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Esophageal cancer (ESCA) is a significant malignancy with rising global incidence rates and 
considerable impacts on patient survival and quality of life. Current diagnostic and therapeutic 
strategies face limitations, necessitating research into its underlying mechanisms and potential 
biomarkers for early diagnosis. This study aims to investigate the role of perfluorooctane sulfonate 
(PFOS), an environmental toxicant, in the development of ESCA through a comprehensive 
bioinformatics approach. Using the TCGA-ESCA dataset, we identified differentially expressed 
genes (DEGs) and intersected them with PFOS-related toxicity targets predicted via Comparative 
Toxicogenomics Database (CTD) and SuperPred. Machine learning (Random Forest, XGBoost, LASSO, 
SVM) were applied to prioritize core targets. Survival analysis, in vitro qPCR (ESO-26/FLO-1 cells), and 
molecular docking were performed. Immune infiltration and pathway activity (GSVA) were assessed. 
We identified 98 PFOS-related DEGs in ESCA, enriched in hypoxia response, epithelial migration, and 
cancer-associated pathways (e.g., AGE-RAGE, PI3K-Akt). Machine learning highlighted three core 
targets: PLAU, TOP2A, and BAX. High expression of these genes correlated with poor survival (PLAU, 
p = 0.047) and was upregulated in ESCA tissues. PFOS exposure significantly elevated their expression 
in esophageal cancer cells. Molecular docking revealed strong binding affinities between PFOS and 
core targets. GSVA linked PLAU/TOP2A/BAX to oncogenic pathways (angiogenesis, DNA repair), 
while immune analysis showed PLAU’s association with stromal infiltration and TOP2A’s negative 
correlation with CD8 + T cells. PFOS exacerbates ESCA by dysregulating PLAU, TOP2A, and BAX, 
which drive tumor progression via immune modulation, genomic instability, and oncogenic signaling. 
These targets may serve as biomarkers and therapeutic vulnerabilities for PFOS-associated ESCA, 
underscoring the need for environmental regulation and targeted therapies.

Keywords  PFOS, Esophageal cancer, Toxicity targets, Machine learning, Molecular docking, Molecular 
dynamics, Immune infiltration

Esophageal cancer (ESCA) represents a significant global health challenge, characterized by rising incidence 
rates and a profound impact on patient survival and quality of life1. The disease not only inflicts a heavy toll on 
affected individuals but also imposes substantial economic burdens on healthcare systems due to high treatment 
costs and lost productivity2. Current diagnostic and therapeutic modalities, including surgical intervention, 
chemotherapy, and radiotherapy, are hindered by limitations such as late-stage diagnosis and the development 
of treatment resistance3,4. These challenges underscore a critical research gap, necessitating the exploration of 
novel approaches to enhance early detection and treatment efficacy5. In this context, the present study aims 
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to investigate the role of perfluorooctane sulfonate (PFOS), an environmental toxicant, in the pathogenesis of 
ESCA.

Recent studies have suggested that various environmental factors may play a pivotal and significant role in 
the complex development of esophageal cancer, a serious and often life-threatening condition6,7. Among these 
environmental influences, PFOS has garnered considerable attention as a persistent organic pollutant, known for 
its widespread presence in the environment and its potential carcinogenic properties, raising concerns about its 
impact on human health and the urgent need for further research into its effects8. Prior research has indicated 
correlations between PFOS exposure and various health risks, including cancer, highlighting the necessity for 
further exploration of its specific effects on esophageal cancer9,10. Understanding the association between PFOS 
and the carcinogenic processes involved in ESCA could provide valuable insights into the disease’s etiology 
and pave the way for preventive strategies. Furthermore, a recent investigation has revealed that exposure to 
environmental factors and the accumulation of PFOS in the body may significantly contribute to the progression 
of esophageal squamous cell carcinoma11. Although there is an expanding body of research linking environmental 
pollutants to cancer, a considerable gap persists in our understanding of the precise mechanisms by which PFOS 
affects the development of esophageal cancer. Most existing research has concentrated on general correlations, 
neglecting the molecular alterations caused by PFOS exposure12–14. This deficiency in detailed insight highlights 
the necessity for advanced bioinformatics methods to analyze extensive datasets, which would allow researchers 
to pinpoint crucial toxicological targets and clarify their interactions with PFOS.

