Table 3 Mathematical equations for ML Models.

From: A comparative analysis of parametric survival models and machine learning methods in breast cancer prognosis

Model

Equation

Logistic Regression

\(\:P\left(Y=1\mid X\right)=\frac{1}{1+{e}^{-\left({\beta\:}_{0}+\sum\:_{i=1}^{n}{\beta\:}_{i}{X}_{i}\right)}}\)

Random Forest

\(\:y=\frac{1}{T}\sum\:_{t=1}^{T}{f}_{t}\left(X\right)\)

 

Gini: \(\:G=1-\sum\:_{i=1}^{c}{p}_{i}^{2}\)

 

Entropy: \(\:H=-\sum\:_{i=1}^{c}{p}_{i}{\text{log}}_{2}\left({p}_{i}\right)\)

Support Vector Machine (SVM)

\(\:\underset{w,b}{min}\frac{1}{2}\left|\right|w\left|{|}^{2}\text{s.t.}{y}_{i}\right(w\cdot\:{X}_{i}+b)\ge\:1,\forall\:\)

 

Kernel Trick: \(\:K\left({X}_{i},{X}_{j}\right)={e}^{-\gamma\:\left|\right|{X}_{i}-{X}_{j}|{|}^{2}}\)

Gradient Boosting Machine (GBM)

\(\:{F}_{m}\left(X\right)={F}_{m-1}\left(X\right)+{\gamma\:}_{m}{h}_{m}\left(X\right)\)

 

\(\:{\gamma\:}_{m}=\text{arg}\underset{\gamma\:}{min}\sum\:_{i=1}^{n}L\left({y}_{i},{F}_{m-1}\left({X}_{i}\right)+\gamma\:{h}_{m}\left({X}_{i}\right)\right)\)

Neural Network

\(\:Z={W}_{1}X+{b}_{1}\)

 

\(\:A=\sigma\:\left(Z\right)=\frac{1}{1+{e}^{-Z}}\)

 

\(\\hat :{y}={W}_{2}A+{b}_{2}\)

 

Weight Update: \(\:W\leftarrow\:W-\eta\:\frac{\partial\:L}{\partial\:W}\)