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Accurate prediction of breast cancer survival is critical for optimizing treatment strategies and 
improving clinical outcomes. This study evaluated a combination of parametric statistical models and 
machine learning algorithms to identify the most influential prognostic factors affecting the survival 
of patients. Two commonly used parametric models, log-gaussian regression and logistic regression, 
were applied to assess the relationship between survival and a set of clinical variables, including age 
at diagnosis, tumor grade, primary tumor site, marital status, American Joint Committee on Cancer 
(AJCC) stage, race, and receipt of radiation therapy or chemotherapy. Machine learning methods, such 
as neural networks, support vector machines (SVMs), random forests, gradient boosting machines 
(GBMs), and logistic regression classifiers, were employed to compare the predictive performance. 
Among these, the neural network model exhibited the highest predictive accuracy. The random forest 
model achieved the best balance between model fit and complexity, as indicated by its lowest akaike 
information criterion and bayesian information criterion values. Across all models, five variables 
consistently emerged as significant predictors of survival: age, tumor grade, ajcc stage, marital status, 
and radiation therapy use. These findings highlight the importance of combining traditional survival 
analysis techniques with machine learning approaches to enhance predictive accuracy and support 
evidence-based personalized treatment planning in breast cancer care.
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Breast cancer is a complex and heterogeneous disease that remains a major global health concern, contributing 
significantly to cancer-related mortality in women1. Invasive lobular carcinoma (ILC), which accounts for 10–
15% of all breast cancers, is the second most common histological subtype2. ILC differs from invasive ductal 
carcinoma (IDC) in terms of its molecular and biological characteristics3. Despite advancements in screening 
and treatment that have improved overall survival, predicting individual patient outcomes remains challenging 
and complicates personalized care. Accurate survival prediction is essential for effective risk stratification, 
informed therapeutic decision-making, and efficient allocation of health care resources. There is a growing need 
for patient-centered approaches that promote rational and equitable cancer care in oncology4.

Survival analysis offers a statistical framework for modeling time-to-event data, which is particularly relevant 
in oncology, where events such as recurrence, metastasis, and death occur at variable times across patients. The 
two key components of this framework are the survival function, which estimates the probability of survival 
beyond a given time, and the hazard rate, which measures the instantaneous risk of an event occurring at a 
specific time5. However, the application of parametric survival models in routine cancer research remains 
challenging because of their underlying assumptions and complexity6. A recent study proposed a deep-learning-
based breast cancer diagnosis model enhanced by a hybrid rule-based feature selection technique. Using the 
wisconsin breast cancer dataset (WBCD), the model identified five key diagnostic features and achieved 99.5% 
accuracy. By eliminating irrelevant data, the model improved prediction performance and demonstrated 
superior diagnostic accuracy compared with existing models, indicating a strong potential for early and precise 
breast cancer detection7.

Although traditional parametric models are widely used in breast cancer survival analysis, their limited 
flexibility in handling nonlinear and high-dimensional data raises concerns regarding predictive accuracy. 
Conversely, machine learning (ML) methods offer improved predictive performance but often lack clinical 
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interpretability. Therefore, a systematic comparison of these approaches is needed to identify models that best 
balance accuracy and interpretability for real-world clinical use in breast cancer prognosis.

Figure 1 illustrates the methodology for analyzing 2,085 cases of invasive lobular carcinoma from the SEER 
database (2011 to 2015) using two parallel approaches: parametric survival modeling and machine learning. 
Survival analysis was performed using exponential, weibull, and log-logistic models to estimate survival 
probabilities and hazard functions based on clinical variables. Machine learning models, including logistic 
regression, random forest, support vector machine, gradient boosting, and neural networks, were trained 

Fig. 1.  Flow Diagram of Data Analysis and Methodology.
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on 70% of the dataset and validated using the remaining 30%. The model performance was evaluated using 
confusion matrices and metrics such as accuracy, precision, recall, F1 score, and area under the receiver 
operating characteristic curve.

This study presents a comprehensive analysis of invasive lobular carcinoma (ILC) prognosis using advanced 
machine-learning techniques. Section “Related work” reviews the existing literature on ILC prediction, 
highlighting previous methodologies and key findings. Sections “Data design and preprocessing” and 
“Methodology” describe the data collection process and methodological framework, including details on the 
dataset, its source, features, and correlation analysis. Section “Experimental results” discusses the experimental 
results and model comparisons. Section “Conclusion” concludes the study and suggests directions for future 
research.

Related work
Theophilus Gyedu Baidoo and Hansapani8 evaluated both survival-specific and machine learning models using 
performance metrics such as the concordance index (c-index), integrated brier score (IBS), and area under 
the curve (AUC). The cox proportional hazards (CPH) model, random survival forest (RSF), and deepsurv 
demonstrated strong performance, with RSF achieving a c-index of 0.72. Both cox and RSF recorded the lowest 
IBS value of 0.08. However, while machine learning models such as random forest (AUC 0.74) and xgboost (AUC 
0.69) showed moderate discrimination, they lacked mechanisms for handling censored data, a key limitation 
in survival analysis. In a related study, the authors applied five machine learning classifiers using 13 selected 
features, with LightGBM optimized via a tree-structured parzen estimator, achieving 99.86% accuracy, 100% 
precision, and 99.60% recall, demonstrating high potential in distinguishing between malignant and benign 
tumors with minimal human intervention9.

Jialong Xiao, Miao Mo, et al.10 compared machine learning algorithms with the cox model for predicting 
overall survival in a large breast cancer cohort of 22,176 patients. Their findings revealed that the RSF slightly 
outperformed the Cox model in terms of discrimination, with a c-index of 0.827 compared to 0.814. This 
emphasizes the utility of the RSF in prognostic modeling. Another study explored a modified Weibull distribution 
capable of modeling various hazard rate shapes, including increasing, decreasing, constant, or bathtub-shaped 
patterns, with results closely aligned with kaplan-meier survival curves11. Another study by Tizi and Abdelaziz 
Berrado12 compared machine learning techniques with conventional statistical methods for cancer survival 
prediction. The study evaluated models, including random survival forests and cox regression with ridge 
regularization, using the c-index for performance comparison. The results indicated that both approaches 
performed similarly, although cox regression struggled with high-dimensional data. A separate study applied 
machine learning models to predict invasive disease-free events in 145 patients, showing that random survival 
forest with gradient boosting outperformed the cox model (c-index, 0.68 vs. 0.57). These findings suggest that 
clinical data alone can enhance prediction accuracy and reduce the need for costly genetic testing13.

