Table 1 Survival, hazard, and cumulative hazard functions with interpretations for various survival models.

From: A comparative analysis of parametric survival models and machine learning methods in breast cancer prognosis

Model

Survival Function S(t)S(t)

Hazard Function h(t)h(t)

Cumulative Hazard H(t)H(t)

Exponential

\(\:{e}^{-\lambda\:t}\)

\(\:\lambda\:\)

\(\:\lambda\:t\)

Weibull

\(\:{e}^{-(\lambda\:t{)}^{k}}\)

\(\:k{\lambda\:}^{k}{t}^{k-1}\)

\(\:(\lambda\:t{)}^{k}\)

Gaussian (Normal)

\(\:\text{(}1-{\Phi\:}\left(\frac{t-\mu\:}{\sigma\:}\right)\)

\(\:\frac{f\left(t\right)}{S\left(t\right)}=\frac{\frac{1}{\sigma\:\sqrt{2\pi\:}}{e}^{-\frac{(t-\mu\:{)}^{2}}{2{\sigma\:}^{2}}}}{1-{\Phi\:}\left(\frac{t-\mu\:}{\sigma\:}\right)}\)

\(\:-\text{log}\left(1-{\Phi\:}\left(\frac{t-\mu\:}{\sigma\:}\right)\right)\)

Log-Logistic

\(\:\frac{1}{1+(\lambda\:t{)}^{k}}\)

\(\:\frac{k{\lambda\:}^{k}{t}^{k-1}}{1+(\lambda\:t{)}^{k}}\)

\(\:\text{l}\text{o}\text{g}(1+(\lambda\:t{)}^{k})\)

Logistic

\(\:\frac{1}{1+{e}^{\frac{t-\mu\:}{\sigma\:}}}\)

\(\:\frac{{e}^{\frac{t-\mu\:}{\sigma\:}}}{\sigma\:\left(1+{e}^{\frac{t-\mu\:}{\sigma\:}}\right)}\)

\(\:\text{log}\left(1+{e}^{\frac{t-\mu\:}{\sigma\:}}\right)\)

Log-Gaussian (Log-Normal)

\(\:1-{\Phi\:}\left(\frac{\text{log}t-\mu\:}{\sigma\:}\right)\)

\(\:\frac{f\left(t\right)}{S\left(t\right)}=\frac{\frac{1}{t\sigma\:\sqrt{2\pi\:}}{e}^{-\frac{(\text{l}\text{o}\text{g}t-\mu\:{)}^{2}}{2{\sigma\:}^{2}}}}{1-{\Phi\:}\left(\frac{\text{log}t-\mu\:}{\sigma\:}\right)}\)

\(\:-\text{log}\left(1-{\Phi\:}\left(\frac{\text{log}t-\mu\:}{\sigma\:}\right)\right)\)