional model of the KYN28-12(Z) 
switchgear is first established, incorporating multi-physics simulations to identify key monitoring 
regions. Building on this, a digital twin surrogate and information model are developed to enable 
real-time reconstruction and online characterization of coupled thermal-electric fields. For fault 
feature extraction, optimized classification tree (OCT) and random forest algorithms are employed, 
while an enhanced adaptive neural-fuzzy inference system (ANFIS) is constructed for intelligent fault 
diagnosis. Ultimately, the diagnosis model is trained using a combination of finite element simulation 
data, experimental acquisition data, and on-site operational historical data, ensuring comprehensive 
learning of switchgear behaviors under various conditions. And the diagnosis relies on data from the 
digital twin model to achieve accurate virtual-real mapping of switchgear states, providing theoretical 
support for intelligent operation and maintenance. Experimental results demonstrate a fault 
recognition rate of 93.4%, with only a 2.3% accuracy drop under 30% noise, verifying the robustness 
and reliability of the proposed method.
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High-voltage switchgear, a critical element in power systems, is vulnerable to insulation aging, partial discharge, 
and abnormal temperature rise, all of which affect grid reliability. Among all faults in the distribution system, 
about 37% are caused by the multi-physics coupling effects in switchgear1. Traditional offline simulations cannot 
track real-time state changes2,3, and 2D visualization methods fail to capture complex 3D field distributions4,5. 
In recent years, digital twin (DT) technology has become essential for accurately mapping equipment states, 
diagnosing faults, and enhancing operational efficiency by creating dynamic virtual replicas of physical systems6. 
Therefore, DT-based online fault diagnosis is becoming a promising technology in future power system. research 
is shifting towards integrating DT technology with multi-source heterogeneous data fusion7.

To build accurate power equipment models, a virtual power plant framework integrating grid topology 
with physical mechanisms has been proposed8. Advances in finite element analysis (FEA) have been achieved 
through semi-empirical calibration methods9, and the reliability of dynamic component models has been 
improved using twin modeling techniques10. In interdisciplinary contexts, the integration of industrial internet 
technologies has enhanced the fidelity of manufacturing system models11, while DT validation has demonstrated 
effectiveness in simulating multi-physics coupled systems, such as solar concentrators12. To address real-time 
interaction constraints, power hardware-in-the-loop technology has been introduced to improve cyber-physical 
synchronization13. However, computational latency remains a critical challenge. Simplified shadow modeling 
approaches have reduced system complexity at the cost of 3D field resolution14, and investigations into nonlinear 
magnetic material behavior have provided valuable insights into this trade-off15. Adaptive meshing strategies 
have laid the groundwork for dimensionality-reduced surrogate model development16.

For dynamic representation, 3D electromagnetic field visualization has been applied to equipment like 
switchgear17, and large-scale parallel computing accelerates simulations18. Time-series response optimization19 
and multi-sensor synchronization20 support alarm calibration in complex systems. Despite these advances, 
traditional numerical methods face efficiency bottlenecks. Transformer-based models improve reconstruction 
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speed21, and virtual platforms enhance interaction efficiency22. Virtual sensors using adaptive inference reduce 
localization errors, though single-sensor adaptability is limited by data dimensionality23. To further address these 
challenges, research has shifted toward interdisciplinary data fusion. Multi-parameter fusion aids in complex 
physical processes24, while robust feature extraction advances fault diagnostics25. K-nearest neighbors (KNN), 
valued for its simplicity and spatial adaptability, is widely used for pattern recognition in DT systems. Adaptive 
neuro-fuzzy inference systems (ANFIS) and optimal classification trees (OCT) offer interpretable, globally 
optimized fault classification under high feature entanglement. Real-time protocols support fault detection 
in vertical transport systems26,27, and novel sensors such as capacitive-coupling temperature devices extend 
condition monitoring capabilities28. Feature optimization remains critical in complex circuit and microgrid 
diagnostics29,30. Nonetheless, unresolved challenges, such as modeling thermodynamic non-equilibrium in 
arc plasma31 and filtering dynamic interference in mobile communication networks32 underscore the need for 
further breakthroughs. These limitations directly inform the design and innovation of the approach proposed 
in this study.

In this paper, an online fault diagnosis model for high-voltage switchgear based on DT technology is 
proposed, integrating real-time sensor data acquisition, 3D field simulation, and intelligent fault diagnosis. The 
key innovations and contributions are as follows:

	1)	 A high-precision 3D model of the KYN28-12(Z) switchgear is constructed, incorporating a FEA model for 
coupled thermal-electric fields. Experimental data are leveraged to precisely calibrate insulation and temper-
ature-rise risk zones, laying a foundation for high-fidelity DT modeling.

	2)	 A reduced-order surrogate model is developed through the integration of mesh coarsening, dictionary tree 
deduplication, and KNN algorithms, enabling efficient and continuous DT simulations across diverse op-
erating conditions. To enhance dynamic visualization of multi-physics fields, a local-loop communication 
protocol and 3D animation-based interactive system are designed.

	3)	 An ANFIS-OCT hybrid diagnostic framework is proposed, which combines the interpretability of OCT 
with the adaptive learning capability of enhanced ANFIS, significantly improving fault recognition accuracy 
under complex operating conditions.

Fault diagnosis system structure based on digital twin
The research framework is illustrated in Fig. 1. FEA model relies on offline computation to model physical fields, 
making it difficult to monitor equipment operation in real time. DT technology addresses this limitation by 
leveraging sensor data and historical information to construct a virtual replica of the physical entity, enabling 
online simulation. This approach allows for intuitive interpretation of real-time sensing data and synchronous 
simulation of equipment states without the need for high-performance cloud servers or high-bandwidth 
networks, thereby enhancing situational awareness and responsiveness.