Surbhu Gupta and Manoj K. Gupta14 assessed deep learning models, including the restricted boltzmann 
machine (RBM), for predicting post-operative survival in breast cancer. Using cross-validation, the RBM 
achieved the highest accuracy (0.97), reinforcing the need for continued evaluation of deep learning architectures 
for optimal predictive performance.

A study by Sahar A. and El Rahman15 investigated early breast cancer detection using machine learning 
algorithms and feature selection across four datasets. Classifier performance varied across datasets: Random 
forest with a genetic algorithm achieved 96.82% on WBC, C-SVM with RBF kernel reached 99.04% on WDBC, 
random forest with recursive feature elimination scored 74.13% on WPBC, and decision tree achieved 83.74%. 
Another comparative study16 reported SVM and LDA achieving 93% accuracy, Random forest 98%, and logistic 
regression 86%, demonstrating consistent effectiveness across models.

Gunjan et al.17, highlighted the importance of early breast cancer detection and reviewed advancements 
in AI-based computer-aided diagnosis (CAD) systems. They compared machine learning and deep learning 
approaches with conventional methods, discussing their benefits, limitations, and future directions for medical 
image analysis. Nermin Abdelhakim Othman et al.18 proposed a hybrid deep learning model for predicting breast 
cancer survival using multi-omics data from the METABRIC dataset. The framework combines a convolutional 
neural Network CNN-based feature extraction with long short-term memory (LSTM) and gated recurrent 
unit (GRU) classifiers, achieving an accuracy of 98.0% through decision-level fusion. This model significantly 
improved survival prediction over single-modality approaches, offering a more robust and accurate tool for 
personalized breast cancer prognosis.

Another study using the wisconsin breast cancer dataset19 evaluated several classifiers, including SVM, 
k-nearest neighbors, random forest, and logistic regression. SVM emerged as the most accurate, achieving 95% 
accuracy, reaffirming the role of CAD systems in early detection. A separate comparison of linear and nonlinear 
models20 found that while SVM had higher sensitivity, artificial neural networks offered better overall diagnostic 
performance, underscoring the value of nonlinear models in complex datasets.

Using Surveillance, Epidemiology, and End Results (SEER) data from 2010 to 2019, a study21 developed an 
xgboost model to predict survival in patients with bone metastatic breast cancer (BMBC). The model achieved 
AUC scores above 0.79. Prognostic factors such as treatment delays and income levels were significant, with 
neoadjuvant chemotherapy plus surgery improving outcomes in select subgroups.

Jain et al.22 aimed to identify optimal machine learning models for automatic breast cancer diagnosis using 
the wisconsin dataset. Their results showed that hyperparameter-tuned models and boosting algorithms, such 
as xgboost, consistently achieved high accuracy for both benign and malignant classifications. A study using 
the cancer genome atlas - breast invasive carcinoma (TCGA-BRCA) dataset23 explored multimodal machine 
learning systems for survival prediction by integrating six biomedical modalities. Dimensionality reduction 
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techniques and classifiers (SVM, random forest) improved the accuracy and robustness. However, these models 
lacked prospective validation on primary datasets, indicating the need for real-world testing.

Yinan Huang, Jieni Li, Mai Li, and Rajender R24. reviewed 28 studies applying machine learning models 
to real-world healthcare data for time-to-event outcomes. Random survival forests and neural networks are 
commonly used in oncology. The review noted the underuse of ML for treatment prediction and emphasized the 
need for methodological advances to enhance clinical utility.

The study by Chirag Nagpal, Xinyu Li, and Artur Dubrawski25 proposed a fully parametric deep learning 
approach for time-to-event prediction, circumventing the proportional hazards assumption of the Cox model. 
Their model accurately estimated survival risks in datasets with complex censoring and competing risks, offering 
a significant advancement in parametric survival modeling. M. Darshan Teja and G. Mokesh Rayalu26 utilized 
University of California, Irvine data to evaluate eight machine learning models for cardiovascular disease 
prediction. Ensemble methods like random forest and bagged trees achieved the highest accuracy and ROC-
AUC. The k-fold validation confirmed model reliability, emphasizing the effectiveness of ensemble techniques 
in prediction tasks.

Keren Evangeline I., S. P. Angeline Kirubha, and J. Glory Precious27 used the METABRIC dataset to identify 
the predictive variables in breast cancer. They compared the cox proportional hazards (CoxPH) model, RSF, and 
DeepHit. RSF and DeepHit outperformed CoxPH, both achieving a C-index of 0.86 compared with 0.85 for 
CoxPH. Key predictors included relapse-free status (RSF), age at diagnosis, estrogen and progesterone receptor 
status, and tumor stage (cox proportional hazards), aiding clinical decision-making. Recent studies have also 
focused on enhancing survival prediction through frailty modeling28. Another study29, revealed that patients in 
non-manual occupations had better survival (hazard ratio < 0.85), with technicians and associate professionals 
situated at the manual and non-manual intersection.

A study30 employed machine learning to predict survival duration using tumor-related clinical features such 
as stage, size, and age. Kernel ridge regression, k-nearest neighbors, lasso, and decision tree models demonstrated 
high predictive accuracy owing to effective data integration techniques. Finally, a study using data from the 
University of Ilorin Teaching Hospital31 applied several machine learning algorithms to predict breast cancer 
survival. AdaBoost outperformed the other models, achieving 98.3% accuracy and 99.9 AUC, confirming its 
potential for clinical application.

Although survival analysis has been widely used in breast cancer studies, it has been less studied in the 
context of invasive lobular carcinoma (ILC). Existing literature commonly employs cox proportional hazards 
models and random survival forests, with fewer studies examining the performance of other established 
parametric models, such as weibull, exponential, logistic, log-logistic, gaussian, and log-gaussian distributions. 
Additionally, the application of formal model selection criteria, such as the akaike information criterion (AIC) 
and bayesian information criterion (BIC), is less common in studies involving machine-learning approaches. 
Accordingly, further exploration of diverse modeling techniques and evaluation metrics may contribute to a 
more comprehensive understanding of survival prediction. This study aims to address this need by comparing 
multiple parametric and machine learning models for ILC survival prediction, using AIC/BIC and performance 
metrics to support model evaluation and interpretability in a clinically meaningful context. The objectives of this 
study were as follows:

	1.	 To investigate the prognostic significance of clinical and pathological factors, such as age, tumor grade, ajcc 
stage, and treatment, on breast cancer survival outcomes.

	2.	 To conduct a comparative evaluation of parametric survival models and machine learning algorithms in 
predicting patient survival, utilizing statistical criteria, including AIC, BIC, and ROC-based measures.

	3.	 To identify the most suitable predictive model, we assessed the trade-off between model interpretability and 
predictive accuracy across various machine learning methods.

Data design and preprocessing
This study was based on data obtained from the Surveillance, Epidemiology, and End Results (SEER) program, 
which collects cancer incidence and survival data from population-based registries across the United States. The 
original dataset included more than 446,000 breast cancer cases. This study focused on patients diagnosed with 
invasive lobular carcinoma (ILC) between 2011 and 2015, allowing for a more targeted analysis.

To ensure data quality and relevance, patients with missing information on key clinical variables or those 
diagnosed with other breast cancer subtypes were excluded. After applying these criteria, we identified a final 
cohort of 2,085 patients for analysis. Each case included information on overall survival time (in months), vital 
status (alive or deceased), and cause of death, which served as the outcome variables in our analysis. We selected 
eight clinical features known to influence breast cancer outcomes: age at diagnosis, tumor grade, primary tumor 
site, marital status, AJCC stage, race, and whether the patients received radiation therapy or chemotherapy. 
These variables were selected based on their established relevance in previous prognostic studies.

To manage the complexity of the dataset and uncover underlying patterns, we applied principal component 
analysis (PCA). PCA helped to reduce the dimensionality of the data while preserving the most informative 
features, making the subsequent modeling process more efficient and interpretable. The dataset was split into 
training (70%) and testing (30%) subsets for the model. Model development was conducted using the caret 
package in R, which simplifies the machine learning workflows. We trained and compared five different 
algorithms: logistic regression, random forest, support vector machine (SVM), gradient-boosting machine 
(GBM), and neural networks. To improve the model’s reliability and avoid overfitting, we used 10-fold cross-
validation during training. Hyperparameter tuning was performed using caret’s tuneLength function, which 
automatically tests a range of settings to determine the best configuration for each model.
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Once the training was complete, the models were evaluated using the testing set. Performance was measured 
using the following key metrics: accuracy, precision, recall, F1-score, and area under the ROC curve (AUC). 
Additionally, we used the akaike information criterion (AIC) and bayesian information criterion (BIC), where 
applicable, to assess model fit and complexity. All data processing, analysis, and visualization were performed 
using R, with additional tabulations completed in Microsoft Excel.

Methodology
Parametric survival methods assume that the survival time adheres to a specific probability distribution. These 
methods calculate the survival functions using probability density functions (PDFs) and cumulative distribution 
functions (CDFs). We provide six frequently used parametric survival distributions:

Exponential distribution
The exponential distribution is the simplest survival model, assuming a constant hazard rate over time32.

Pdf,

	 f (t; λ ) = λ e−λ t, t > 0, λ > 0� (1)

Cdf,

	 F (t) = 1 − e−λ t, t > 0� (2)

The exponential model indicates that the risk of occurrence remains constant. It is frequently impractical to use 
medical data when risks fluctuate dynamically.

Weibull distribution
The Weibull model generalizes the exponential function by allowing a variable hazard rate33.

Pdf

	 f (t; λ , k) = kλ tk−1e−λ tk

, t > 0, λ > 0, k > 0� (3)

Cdf

	 F (t) = 1 − e−λ tk

, t > 0� (4)

If k > 1, the hazard function increases over time (useful for the aging process). If k < 1, the hazard decreases over 
time (useful for early-stage failures). This flexibility makes the weibull distribution widely applicable in survival 
analyses.

Logistic distribution
The logistic distribution follows a normal distribution34.

Pdf,

	
f (t; µ , s) = e− t−µ

s

s(1 + e− t−µ
s )2

, −∞ < t < ∞ � (5)

Cdf,

	
F (t) = 1

1 + e− t−µ
s

, −∞ < t < ∞ � (6)

The logistic model accounts for symmetric survival time distributions and is used when survival data exhibit 
heavier tails than the normal distribution.

Gaussian (Normal) distribution
Normal distribution models the survival time symmetrically around the mean.

Pdf,

	
f (t; µ , σ ) = 1

σ
√

2π
e

− (t−µ )2

2σ 2 , −∞ < t < ∞ � (7)

Cdf,

	
F (t) = 1

2

[
1 + erf

(
t − µ

σ
√

2

)]
� (8)

The normal distribution is rarely used in survival analysis because it allows negative survival times, which are 
not meaningful in practice.
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Log-Logistic distribution
The log-logistic model is useful when hazard rates first increase and then decrease over time35.

Pdf,

	
f (t; α , β ) = (β /α )(t/α )β −1

(1 + (t/α )β )2 , t > 0, α > 0, β > 0� (9)

Cdf,

	
F (t) = 1

1 + (t/α )−β
, t > 0� (10)

This model is useful when the survival time follows a distribution in which the hazard initially increases and 
then decreases, making it relevant for modeling cancer survival.

Log-Gaussian (Log-Normal) distribution
The log-normal model is appropriate when survival time follows a skewed distribution.