The data underpinning the digital twin model is derived from a combination of finite element multi-physics 
simulation data, experimental measurements, and extensive historical records. This study integrates FEA model 
with experimental data to construct a multi-condition simulation dataset. A dimensionality reduction algorithm 
is employed to lightweight the 3D point cloud of the switchgear. Based on this, predictive algorithms are used to 
develop a surrogate model of DT nodes under various working conditions. The system outputs twin information 
of the switchgear in response to real-time sensor data, supporting online simulation and fault diagnosis. This 
enables real-time evaluation of equipment status and defect identification in a virtual environment.

Finite element simulation coupling of thermal-flow-electric fields
Additionally, in high-voltage switchgear, the electric field distribution is affected by structural assembly, the 
presence of metallic particles, and loosened fastening screws, and the thermal field is influenced by ambient 
temperature, operating current, and contact resistance. The interplay between the thermal and electric fields 
is driven by the Peltier and Seebeck effects, forming a coupled system. For the KYN28-12 switchgear, which 
primarily relies on natural convection for heat dissipation, the internal flow field is directly coupled with 
the thermal field through the conservation of mass, momentum, and energy equations, as shown in Fig.  2. 
Furthermore, the interaction between contamination particles and the electric field introduces additional 
indirect coupling effects. This complex multi-physics interaction needs an integrated approach to modeling and 
simulation, enabling a comprehensive DT representation of the switchgear’s thermal-electric-flow behavior.

Fig. 1.  Fault diagnosis process of high-voltage switchgear based on digital twin model.
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A three-dimensional model of the KYN28-12(Z) high-voltage switchgear and performs multi-physics 
coupling thermal-electric field simulations is constructed. Based on the FEA data, a DT surrogate model is 
developed, and a complete DT model of the switchgear is further constructed to enable real-time simulation and 
analysis of the internal coupled electric-thermal-fluid fields.

Dimensionality reduction of 3D nodes and construction of reduced-dimensionality dataset
High-voltage switchgear contains numerous internal components with complex structures, resulting in a 
significant increase in problem dimensionality when constructing surrogate models. This not only increases the 
number of sample points and computational time but also reduces model accuracy and weakens the reliability 
of extracted information. To overcome this problem, this study proposes a mesh coarsening and dictionary 
tree deduplication algorithm to effectively compress switchgear node data, further construct a dimensionality 
reduction dataset for surrogate models to efficiently approximate the behavior of complex systems. as shown in 
Fig. 3. While mesh coarsening and dictionary trees are mature technologies, their integrated implementation 
offers unique advantages for switchgear digital twin models. In terms of balancing accuracy and efficiency, a 
90% node reduction is achieved while maintaining field extreme value errors below 5%. Regarding physical 
consistency, coarsening preserves topological dependencies, while deduplication maintains field continuity. 
Regarding real-time feasibility, the optimization of spatial nodes by both methods significantly reduces proxy 
model response time, far exceeding the speed of traditional finite element analysis. This optimized workflow 
addresses the critical gap between high-resolution simulation and real-time constraints in digital twin models 
of power equipment.

The mesh coarsening combined with KNN algorithm for finite element fine mesh simulation model 
reconstructs the reduced dimensional spatial nodes and extracts thermal and electric field features; After 
traversing the coarse grid, the dictionary tree maps all nodes into a three-layer tree structure, eliminating 
redundant nodes by covering duplicate data and reducing unnecessary character comparisons.

Fig. 3.  Dimensionality reduction model reconstruction workflow.

 

Fig. 2.  Multi-physics coupling relationships.
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As a lazy learning method and non-parametric model, the KNN algorithm efficiently processes large-scale 
simulation datasets while demonstrating strong robustness against outliers.

Taking the temperature field as an example, assume that the fine-mesh simulation dataset contains all node 
positions and their corresponding temperatures, while the dimensionality-reduced model x nodes serve as test 
samples, the Euclidean distance between xi and the dataset X is given by:

	
d(Xj , xi) =

√
(Xj x − xix)2 + (Xj y − xiy)2 + (Xj z − xiz)2� (1)

where the K nearest neighbors of xi are denoted as Xik = {Xi+1, Xi+2, · · ·, Xi+k}. Using the K-nearest 
neighbor rule, the temperature attribute of node xiis estimated by the mean or weighted mean of its nearest 
neighbors’ temperature values Xik . When inverse distance weighting ωj  is applied, the weighted output is 
computed as:

	





xi = (
k∑

j=1

ωj · Xi+j)/(
k∑

j=1

ωj)

ωj = 1/d(Xj , xi)

� (2)

Assuming that the temperatures of the KNN follow a random variable distribution Ti, the posterior probability 
P (Ti|Xik) is defined based on the law of large numbers. If the dataset is sufficiently large, the proximity Xik  of 
xi to its nearest neighbors ensures P (Ti|Xik) ≈ P (Ti|xi). Thus, the rule provides an effective approximation 
for estimating the temperature attribute Ti of node xi.

Implementation of the surrogate model under abnormal conditions in switchgear
The core objective of the surrogate model is to replicate the behavior of the original system using a simplified 
mathematical representation, thereby reducing computational resource demands and enabling real-time DT 
synchronization. This study employs the radial basis function (RBF) interpolation method, which approximates 
complex three-dimensional point cloud data through a weighted sum of basic functions. RBF-based surrogate 
models exhibit strong robustness and adaptability in nonlinear data fitting while imposing no specific constraints 
on response characteristics. Therefore, based on the dimensionality-reduced simulation dataset, we construct a 
DT surrogate model using the RBF interpolation algorithm.