Pdf,

	
f (t; µ , σ ) = 1

tσ
√

2π
e

− (lnt−µ )2

2σ 2 , t > 0� (11)

Cdf,

	
F (t) = 1

2

[
1 + erf

(
lnt − µ

σ
√

2

)]
� (12)

Table  1 represents the survival function S (t) , hazard function h (t) , and the cumulative hazard function 
H (t) which characterize the properties of various statistical distributions in survival analysis. The exponential 
model assumes a constant hazard rate, resulting in a straightforward, exponentially declining survival probability 
curve. The weibull model extends this by introducing a shape parameter k, which allows for an increasing or 
decreasing hazard rate over time. The gaussian (normal) model characterizes survival using the standard normal 
cumulative distribution function (cdf), with hazard functions that depend on the corresponding probability 
density function (pdf). The log-logistic and logistic models generate sigmoid-shaped survival curves determined 
by their respective scale parameters. Finally, the log-gaussian (log-normal) model applies a logarithmic 
transformation to survival times, offering flexibility in modeling skewed distributions.

Confusion Matrix:
A confusion matrix is an essential classification technique that summarizes predictions with actual results. 

Table 2 lists these four components.

•	 False Positives (FP): Incorrectly predicted positive cases.
•	 True Positives (TP): Correctly predicted positive cases.
•	 False Negatives (FN): Incorrectly predicted negative cases.
•	 True Negatives (TN): Correctly predicted negative cases.

Model Survival Function S(t)S(t) Hazard Function h(t)h(t) Cumulative Hazard H(t)H(t)

Exponential e−λ t
λ λ t

Weibull e−(λ t)k
kλ ktk−1 (λ t)k

Gaussian (Normal)
(1 − Φ

(
t−µ

σ

)
f(t)
S(t) =

1
σ

√
2π

e
− (t−µ )2

2σ 2

1−Φ
(

t−µ
σ

) −log
(

1 − Φ
(

t−µ
σ

))

Log-Logistic
1

1+(λ t)k
kλ ktk−1
1+(λ t)k log(1 + (λ t)k)

Logistic

1

1+e
t−µ

σ
e

t−µ
σ

σ

(
1+e

t−µ
σ

)
log

(
1 + e

t−µ
σ

)

Log-Gaussian (Log-Normal)
1 − Φ

(
logt−µ

σ

)
f(t)
S(t) =

1
tσ

√
2π

e
− (logt−µ )2

2σ 2

1−Φ
(

logt−µ
σ

) −log
(

1 − Φ
(

logt−µ
σ

))

Table 1.  Survival, hazard, and cumulative hazard functions with interpretations for various survival models.
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Accuracy
Accuracy is a fundamental metric that denotes the ratio of correctly classified cases to the total occurrences 
[bustillo2022improving].

	
Accuracy = T P + T N

T P + T N + F P + F N
� (13)

Precision
Precision, or positive predictive value (PPV), quantifies the ratio of accurately identified positive cases to the 
total projected positive cases.

	
Precision = T P

T P + F P
� (14)

Precision is important in scenarios in which false positives must be minimized.

Recall (sensitivity)
Recall, referred to as sensitivity or true positive rate (TPR), quantifies the ratio of accurately anticipated positive 
cases to the total number of actual positive cases.

	
Recall = T P

T P + F N
� (15)

High recall is crucial in medical applications, where missing a positive case (false negative) is dangerous, such as 
failing to detect breast cancer in patients.

F1-score
The F1-score is the harmonic mean of precision and recall, balancing both metrics.

	
F1-Score = 2 × Precision × Recall

Precision + Recall
� (16)

The F1-score is a useful metric when dealing with imbalanced datasets, as it ensures a balance between precision 
and recall.

Area under the curve (AUC)
The AUC is determined from the receiver operating characteristic (ROC) curve, which graphs the true positive 
rate (recall) versus the false positive rate (FPR)36.

	
False Positive Rate (FPR) = F P

F P + T N
� (17)

•	 The AUC signifies the likelihood that the model prioritizes a randomly selected positive occurrence above a 
randomly selected negative case.

•	 An AUC of 0.5 indicates a model with no discrimination capability (i.e., random guessing).
•	 An AUC value close to 1.0 indicates an excellent model.

Table 3 presents the machine learning models that employ mathematical methodologies to enhance prediction 
accuracy. Logistic regression uses a sigmoid function to model binary outcomes. The random forest aggregates 
decision trees and employs criteria such as the Gini index and entropy to assess node impurities. Support 
vector machines (SVM) optimize the margin between classes and use the kernel trick to capture intricate, non-
linear patterns. Gradient boosting machines (GBM) systematically improve predictions by minimizing the loss 
function through iterative learning. Neural networks analyze data using weighted layers and employ activation 
functions and gradient descent for optimization.

Estimating AIC/BIC for machine learning models
Because the traditional akaike information criterion (AIC) and bayesian information criterion (BIC) rely on 
likelihood functions, which most machine learning models lack, we used an approximation based on the model’s 
loss function. Specifically, we employed log loss (cross-entropy) to estimate the negative log-likelihood for 
classification-based survival predictions37. The log-likelihood is approximated as follows:

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

Table 2.  Confusion Matrix.
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	 logL ≈ −n × Log-Loss

Where n is the number of observations. Using this, the AIC and BIC were computed as follows:

	 AIC = 2k − 2logL, BIC = klog (n) − 2logL

Here, k refers to the effective number of the model parameters.

Experimental results
Effect of demographic and clinical factors on survival probability
Table 4 presents the coefficients and p-values of various demographic and clinical variables across six parametric 
survival models: Weibull, Exponential, Gaussian, Logistic, Log-logistic, and Log-Gaussian.

•	 Age: Demonstrated a statistically significant positive correlation with survival in the weibull and log-gaussian 
models (p < 0.05), suggesting that advancing age is associated with a higher probability of survival.

•	 Tumor grade: Exhibited a significant negative correlation with survival in the Weibull model, indicating that 
elevated tumor grades reduce survival probability.

•	 Primary tumor site: Demonstrated statistical significance exclusively in the weibull model, while other mod-
els did not yield conclusive associations, indicating minimal influence on survival estimates.

•	 Marital status exhibited statistical significance in the weibull model, indicating an association between mar-
ital status and improved survival outcomes.