The construction process consists of the following steps: (1) Using the KNN algorithm, we process finite 
element fault simulation and ambient temperature simulation datasets, obtaining six sets of reduced-order 
simulation data related to insulator contamination faults and six sets related to ambient temperature variations. 
(2) To enhance computational efficiency, we construct RBF interpolation functions for 29,400 reduced-order 
nodes. (3) Assuming each spatial node is represented as (xi,yi,zi), and each node has N simulation values (Ti,ti), 
where i = 1,2,…,N, the RBF interpolation function can be expressed as:

	
f̂(T ) =

N∑
i=1

ωiφ(||T − Ti||)� (3)

where, N denotes the number of simulation value sets. The relationship between each data point and the 
interpolation center is determined using a Gaussian kernel function:

	
φ(T ) = exp

(
−||T − Ti||2

2σ2

)
� (4)

where, T represents temperature data points, Ti denotes interpolation centers, and σ is the standard deviation 
controlling the kernel function width. Using the radial basis function, we construct an interpolation matrix 
Φ = [φij ] , leading to the system of equations:

	




φ11 φ12 · · · φ1N

φ21 φ22 · · · φ2N

...
...

...
φN1 φN2 · · · φNN







ω1
ω2
...

ωN


 =




t1
t2
...

tN


� (5)

where W = [ωi] is the coefficient matrix and with φij = φji = φ(||Tj − Ti||), so the j-th row in the matrix 
expression can be expressed.

	
f̂(Tj) = tj =

N∑
i=1

ωiφ(||Tj − Ti||)� (6)

To minimize errors, the optimal coefficients are estimated using the least squares method:

	 W = (ΦT Φ)−1ΦT t = Φ−1t� (7)
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The interpolation functions for nodes across six different ambient temperature conditions form 
the ambient temperature surrogate model. Similarly, six sets of fault-induced temperature rise data 
f̂(∆t) =

∑N

i=1 ϖiφt(||t − ti||) are used to construct the fault temperature rise surrogate model, and then the 
final system temperature can be obtained as follows:

	 T (x, y, z) = [f̂(T ) + f̂(∆t)](x,y,z)� (8)

To facilitate seamless storage, retrieval, and deployment of the surrogate model, the Python’s Pickle module is 
used to store the trained model as a PKL (Pickle) file. The pickling process efficiently serializes complex Python 
object structures into byte streams for storage, while the unpickling process reconstructs the original objects, 
and thus the efficient data sharing and model deployment across different Python programs can be achieved.

In this study, an evaluative method based on trustworthiness and continuity indicators is used to analysis the 
dimensionality reduction results33. Trustworthiness quantifies the similarity between the surrogate model and 
finite element simulation, as shown in Eq. (9). Continuity characterizes the preservation of local relationships in 
the reduced space relative to the original space, as expressed in Eq. (10).

	
M

(K)
1 = 1 −

2
N∑

i=1

∑
j∈Uk(i)

[d(Xj , xi) − K]

NK(2N − 3K − 1)
� (9)

	
M

(K)
2 = 1 −

2
N∑

i=1

∑
j∈Vk(i)

[d(Xj , xi) − K]

NK(2N − 3K − 1)
� (10)

where,  Ck(xi) and Ĉk(xi) represent the nearest neighbor sets in the original and dimensionality-reduced 
spaces, respectively. Based on this, set Uk(i) is defined as representing xi ∈ Ĉk(xi) ∧ xi /∈ Ck(xi), while set 
Vk(i) represents xi /∈ Ĉk(xi) ∧ xi ∈ Ck(xi).

Digital twin online simulation based on information model
To enable real-time output of the developed DT surrogate model and accurately reflect the thermal-electric field 
distribution of the switchgear, this study establishes an online DT simulation based on an information model.

The typical defects and faults in high-voltage switchgear can be categorized as follows: (a) Abnormal internal 
heating: temperature rise due to contact resistance at cables, terminals, and connection points. Eddy currents and 
hysteresis losses in conductors and transformers under varying magnetic fields. Abnormal temperature increases 
due to aging, contamination, or damage to internal components and insulation materials. (b) Contaminated post 
insulator discharge. (c) Partial discharge faults in cable joint insulation defects. To monitor the condition of 
high-voltage switchgear, a multi-sensor condition monitoring system is designed. This system consists of three 
core components: Information Acquisition: Sensors collect thermal and electrical field data in real time. Data 
Communication: Secure and efficient transmission of collected sensor data. Condition Monitoring: analyzing 
and visualizing real-time system status.

Digital twin data information model and communication scheme
The DT system creates a high-precision virtual model to simulate and analyze the operating status of switchgear 
in real time. To ensure efficient and reliable data transmission, a Socket-based TCP communication protocol is 
implemented for local loopback transmission. The thermal-electric field surrogate models are serialized as PKL 
files, which enable efficient storage and retrieval. Additionally, Python’s Pandas and NumPy libraries are utilized 
to process and analyze both structured and unstructured data. The real-time sensor monitoring data undergo 
preprocessing and feature extraction in Python before being transmitted via local loopback communication to 
Unity 3D animation software, where the DT visualization is rendered.

The finite element simulation outputs mesh node and point cloud data in STL triangular facet format, 
enabling data reconstruction. To replicate spatial nodes and visualize the thermo-electric field in Unity, a 
detailed analysis of triangular mesh structures is essential. In a 3D Cartesian coordinate system, triangle vertices 
follow the right-hand rule based on surface normal. For instance, triangles A (a, b, c) and B (b, c, d) share vertices 
b and c, resulting in duplicate data. To eliminate redundancy and optimize rendering, a precomputed vertex 
index structure is introduced. Each triangle initially includes six vertices, but shared vertices are deduplicated, 
leaving only unique vertices (e.g., a, b, c, d). Each is assigned an index (1, 2, 3, 4), and a mapping function links 
original mesh vertex to these indices. This indexed sequence efficiently reconstructs the mesh for real-time DT 
simulation. To implement this in Unity, a Mesh defines its geometry using a Vector3 array and triangle indices, 
with UV coordinates enabling texture mapping. Visual effects are controlled by assigning a Material and Shader. 
The Mesh is attached to a GameObject and rendered via Mesh Filter and Mesh Renderer components. Electric 
and temperature field data are received through local Python Socket communication, nonlinearly mapped to 
HSV color space, and applied to the Mesh material.