•	 AJCC stage: Demonstrated a statistically significant negative correlation with survival in the Weibull mod-
el, indicating that patients with advanced-stage cancer have a reduced survival probability. The exponential 
model was statistically significant (p = 0.04).

•	 Race: Significantly associated with survival outcomes in the weibull model but lacking robust statistical evi-
dence in other parametric models.

Variables Weibull Exponential Gaussian Logistic Log-Logistic (e-05) Log-Gaussian

Age 0.01044 (p < 2e-16) 0.0026 (p = 0.94) 0.666 (p = 0.044) 0.2973 (p = 0.17) 4.60e-03 (p = 0.27) 0.020128 (p = 0.035)

Grade −0.03753 (p < 2e-16) 0.0112 (p = 0.63) −0.1646 (p = 0.413) −0.1180 (p = 0.37) −1.84e-03 (p = 0.47) −0.002423 (p = 0.67)

Primary Site −0.01319 (p < 2e-16) 0.0088 (p = 0.44) 0.0276 (p = 0.78) −0.0017 (p = 0.97) 4.48e-05 (p = 0.97) 0.001903 (p = 0.50)

Marital Status −0.04215 (p < 2e-16) 0.0437 (p = 0.11) 0.2864 (p = 0.220) 0.1868 (p = 0.22) 3.08e-03 (p = 0.29) 0.011280 (p = 0.09)

AJCC Stage −0.17032 (p < 2e-16) 0.0918 (p = 0.04) −0.0287 (p = 0.94) −0.1452 (p = 0.57) −1.58e-03 (p = 0.75) 0.000678 (p = 0.953)

Race −0.00646 (p < 2e-16) −0.0149 (p = 0.71) −0.6764 (p = 0.052) −0.2703 (p = 0.24) −4.71e-03 (p = 0.29) −0.018576 (p = 0.06)

Radiation −0.03558 (p < 2e-16) 0.0032 (p = 0.75) −0.3894 (p = 6.3e-06) −0.1625 (p = 0.004) −2.77e-03 (p = 0.01) −0.010289 (p = 3.6e-05)

Chemotherapy 0.02296 (p < 2e-16) −0.0093 (p = 0.86) 0.0135 (p = 0.977) 0.1238 (p = 0.69) 1.70e-03 (p = 0.77) −0.002486 (p = 0.856)

Table 4.  Regression coefficients and P-values for various parametric survival Models.

 

Model Equation

Logistic Regression
P (Y = 1 | X) = 1

1+e
−
(

β 0+
∑

n
i=1β iXi

)

Random Forest y = 1
T

∑
T
t=1ft (X)

Gini: G = 1 −
∑

c
i=1p2

i

Entropy: H = −
∑

c
i=1pilog2 (pi)

Support Vector Machine (SVM) min
w,b

1
2 || w

∣∣|2s.t.yi

(
w · Xi + b) ≥ 1, ∀

Kernel Trick: K (Xi, Xj) = e−γ ||Xi−Xj ||2

Gradient Boosting Machine (GBM) Fm (X) = Fm−1 (X) + γ mhm (X)

γ m = argmin
γ

∑
n
i=1L (yi, Fm−1 (Xi) + γ hm (Xi))

Neural Network Z = W1X + b1

A = σ (Z) = 1
1+e−Z

hat : y = W2A + b2

Weight Update: W ← W − η ∂ L
∂ W

Table 3.  Mathematical equations for ML Models.

 

Scientific Reports |        (2025) 15:31288 8| https://doi.org/10.1038/s41598-025-15696-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


•	 Radiation therapy: demonstrated statistical significance across multiple survival models, including weibull, 
gaussian, logistic, log-logistic, and log-gaussian models, underscoring its potential impact on survival out-
comes.

•	 Chemotherapy: Attained statistical significance in the weibull model, indicating that its association with 
survival varied depending on the assumed parametric distribution.

Figure 2 illustrates the survival probability, hazard function, and cumulative survival probability for the six 
parametric models: weibull, exponential, gaussian, logistic, log-gaussian, and log-logistic. The survival 
probability curve depicts the variation in survival likelihood over time across various distributions. The weibull 
and log-logistic functions exhibited rapid decreases, followed by stabilization, whereas the exponential function 
remained consistently low. Log-gaussian and gaussian distributions show a more gradual decline, indicating 
long-term survival patterns. The hazard function curve illustrates that the weibull risk decreases over time, the 
exponential model maintains a constant failure rate, and the log-gaussian models show an increasing hazard 
over time. The logistic and log-logistic models demonstrated an initially elevated risk that diminished as time 
progressed.

The cumulative survival probability curve (representing the cumulative failure probability) shows the 
escalation of failure risk over time for various distributions. The weibull and log-logistic functions displayed 
an initially steep increase, whereas the exponential model remained stable. In contrast, the log-gaussian and 
gaussian models exhibit a progressive increase, signifying prolonged longevity.

Evaluation of model fit using AIC and BIC
The akaike information criterion (AIC) and bayesian information criterion (BIC) in Table 5 evaluate the model 
fit by balancing goodness-of-fit with complexity, with lower values signifying better models. This investigation 
revealed that among all the evaluated models, the random forest approach exhibited the best performance, as 
evidenced by the lowest AIC (568.70) and BIC (1274.49) values, signifying a significant balance between model 
fit and complexity. Within the context of standard survival models, the exponential distribution was revealed 
to be the most effective, obtaining notably lower AIC (17,445.14) and BIC (17,495.84) values than alternative 
distributions such as weibull, gaussian, and log-logistic. In contrast, the support vector machine (SVM) exhibited 
exceptionally high AIC and BIC values.