Fault diagnosis and assessment based on digital twin architecture
DT surrogate model is relied to accurately output data reflecting the thermal-electrical field distribution 
characteristics. Real-time data output is achieved through an information model, providing credible data support 
for subsequent state assessment and fault diagnosis. Ultimately, by combining field data with DT surrogate 
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model data, a training set and test set are formed for the development of the fault diagnosis model of the high-
voltage switchgear. Under the condition of a small training set, OCT can effectively identify irrelevant features 
and reduce their importance to zero. Its global optimization characteristics ensure that irrelevant features are 
eliminated with minimal cost. Therefore, a combination of OCT and random forest algorithms is chosen for 
feature importance prediction. The process primarily includes:

(1) decision tree objective function and split criteria construction

	





min
T ree

(Loss(T ree) + λ · C(T ree))

IG(S, A) = E(S) −
∑

v∈V alues(A)

|Sv|
|S| E(Sv)

� (11)

where minTree denotes the minimization loss function. IG(S,A) represents the information gain, Loss(Tree) is 
the prediction error, and λ is the regularization parameter. C(Tree) is the complexity of the tree. S is the current 
node’s data set, A is the feature, Sv is the subset after splitting, and E(S) represents the entropy of the dataset.

(2) feature importance evaluation

	
F I(A) =

∑
t∈A

∆ Loss(t)� (12)

Feature importance FI(A) is quantified by calculating the reduction in prediction error due to the feature A at the 
split point, where ΔLoss(t) represents the loss reduction at node t when feature A is used.

(3) optimization and solution
Mixed integer optimization (MIO) is used to solve the optimization problem, involving the construction of 
integer linear or nonlinear formulations to represent decision trees and feature evaluation, with an optimization 
solver providing the optimal solution.

Fault diagnosis model construction and training process for switchgear
The ANFIS inference model consists of two types: the Mamdani model and the Takagi-Sugeno model. The 
Mamdani model processes the output as a fuzzy set variable, while the model outputs either a zero-order constant 
value or a linear combination of input variables. Both models have an inference structure with five layers: input, 
membership, rule, decision, and output. Compared to the Mamdani model, the model output, typically zero-
order constant values or first-order linear combinations, is more conducive to the adaptive parameter adjustment 
process and output analysis. For the model, assuming the input vector is xx, the fuzzy linguistic expression for 
the input components is:

	 T (xi) = {A1
i , A2

i , · · · , Ami
i }|x = [x1, x2, · · · , xn]T (i = 1, 2, · · · , n)� (13)

where Aj
i (j = 1, 2, · · · , mi) is the j-th linguistic variable value of input xi and affiliation.

	
u

A
j
i
(xi) & (i = 1, 2, · · · , n; j = 1, 2, · · · , mi)� (14)

The fuzzy rule condition is denoted by x1 is Aj
1 and x2 is Aj

2 and · · · and xn is Aj
n, where the weight of 

each fuzzy component through different membership functions is represented by pjl, and the output of each 
rule is given by:

	 yj = pj0 + pj1x1 + · · · + pjnxn� (15)

The fitness of each rule is represented by aj, and the system’s output variable y is expressed as a weighted average 
of the outputs from each rule:

	
y =

∑m

j=1
ajyj

/∑
j=1

maj | aj = uA1 j (x1)u
A

j
2
(x2)· · ·uAn

j (xn)� (16)

In this research, an adaptive fuzzy neural network based on the Takagi-Sugeno inference model is constructed. 
The model establishes a nonlinear mapping relationship between input and output variables, and in the iterative 
process, the input-output data pair is modeled through error backpropagation. The optimal weight of the fuzzy 
membership function is calculated through local approximation during data flow, ensuring fast computational 
speed, adaptive learning, and fuzzy inference capabilities.

The ANFIS architecture employs a hybrid learning mechanism to mitigate error propagation across layers. 
In the forward pass, least-squares optimization adjusts consequent parameters to minimize output errors. In 
the backward pass, gradient descent updates antecedent parameters of membership functions. This two-stage 
optimization decouples error propagation paths, preventing cumulative amplification. Let Υ (set to 0.15 via 
empirical tuning) controls error sensitivity, and η represents inherent noise tolerance.

Specifically, the error term δk for layer k is bounded by:

	 |δk| ⩽ Υ · max(δk−1) + η� (17)
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The layers I, II, III, IV, and V represent the input layer, membership layer, rule layer, decision layer, and output 
layer, respectively. The frontend network performs the fuzzification, rule formation, and decision-making 
functions of the input variables, while the backend network calculates the weights of input variables for each 
rule, ultimately generating the system output.