Fig. 2.  (a) Survival Probability, (b) Cumulative Survival, and (c) Hazard Function Curves for Parametric 
Survival Distributions.
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Performance comparison of machine learning models
Table 6 presents a comparative analysis of the machine learning models, specifically logistic regression, random 
forest, support vector machine, gradient boosting machine, and neural network, based on the accuracy, 
precision, recall, F1-score, and AUC. The neural network demonstrated the highest overall performance, with 
an accuracy, precision of 0.815, recall of 0.984, and an F1-score of 0.809, 0.815, 0.984, and 0.982, respectively, 
indicating that it was the best predictive model for breast cancer. Logistic regression followed closely, with 
similar accuracy (0.808), precision (0.815), and recall (0.982). The gradient boosting machine (GBM) recorded 
the highest AUC (0.656), demonstrating superior class separation, although its accuracy (0.798) and precision 
(0.809) were slightly lower. The support vector machine (SVM) performed well in terms of recall (0.982) but 
had the lowest AUC (0.608), suggesting a less predictive model. Random forest underperforms, with the lowest 
accuracy (0.769) and F1-score (0.865), indicating a weaker trade-off between precision and recall. Although 
neural networks are the most well-rounded, logistic regression offers simplicity and interpretability, and the 
GBM excels in classification ranking. The optimal model depends on the application and whether it prioritizes 
interpretability, sensitivity, or ranking performance.

The ROC curve, which represents the logistic model, is shown in Fig.  3. The neural network is the best 
predictive model. The ROC curves illustrate the balance between sensitivity (true positive rate) and specificity (1–
false positive rate) for each model. The closeness of the curves to the diagonal indicates that all models possessed 
limited discriminatory power, possibly with AUC values ranging from 0.6 to 0.7. AUC values around 0.5 signify 
random performance, and values near 1 imply robust classification capability. The models demonstrated no 
substantial superiority, indicating similar prediction efficacy.

Performance comparison of machine learning models
Our models exhibit competitive and balanced performance in comparison to previous studies. Neural network 
and logistic regression attained accuracies of 80.9% and 80.8%, respectively, with elevated recall values (up to 
0.984) and F1-scores (up to 0.982), signifying robust predictive performance. Although prior studies, including 
Ahmed et al. (2025) and Nurul Amirah Mashudi et al. (2020), documented better accuracies of 98.57% and 
98.60% utilizing random forest and SVM, respectively, our models demonstrate enhanced performance 
compared to Reza Rabiei et al. (2022), whose random forest model attained an accuracy of 80%. Our findings 
underscore consistent performance across many evaluation metrics, illustrating the efficacy of the employed 
models in breast cancer prediction. Most prior research on breast cancer prediction works on different datasets 
and does not explicitly address invasive lobular carcinoma (ILC). As indicated in Table 7, models were utilized 
widely without identifying ILC as a separate subtype. This work bridges the gap by concentrating solely on ILC, 
offering more precise insights and prediction outcomes relevant to this underexplored and clinically significant 
breast cancer subtype.

Strength:

	1.	 Focus on invasive lobular carcinoma (ILC): Addresses a significant gap by targeting a less-studied breast 
cancer subtype, enhancing clinical relevance.

	2.	 Extensive parametric model comparison: Applied a broader set of parametric models than typically used, 
going beyond cox and standard forms to include multiple distributions for a thorough survival analysis.

Model Accuracy Precision Recall F1 Score AUC

Logistic Regression 0.808 0.815 0.982 0.891 0.645

Random Forest 0.769 0.812 0.926 0.865 0.619

SVM 0.795 0.804 0.982 0.884 0.608

GBM 0.798 0.809 0.978 0.885 0.656

Neural Network 0.809 0.815 0.984 0.982 0.645

Table 6.  Classification performance of predictive models.

 

Model

Parametric Machine Learning

AIC BIC Model AIC BIC

Weibull 99012.44 99068.77 Logistic Regression 3445.55 10204.18

Exponential 17445.14 17495.84 SVM 434782.21 1,310,526

Gaussian 11983.49 12039.82 Gradient Boosting 16,318 47272.56

Logistic 11113.49 11169.82 Neural Network 20151.03 60574.65

Log-Logistic 12012.69 12069.03 Random Forest 568.70 1274.49

Log-Gaussian 13974.82 14031.16

Table 5.  Comparative evaluation of parametric and machine learning models for survival prediction using 
AIC and BIC.
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	3.	 AIC/BIC applied to ML models using log-loss: Innovatively applied AIC and BIC to machine learning mod-
els by approximating likelihood through log-loss and pseudo-likelihood methods, enabling a unified model 
evaluation framework.

Conclusion
This study evaluated the predictive performance of both parametric and machine learning models in estimating 
survival outcomes among patients with invasive lobular carcinoma. Several key prognostic factors, including 
age, tumor grade, ajcc stage, marital status, and radiation therapy, were found to significantly influence survival. 
The performance of the models varied depending on the evaluation criteria used. Neural networks showed 
relatively higher predictive accuracy when assessed using classification metrics such as the area under the 
receiver operating characteristic curve (AUC) and precision. In contrast, when evaluated using information-
based criteria that focus on model fit while penalizing complexity, the random forest model performed best, as 
indicated by the lowest values for the akaike information criterion (AIC) and the bayesian information criterion 
(BIC). These results highlight the tradeoffs between accuracy-driven and complexity-aware evaluation methods, 
emphasizing the importance of using multiple metrics to assess survival models effectively.

Despite these findings, several limitations impact the generalizability and practical use of the study. The SEER 
database lacks several detailed clinical variables, such as recurrence status, surgical margin information, and 
data on postoperative complications, all of which could affect survival predictions. Moreover, although some 
machine learning models outperformed others, their AUC values remained moderate, ranging from 0.60 to 0.66, 
indicating limited ability to distinguish between outcomes. Parametric models are limited by strict assumptions 
regarding the underlying data distribution, whereas machine learning models may encounter challenges such 
as overfitting, limited interpretability, and substantial computational requirements. Moreover, exclusive reliance 
on selection criteria such as the akaike information criterion (AIC) and the bayesian information criterion (BIC) 
may bias model selection toward simpler structures, potentially compromising predictive performance.

In summary, this research shows the value of combining statistical and machine learning approaches in 
cancer survival prediction. These methods offer complementary strengths interpretability from parametric 
models and flexibility from machine learning techniques. However, developing clinically useful models will 

R. No Author Year Data Set Methods
Results
(Accuracy)

37 Ahmed et al. 2025 SEER database RF 98.57
38 Islam T et al. 2024 SEER breast cancer database DT 91%
39 Taminul Islam et al. 2024 Breast Cancer Primary Dataset XGBoost 97%
40 Varsha Nemade et al. 2023 Wisconsin Diagnostic Breast Cancer (WDBC) Dataset XGBoost 97%
38 P. Manikandan et al. 2023 SEER breast cancer dataset DT 98%
41 Reza Rabiei et al. 2022 Motamed Cancer Institute (ACECR), Tehran, Iran RF 80%
42 Nurul Amirah Mashudi et al. 2020 WDBC Dataset SVM 98.60%

Table 7.  Comparison of breast cancer prediction accuracy across previous Studies.

 

Fig. 3.  ROC Curve Illustrating Performance of (a) GBM, (b) LR, (c) Neural Network, (d) RF, and (e) SVM.
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require access to more detailed, diverse datasets and continued methodological improvements. Future research 
should focus on hybrid modeling techniques that bring together the strengths of both approaches to better 
capture complex survival patterns. Enhancing methods for handling censored data, which is common in 
survival studies, will improve the accuracy and reliability of predictions. Including time-varying variables could 
also provide a more accurate picture of changes in a patient’s condition or treatment over time, leading to more 
relevant and dynamic models. Lastly, expanding evaluation metrics beyond AIC and BIC would allow for a more 
balanced and comprehensive assessment of model performance.

Data availability
The analysis was based on publicly accessible secondary data from the https://seer.cancer.govdatabase.

Received: 21 March 2025; Accepted: 11 August 2025

References
	 1.	 Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J. Clin. 71, 209–249 (2021).
	 2.	 Metzger Filho, O. et al. Survival outcomes for patients with invasive lobular cancer by mammaprint: results from the MINDACT 

phase III trial. Eur. J. Cancer. 217, 115222 (2025).
	 3.	 Anampa, J. D., Lin, S., Obeng-Gyasi, S. & Xue, X. Treatment and survival differences between patients with invasive lobular 

carcinoma versus invasive ductal carcinoma of the breast. Cancer Epidemiol. Biomarkers Prev. 34, 125–132 (2025).
	 4.	 Booth, C. M. et al. Common sense oncology: outcomes that matter. Lancet Oncol. 24, 833–835 (2023).
	 5.	 Le-Rademacher, J. & Wang, X. Time-To-Event data: an overview and analysis considerations. J. Thorac. Oncol. 16, 1067–1074 

(2021).
	 6.	 Kumar, M. et al. Parametric survival analysis using R: illustration with lung cancer data. Cancer Rep 3, e1210 (2020).
	 7.	 Awotunde, J. B., Panigrahi, R., Khandelwal, B., Garg, A. & Bhoi, A. K. Breast cancer diagnosis based on hybrid rule-based feature 

selection with deep learning algorithm. Res. Biomedical Eng. 39, 115–127 (2023).
	 8.	 Baidoo, T. G. & Rodrigo, H. Data-driven survival modeling for breast cancer prognostics: A comparative study with machine 

learning and traditional survival modeling methods. PLoS One. 20, e0318167 (2025).
	 9.	 Michael, E., Ma, H., Li, H. & Qi, S. An Optimized Framework for Breast Cancer Classification Using Machine Learning. Biomed 

Res Int (2022). (2022).
	10.	 Xiao, J. et al. The application and comparison of machine learning models for the prediction of breast cancer prognosis: 

retrospective cohort study. JMIR Med. Inf. 10, e33440 (2022).
	11.	 Rangoli, A. M., Talawar, A. S., Agadi, R. P. & Sorganvi, V. New modified exponentiated Weibull distribution: A survival analysis. 

Cureus https://doi.org/10.7759/cureus.77347 (2025).
	12.	 Tizi, W. & Berrado, A. Machine learning for survival analysis in cancer research: A comparative study. Sci. Afr. 21, e01880 (2023).
	13.	 Fanizzi, A. et al. Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive 

HER2 negative breast cancer. Sci. Rep. 13, 8575 (2023).
	14.	 Gupta, S. & Gupta, M. K. A comparative analysis of deep learning approaches for predicting breast cancer survivability. Arch. 

Comput. Methods Eng. 29, 2959–2975 (2022).
	15.	 El_Rahman, S. A. Predicting breast cancer survivability based on machine learning and features selection algorithms: a comparative 

study. J. Ambient Intell. Humaniz. Comput. 12, 8585–8623 (2021).
	16.	 Tapak, L. et al. Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clin. Epidemiol. 

Glob Health. 7, 293–299 (2019).
	17.	 Chugh, G., Kumar, S. & Singh, N. Survey on machine learning and deep learning applications in breast cancer diagnosis. Cognit 

Comput. 13, 1451–1470 (2021).
	18.	 Othman, N. A., Abdel-Fattah, M. A. & Ali, A. T. A hybrid deep learning framework with Decision-Level fusion for breast cancer 

survival prediction. Big Data Cogn. Comput. 7, 50 (2023).
	19.	 Rastogi, M., Vijarania, M. & Goel, N. Implementation of machine learning techniques in breast cancer detection. in 111–121 

(2023). https://doi.org/10.1007/978-981-99-3010-4_10
	20.	 Rawal, G., Rawal, R., Shah, H. & Patel, K. A. Comparative study between artificial neural networks and conventional classifiers for 

predicting diagnosis of breast cancer. in 261–271 (2020). https://doi.org/10.1007/978-981-15-1420-3_28
	21.	 Li, C. et al. Machine learning predicts the prognosis of breast cancer patients with initial bone metastases. Front Public. Health 10, 

1003976 (2022).
	22.	 Jain, P., Aggarwal, S., Adam, S. & Imam, M. Parametric optimization and comparative study of machine learning and deep learning 

algorithms for breast cancer diagnosis. Breast Dis. 43, 257–270 (2024).
	23.	 Arya, N., Saha, S., Mathur, A. & Saha, S. Improving the robustness and stability of a machine learning model for breast cancer 

prognosis through the use of multi-modal classifiers. Sci. Rep. 13, 4079 (2023).
	24.	 Huang, Y., Li, J., Li, M. & Aparasu, R. R. Application of machine learning in predicting survival outcomes involving real-world 

data: a scoping review. BMC Med. Res. Methodol. 23, 268 (2023).
	25.	 Nagpal, C., Li, X. & Dubrawski, A. Deep survival Machines: fully parametric survival regression and representation learning for 

censored data with competing risks. IEEE J. Biomed. Health Inf. 25, 3163–3175 (2021).
	26.	 Teja, M. D. & Rayalu, G. M. Optimizing heart disease diagnosis with advanced machine learning models: a comparison of 

predictive performance. BMC Cardiovasc. Disord. 25, 212 (2025).
	27.	 Evangeline, I., Kirubha, K., Precious, J. G. & S. P. A. & Survival analysis of breast cancer patients using machine learning models. 