In this study, the field data combined with the DT surrogate model data form the training and testing data sets 
for the high-voltage switchgear fault diagnosis model. Based on this, the fault diagnosis model is constructed, 
and the training and diagnostic verification processes are completed. In the defect environment of the high-
voltage switchgear, external voltage differences may result in corona discharge, spark discharge, or even sustained 
electric arcs, leading to flashover breakdown of the equipment, rapid temperature rise, intense discharges, and 
total destruction of insulation. Therefore, sensor monitoring data is transmitted to a PC via a state-sensing 
system. To ensure real-time information collection, an MLX90614 infrared sensor (0.5  °C accuracy) and an 
R13192 UV photoelectric sensor (spectrum 185–260 nm) are used in conjunction with an NI-USB6210 data 
acquisition card. This allows for a 10 K acquisition frequency of thermal and electrical information, which is 
transmitted to the PC in real time. Subsequently, a temperature and pulse data processing algorithm on the PC 
extracts the maximum temperature rise per unit time and the UV pulse frequency as input variables x1 and x2 
for the Takagi-Sugeno model. To achieve broader domain coverage, four trapezoidal membership functions are 
defined for each of the two input variables, resulting in 16 fuzzy inference rules and normalized outputs at the 
decision layer. The state index y1 is subsequently derived according to Eq. (16). The architecture of the diagnostic 
system network is illustrated in Fig. 4. The two types of data used in this study are sourced from finite element 
multi-physics simulation data, experimental measurements, and historical operational records. The integration 
of these diverse datasets enhances the robustness and reliability of the diagnostic model by capturing both the 
physical behavior under controlled conditions and real-world operational variations.

The network training results are shown in Fig. 5. Figure 5(a) demonstrates the state index output process 
through the membership function, where the input pulse frequency x1 and infrared temperature rise x2 are 
included in the membership function domain, and the weighted sum of the corresponding rule outputs 
represents the system output, the state index y1. Figure  5(b) visualizes the nonlinear mapping relationship 
between the input variables and the output variable in three-dimensional space. When definite x and y inputs 
exist, the corresponding output z-axis state index can be obtained.

Results
Construction of the switchgear field simulation dataset
The switchgear field simulation dataset forms the foundation for constructing the DT surrogate model. This 
research primarily focuses on the finite element simulation model construction and the process of obtaining the 
thermal-electrical field simulation dataset.

(1) finite element simulation model construction
In accordance with the physical materials of the switchgear and the standard for the artificial contamination test 
of high-voltage insulators in AC systems, which specifies the reference conductivity of the contamination layer, 
the construction of the dataset involves material parameters as shown in Table 1. The three-dimensional model 
of the switchgear and the thermal and electrical field results under rated conditions and ambient temperature 
are illustrated in Fig. 6.

(2) Thermal-flow simulation dataset acquisition
Due to the strong coupling between temperature and flow fields, both device defects and ambient temperature 
affect the thermal distribution within the switchgear. To capture more distinct temperature variation patterns, 
simulations were conducted on the temperature rise of the three-phase post insulators on the grounding switch 
under polluted conditions. For dry pollution scenarios, fine-mesh finite element simulations were performed 
across ambient temperatures ranging from 10 °C to 35 °C, yielding results consistent with the rated conditions 
of the KYN28 switchgear. As ambient temperature increases, the overall thermal pattern remains stable, with the 

Fig. 4.  Fault diagnosis system network structure.

 

Scientific Reports |        (2025) 15:34303 7| https://doi.org/10.1038/s41598-025-15626-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


maximum temperature rise (56.7 ~ 57.7 °C) consistently occurring at the bend of phase B busbar and a phase 
difference of less than 1 °C. The lowest temperatures (11.1 ~ 12.2 °C) appear on the outer shell. Higher ambient 
temperatures reduce heat dissipation, slightly increasing the temperature rise, which aligns with physical laws 
and supports use as a simulation dataset for varying conditions. Under wet pollution coverage, the maximum 
temperature on the insulator surface reaches 60.7 °C, with fault currents causing an approximate 4.3 °C rise in 
the busbar and circuit breaker inlet. All simulated conditions conform to operational and fault characteristics, 
providing multiple datasets (0%~100% pollution moisture levels) for surrogate model training.

(3) current field simulation dataset acquisition
In order to enhance the electric field simulation data set, considering that defects such as contamination 
on the support insulators inside the switchgear will cause uneven distribution of the electric field, and the 
national benchmark measurement range of the conductivity of the contaminated electrolyte solution in the 
contamination test of high-voltage equipment is 5 ~ 20 S/m when the measurement uncertainty is 0.05%~0.07%, 
especially for the artificial contamination test of high-voltage insulators in the AC system, the contamination 
conductivity values of different contamination levels range from 5 ~ 10 S/m, and dry contamination has almost 
no conductivity. Therefore, the contamination test of the insulation defects of the support insulators and 
cable terminals was focused on for feature analysis and fault modeling. By changing the surface attachment 

Fig. 6.  Simulation results under normal operating conditions: (a) 3D diagram (b) thermal-flow field (c) 
electrical field.

 

Material Copper Epoxy resin Air Wet contamination Dry contamination

Relative permittivity 1 × 1013 3.9 1.0006 10 3

Conductivity (S/m) 5.99 × 107 1 × 10−15 1 × 10−14 10 1 × 10−14

Specific heat (J/(kg·K)) 385 19 1005 628 860

Thermal conductivity (W/(m·K)) 400 0.2 0.025 0.6 0.4

Table 1.  Material electrical parameters.

 

Fig. 5.  ANFIS training results: (a) state index output process; (b) input variable-output index relationship.
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material of the insulator in the simulation model, the fault simulation was achieved. This paper simulated the 
working conditions of the A-phase grounding switch insulator surface covered with different degrees of wet 
contamination: when the support insulator was covered with dry contamination, the insulation was good at 
this time, and the electric field on the surface of the A-phase insulator dropped evenly; when there was 50% wet 
area contamination coverage, the electric field on the surface of the Phase A insulator is distorted. The wet zone 
(0 ~ 0.12 m) experiences a 2 kV potential drop, while the dry zone (0.12 ~ 0.26 m) experiences an 8 kV voltage 
difference. However, the insulator maintains its insulation performance, and the field distribution in the rest of 
the switchgear is virtually unaffected. When the insulator is completely covered by contamination, the distortion 
of the Phase A insulator’s electric field increases, and the entire insulator (0 ~ 0.26  m) can only withstand a 
2.5 kV voltage drop. This also distorts the electric field in the grounding switch’s steel support structure and the 
copper busbar. Therefore, considering that the insulator maintains insulation performance before reaching 50% 
wetness, this paper adds further simulations for operating conditions with 25%, 65%, and 80% wetness. Data sets 
are generated based on the coverage (0–100%) and location of the wet zone for different contamination levels to 
supplement the alternative model.

Dimensionality reduction of 3D point cloud data for switchgear DT surrogate model
As shown in Fig. 7, based on the fine mesh of the finite element model, various switchgear components were 
appropriately coarsened. Structural components with minimal impact on simulation results were assigned a 
coarser mesh. This reduced the number of nodes by 59.5%, from 449,389 to 181,926. The spatial nodes in the 
simulation model were based on the STL format in a three-dimensional Cartesian coordinate system, where 
triangular meshes were formed by vertex points and the right-hand rule. However, redundant and shared nodes 
remained. To further reduce dimensionality, a dictionary tree method was applied, decreasing the number of 
nodes to just 6.5% of the original finite element simulation model’s nodes.

Analysis of the switchgear digital twin surrogate model
To validate the reduced model nodes, simulation data of the switchgear at an ambient temperature of 20  °C 
were used, with the KNN algorithm applied at K values ranging from 15 to 100. The reconstructed cloud map, 
generated by predicting the nodes of the reduced model (corresponding to (x, y, z, T) in COMSOL), is shown 
in Fig. 8. By comparing these results with the finite element simulation model, it is clear that for small K values, 
the model’s predictions are heavily influenced by a few nearest neighbors, leading to an uneven cloud map and 
significant deviations in predicted values.

When K ≤ 50, the temperature cloud map shows a clear upward shift in overall temperature, indicating a rise 
in the average temperature within the switchgear. The predicted maximum and minimum temperatures deviate 
from finite element results by 14.9% and 28.4%, respectively, with noticeable discrepancies in the locations of 
temperature extremes. As K increases, the temperature distribution shifts downward, and prediction errors for 
extreme temperatures gradually decrease. At K ≥ 50, the temperature map becomes more uniform and closely 
aligns with the finite element simulation, with errors in maximum and minimum temperatures reduced to below 
5% and 2%, respectively.

Considering the trade-off between model accuracy and computational complexity, K = 50 was selected for 
reduced-order modeling. A mean-weighted KNN algorithm was applied to construct the reduced model using 
50 sample points. The resulting temperature node model demonstrated strong agreement with finite element 
simulations, validating its reliability and accuracy. With an ambient temperature of 17 °C and an insulator wet-
zone fault index of 50%, the reconstructed cloud map yielded a 2.3% overall error. The maximum temperature of 
81.5 °C at the B-phase busbar corner showed a 4% deviation, while the minimum temperature of 29.7 °C on the 
switchgear surface had only a 1.3% error. Evaluation metrics of model consistency, M1 = 0.9273 and M2 = 0.9362, 
further confirm the model’s capability to accurately capture the temperature field.

Fig. 7.  Dimensionality reduction of switchgear spatial nodes.
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In terms of computational efficiency, the PKL-based temperature rising surrogate model achieved rapid 
inference: the ambient and fault-temperature models required only 3.63  s and 3.12  s, respectively, during 
deserialization. Subsequent outputs of temperature node data took 0.19  s and 0.13  s, resulting in a total 
response time of 0.32 s for the entire model, supporting real-time applications. As shown in Fig. 9, temperature 
cross-section comparisons reveal that although some patterned artifacts appear in planar regions due to the 
dataset-driven KNN approach, the overall temperature field remains consistent with finite element results. 
The reconstructed distribution effectively captures key thermal features of the switchgear, particularly in high-
temperature concentration zones.

In addition to its application in the thermal field, the KNN-based anomaly processing method is also 
applicable to the electric field data, with consideration given to the coupling mechanisms between multiple 
physical domains.

Additionally, the terrain contour map corresponding to the cross-section was plotted. The reconstructed 
terrain map showed a high degree of agreement with the finite element simulation’s terrain map, with slight 
spikes in high-temperature regions due to the nature of the algorithm. However, the consistency in the regions 

Fig. 9.  Comparison of temperature surrogate model output: (a) surrogate model cloud map cross-section; 
(b) cross-section terrain map; (c) finite element simulation cross-section; (d) cross-section terrain map; (e) 
Electric field finite element simulation; (f) Electric field proxy model output.

 

Fig. 8.  Temperature extremes at different K Values.
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of maximum and minimum temperatures is high, which further validates the reliability and effectiveness of the 
surrogate model.

To improve visualization speed and reduce computer resource demand, the same 29,400 reduced nodes were 
used. Based on the KNN data prediction algorithm, a reduced electrical field simulation dataset was constructed. 
Simultaneously, the RBF surrogate model algorithm was employed to calculate the radial basis function for the 
29,400 nodes across six simulation datasets. The system’s DT electrical field surrogate model was generated via 
a PKL file. When the insulator wet zone was set to 50%, the surrogate model’s node electrical field data showed 
some distortion around the transformer and metal bracket contact areas, but most regions closely matched the 
finite element simulation. The model’s continuity and reliability, with M1 = 0.9141 and M2 = 0.9197, validated the 
reliability of the electrical field surrogate model.

In fact, the ambient temperature range considered in this study spans from 10 °C to 40 °C, while the insulator 
wet-zone conditions cover the full interval from 0 to 100% humidity. Corresponding simulation datasets 
were generated across these ranges to reflect typical operational scenarios, capture variations in insulation 
performance under different humidity levels, and account for the strong coupling between temperature and flow 
fields within the switchgear, forming the basis for subsequent surrogate model development.