Multimed Tools Appl. 82, 30909–30928 (2023).
	28.	 Feleke, B., Tesfaw, L. M. & Mitku, A. A. Survival analysis of women breast cancer patients in Northwest amhara, Ethiopia. Front 

Oncol 12, 1041245 (2022).
	29.	 Guseva Canu, I. et al. Breast cancer and occupation: Non-parametric and parametric net survival analyses among Swiss women 

(1990–2014). Front Public. Health 11, 1129708 (2023).
	30.	 Mihaylov, I., Nisheva, M. & Vassilev, D. Application of machine learning models for survival prognosis in breast cancer studies. 

Information 10, 93 (2019).
	31.	 Okagbue, H. I., Adamu, P. I., Oguntunde, P. E., Obasi, E. C. M. & Odetunmibi, O. A. Machine learning prediction of breast cancer 

survival using age, sex, length of stay, mode of diagnosis and location of cancer. Health Technol. (Berl). 11, 887–893 (2021).
	32.	 Alzaid, A. A. & Qarmalah, N. Uniformly Shifted Exponential Distribution Axioms 13, 339 (2024).
	33.	 Li, X. et al. Weibull parametric model for survival analysis in women with endometrial cancer using clinical and T2-weighted MRI 

radiomic features. BMC Med. Res. Methodol. 24, 107 (2024).

Scientific Reports |        (2025) 15:31288 12| https://doi.org/10.1038/s41598-025-15696-0

www.nature.com/scientificreports/

https://seer.cancer.govdatabase
https://doi.org/10.7759/cureus.77347
https://doi.org/10.1007/978-981-99-3010-4_10
https://doi.org/10.1007/978-981-15-1420-3_28
http://www.nature.com/scientificreports


	34.	 Huang, J. C. et al. A logistic regression model to predict long-term survival for borderline resectable pancreatic cancer patients 
with upfront surgery. Cancer Imaging. 25, 10 (2025).

	35.	 Bustillo, A., Reis, R., Machado, A. R. & Pimenov, D. Yu. Improving the accuracy of machine-learning models with data from 
machine test repetitions. J. Intell. Manuf. 33, 203–221 (2022).

	36.	 Huang, X. et al. Survival nomogram for young breast cancer patients based on the SEER database and an external validation 
cohort. Ann. Surg. Oncol. 29, 5772–5781 (2022).

	37.	 Ahmed, M., Sulaiman, M. H., Hassan, M. M. & Bhuiyan, T. Predicting the classification of heart failure patients using optimized 
machine learning algorithms. IEEE Access. 13, 30555–30569 (2025).

	38.	 Manikandan, P., Durga, U. & Ponnuraja, C. An integrative machine learning framework for classifying SEER breast cancer. Sci. 
Rep. 13, 5362 (2023).

	39.	 Islam, T. et al. Predictive modeling for breast cancer classification in the context of Bangladeshi patients by use of machine learning 
approach with explainable AI. Sci. Rep. 14, 8487 (2024).

	40.	 Nemade, V. & Fegade, V. Machine learning techniques for breast cancer prediction. Procedia Comput. Sci. 218, 1314–1320 (2023).
	41.	 Rabiei, R. Prediction of breast cancer using machine learning approaches. J Biomed. Phys. Eng 12, 297 (2022).
	42.	 Mashudi, N. A., Rossli, S. A., Ahmad, N. & Noor, N. M. Comparison on Some Machine Learning Techniques in Breast Cancer 

Classification. in IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) 499–504 (IEEE, 2021). 499–504 (IEEE, 
2021). (2020). https://doi.org/10.1109/IECBES48179.2021.9398837

Acknowledgements
We are grateful to the UGC (University Grants Commission) and Vellore Institute of Technology, Vellore, for 
providing us with the opportunity and resources to conduct this research.

Author contributions
Sonia: Writing – review and editing, Resources, Methodology, Validation, Software, Investigation, Formal analy-
sis. Venkataramana B: Writing – review, Validation, Supervision, Resources, Methodology, Visualization, Inves-
tigation, Formal Analysis, Conceptualization.

Funding
Open access funding provided by Vellore Institute of Technology. No Funding.

Declarations

Ethics approval and consent to participate
This research did not involve experiments on live vertebrates, higher invertebrates, or human participants. 
Therefore, ethical approval and informed consent were not required.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:31288 13| https://doi.org/10.1038/s41598-025-15696-0

www.nature.com/scientificreports/

https://doi.org/10.1109/IECBES48179.2021.9398837
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿A comparative analysis of parametric survival models and machine learning methods in breast cancer prognosis
	﻿Related work
	﻿Data design and preprocessing
	﻿Methodology
	﻿Exponential distribution
	﻿Weibull distribution
	﻿Logistic distribution
	﻿Gaussian (Normal) distribution
	﻿Log-Logistic distribution
	﻿Log-Gaussian (Log-Normal) distribution
	﻿Accuracy
	﻿Precision
	﻿Recall (sensitivity)
	﻿F1-score
	﻿Area under the curve (AUC)
	﻿Estimating AIC/BIC for machine learning models

	﻿Experimental results
	﻿Effect of demographic and clinical factors on survival probability
	﻿Evaluation of model fit using AIC and BIC
	﻿Performance comparison of machine learning models