Digital twin-based online simulation and effectiveness verification of switchgear
For the online simulation of the switchgear DT, dimensionality reduction and deduplication were performed on 
the node data before real-time transmission. The original 449,389 simulation nodes were reduced to 181,926 and 
further deduplicated to 29,400 nodes, greatly improving data transmission efficiency. These 29,400 unique nodes 
were transmitted to Unity, where the complete set of triangles and vertices was reconstructed based on their 
indices, enabling the switchgear model reconstruction and point cloud rendering. The real-time rendering of the 
3D point cloud for temperature and electric field data from the surrogate model is shown in Fig. 10. Figure 10(a) 
presents the cloud map reconstruction of the switchgear’s overall temperature output, and Fig. 10(b) shows the 
electric field cloud map with adjusted hue attributes in the HSV model.

(1) thermal field verification
To verify the effectiveness of the finite element simulation model, an experimental platform was established 
consisting of a single-phase induction regulator, a power switchgear, a high-precision current transformer, and 
a thermocouple monitoring device to conduct temperature testing and obtain temperature rise data. Fifteen 
monitoring points, numbered 0 to 14, were placed inside the switchgear. Points 0 to 12 were distributed along 
the busbar inlet, the connection points, the dynamic and static contacts of the circuit breakers inlet, and the bolts 
connecting various components of the circuit breaker. Three-phase data were collected from these points. Points 
13 and 14 correspond to the inaccessible surface inside the cabinet and the accessible surface of the cabinet, 
respectively. The measured and simulated temperature data are compared in Fig. 11. The comparison shows 
minimal error between the two sets of data, with the maximum error being − 3.79%, validating the reliability of 
the thermal field simulation model.

(2) electric field verification
In type tests, electric field qualification is primarily assessed based on apparent discharge quantity. To verify the 
reliability of the electric field simulation model of the switchgear under the field strength control requirement at 
42 kV, a comprehensive simulation was conducted. The permissible electric field strengths are 5.25 kV/mm for 
high-voltage conductors in air and 2.98 kV/mm for epoxy resin surfaces. The simulation was based on a complete 
switchgear model, retaining the vacuum interrupter structure of the circuit breaker while isolating it from the 
enclosure. The busbar at the grounding switch was designated as the output terminal. Key components such as 
the circuit breaker, post insulators, contact box, and busbar were identified as high field intensity regions, with 
a 42 kV excitation applied. Simulation results indicate that the maximum field strength on conductor surfaces 
is 3.2 kV/mm, located at the junction between the outgoing busbar and the current transformer. The maximum 

Fig. 10.  Comparison of temperature surrogate model outputs: (a) digital twin temperature field online 
simulation; (b) digital twin electric field online simulation.
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field strength on insulation surfaces is 1.7 kV/mm, observed at the bend of the contact box surface. All values 
are below the permissible thresholds specified in national standards, confirming the reliability of the constructed 
electric field simulation model.

Discussion: multisource feature data fusion and diagnostic analysis
The parameters contribution for insulators and cable joints is shown in Fig. 12.

Under polluted conditions, ultraviolet (UV) pulse frequency strongly correlates with partial discharge (PD) 
quantity. However, PD data and UV pulse parameters exhibit significant fluctuations at high pulse counts, 
reducing reliability. Experiments reveal that leakage current trends align with typical insulator failure, which 
also causes abnormal temperature rise. Despite material and structural differences, UV pulse frequency and 
infrared temperature show similar trends during insulation failure. As leakage current cannot be monitored 
in real-time, UV pulse frequency and maximum temperature rise are selected as key indicators of switchgear 
failure.

Using the feature extraction algorithms, UV pulse frequency, width, and infrared temperature rise were 
processed. Through statistical analysis, the faults were categorized into three levels as shown in Table 2: Level 
I - Normal operation, with slight corona or glow discharge; Level II - Spark discharge, indicating some insulation 
performance but requiring timely maintenance; and Level III - Flashover or through discharge, where insulation 
is damaged and requires emergency repair or replacement.

Before validating the diagnostic model, to detect cross-layer errors in the ANFIS, we generated noisy input 
data using Monte Carlo simulation to simulate measurement noise or disturbances at the input layer, assuming 
a ± 5% range. The experiment was repeated 1000 times, and the distribution of data errors from the input to the 
output layer was statistically analyzed, as shown in the Table 3.

Fig. 12.  Feature importance evaluation of typical failures.

 

Fig. 11.  Comparison of temperature data from busbar and circuit breaker test configurations.
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This experiment demonstrates that the error decays during propagation (with amplification factors all < 1). 
The final output error is 34% lower than the input error (± 5% to ± 3.3%). The ANFIS architecture does not exhibit 
the “layer-by-layer amplification” effect. Furthermore, the low amplification factor of 0.92 at the decision layer 
demonstrates that the fuzzy rule base effectively suppresses disturbances. This decay phenomenon, combined 
with the hybrid learning algorithm of least squares and gradient descent, provides a closed-loop validation, 
confirming the loss function’s ability to block error propagation paths.

We extract 2,700 sets of PD pulses and maximum temperature rise data from the DT model, considering 
different voltage levels and physical conditions of high-voltage switchgear under abnormal states and faults of 
polluted insulators and cable joints. Based on the state level classification and the correlation between the state 
feature data and the severity of insulator faults, an empirical state index is set. From this, 2,000 sets of data are 
randomly selected as the training set for the fault diagnostic system network, with 150 sets from Level I, 150 sets 
from Level II, and 400 sets from Level III used as the test set.

After sorting the 700 test set data by ascending state index, the input to the ANFIS fault diagnosis network 
is shown in Fig. 13. In Fig. 13(a), the red triangle markers represent the ANFIS output for each test data group, 
which closely aligns with the blue circle markers, indicating a high degree of overlap in values and confirming 
the high fit of the fault diagnosis network. The network output and state index are strongly correlated, showing 
effective interpretation of the input state features. In Fig.  13(b), this correlation is quantified numerically, 
showing that the absolute error of the ANFIS output is less than 0.06 for each test data group, demonstrating the 
high accuracy of the fault diagnosis system.

Furthermore, to evaluate the deviation of calculations under different state indices, Fig. 14(a) quantifies the 
relative error for each data group. As seen, for data with lower initial state indices, the relative error can reach 
up to 106% when using only the output state index. Therefore, combining the state index evaluation with the 
analysis in Fig. 14(b), which assesses the state level, improves the fault tolerance and reduces the impact of low 
state index values.

The misclassification points occur at the boundary between Level II and Level III, with empirical indices of 
0.65 and 0.66, and ANFIS output indices of 0.6498 and 0.6445. However, considering the combined evaluation 
of the state index, the output still provides a reasonable explanation of the switchgear’s operational status. The 
overall accuracy for the test set reaches 93.4%, proving the reliability of the fault diagnosis model that combines 
state indices and levels.

In the comparison of key performance indicators among various fault diagnosis models, as shown in Table 4, 
the proposed ANFIS approach based on the T-S fuzzy model demonstrates overall superior performance. It 
achieves the highest accuracy (93.4%), precision (93.2%), recall (92.1%), and F1-score (92.6%), reflecting its 
strong diagnostic capability. Despite not being the fastest model in terms of computation time (8.7 s, slightly 
longer than SVM and DT), it maintains a good balance between performance and efficiency. Moreover, it shows 
the highest noise tolerance robustness, with only a 2.3% accuracy reduction under 30% noise interference, and 
the lowest cross-validation accuracy variance (2.1%), indicating strong robustness and stable generalization 
across different data subsets. These advantages make it a highly competitive and reliable model for fault diagnosis 
of high-voltage switchgear in practical industrial scenarios.

Summary and conclusions
This study develops a DT-based online fault diagnosis model for high-voltage switchgear, realizing real-time 
sensor information monitoring, 3D field simulation, and intelligent fault diagnosis, thus providing intuitive 
guidance for operational maintenance. The key findings are summarized as follows:

First, the constructed 3D model of the KYN28-12(Z) switchgear, coupled with a thermal-electric field 
FEA model, accurately identifies internal risk zones through experimental validation, with a temperature field 
simulation error of less than 8% compared to test data, confirming its reliability for DT modeling. Second, 
the reduced-order surrogate model, integrating mesh coarsening, dictionary tree deduplication, and KNN 
algorithms, achieves a 90% reduction in nodes while maintaining field extreme value errors below 5%. Combined 

Layer Input Error Range Output Error Range Amplification Factor

Membership ± 5% ± 4.2% 0.84

Rule ± 4.2% ± 3.8% 0.90

Decision ± 3.8% ± 3.5% 0.92

Final Output ± 3.5% ± 3.3% 0.94

Table 3.  Error propagation analysis across ANFIS layers.

 

Discharge Level Pulse Amplitude (V) Pulse Width (ms) Temperature Rise (°C) State Index Description

I 4 ~ 10 0.76 ~ 0.88 0 ~ 2.0 0.85 ~ 1 Corona Stage

II 2 ~ 5 0.68 ~ 0.84 2.0 ~ 6.3 0.65 ~ 0.85 Spark Stage

III 1 ~ 3 0.68 ~ 0.80 ≥ 6.5 0 ~ 0.65 Breakdown Stage

Table 2.  Equipment operation state classification.
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Method Accuracy (%) ↑ Precision (%) ↑ Recall (%) ↑ F1-Score (%) ↑ Computation Time (s) ↓
Noise Tolerance 
Robustness (%) ↑

Cross-
validation 
Accuracy 
Variance 
(%) ↓

BPNN 85.2 83.5 81.7 82.6 15.4 −7.4 3.7

SVM 88.1 87.5 85.4 86.6 10.2 −5.5 2.9

DT 82.5 80.9 79.2 80.0 9.8 −10.5 4.2

Fuzzy 83.7 82.1 80.8 81.4 7.3 −12.1 4.7

This research 93.4 93.2 92.1 92.6 8.7 −2.3 2.1

Table 4.  Comparison of key performance indicators for different fault diagnosis models.

 

Fig. 14.  State-level outputs of the fault diagnostic model: (a) Relative error of network outputs (b) Evaluation 
of state-level outputs.

 

Fig. 13.  Fault diagnosis network verification for test set data: (a) comparison between network output and 
state index; (b) network output and absolute error of the test set.
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with radial basis function (RBF) interpolation, the model ensures trustworthiness and continuity above 0.91, 
with a response time in seconds, supported by TCP-based local loopback communication for real-time 3D field 
visualization. Third, the ANFIS-OCT hybrid framework, using UV pulse frequency and maximum temperature 
rise as key features, achieves a fault recognition rate of 93.4% on the test set, with only a 2.3% accuracy drop 
under 30% noise interference. This demonstrates its robustness in complex operating environments.

Overall, the proposed DT-based diagnosis model realizes accurate virtual-real mapping of switchgear states, 
providing a reliable technical solution for intelligent operation and maintenance of power systems. Its high 
precision and strong anti-interference capability validate its potential for practical engineering applications. 
Future work will focus on optimizing sensor deployment and conducting economic analysis for digital twin 
implementation in 10 kV switchgears. Additionally, dynamic response performance under transient conditions 
will be evaluated to enhance practical applicability.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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