In this study, we adopt a comprehensive bioinformatics methodology that includes differential expression 
analysis, machine learning algorithms, and molecular docking simulations. These tools allow for the identification 
of differentially expressed genes (DEGs) associated with PFOS exposure and their potential roles in the 
progression of esophageal cancer. By leveraging these techniques, we aim to uncover the molecular mechanisms 
underlying the relationship between PFOS and esophageal cancer, ultimately identifying novel biomarkers that 
can aid in disease diagnosis and treatment.

The primary objective of this research is to elucidate how PFOS impacts the development of esophageal cancer 
at a molecular level and to explore the potential of identified biomarkers for clinical application. By integrating 
bioinformatics approaches, we hope to provide a clearer understanding of the influence of environmental toxins 
on cancer pathogenesis and contribute to the ongoing efforts in cancer research and public health. The findings 
from this study could significantly advance our knowledge of esophageal cancer and facilitate the development 
of targeted therapies aimed at mitigating the effects of environmental toxins like PFOS.

Methods
Collection of ESCA-related targets
We made use of genomic data that is publicly accessible from the TCGA-ESCA dataset, which comprises RNA-
sequencing information for 163 ESCA tumor samples and 11 samples of normal tissue. This dataset was obtained 
from the Cancer Genome Atlas (TCGA) portal (https://portal.gdc.cancer.gov/). Differentially expressed genes 
(DEGs) between ESCA tumor tissues and normal tissues were identified with the limma package in R. The 
threshold for considering DEGs significant was set at p.adj < 0.05.

Prediction of PFOS toxicity targets
Potential toxicity targets of PFOS were predicted using the Comparative Toxicogenomics Database (CTD) 
(https://ctdbase.org/) and SuperPred (https://prediction.charite.de/index.php)15,16. Venn diagram analysis 
was conducted utilizing an online tool (​h​t​t​p​s​:​​​/​​/​b​i​o​i​n​f​o​g​​p​.​c​n​​b​.​c​​s​​i​c​.​​​e​s​/​t​o​​o​​l​s​/​v​e​​​n​n​y​/​i​​​n​d​e​x​.​h​t​m​l) to pinpoint 
overlapping targets that are differentially expressed in connection with PFOS exposure and are involved in the 
pathogenesis of esophageal cancer.

Expression and PPI analysis
The expression levels of the identified toxicity targets were visualized in a comprehensive heatmap, which 
was generated using the sophisticated “ComplexHeatmap” package. In addition, a thorough protein-protein 
interaction (PPI) analysis was conducted utilizing the extensive STRING database, which is a valuable resource 
for understanding the functional associations between proteins (https://cn.string-db.org/)17. The resulting 
interaction network was then elegantly visualized with the advanced Cytoscape software, specifically version 
3.8.2. The top 40 hub genes were selected based on degree centrality (the number of connections per node) 
within the PPI network, as nodes with higher degrees are considered biologically pivotal in network analysis. 
Nodes with degree values below the top 40 were excluded to focus on the most interconnected and potentially 
influential targets.

Enrichment analyses
Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.jp/) provides an integrated database 
platform for the systematic representation and computational analysis of biological systems18. Enrichment 
analyses were conducted to gain insights into the functional roles of the identified genes, specifically utilizing 
the Gene Ontology (GO) and KEGG enrichment analyses. These analyses were performed with the aid of 
the “clusterProfiler” package, version 3.18.0. In the context of the GO analysis, we considered three distinct 
categories: biological process (BP), cellular component (CC), and molecular function (MF), each providing 
a unique perspective on gene functionality. To effectively communicate our findings, the top 10 pathways 
identified through these analyses were visually represented using informative bar plots.
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Machine learning algorithms
Four distinct machine learning algorithms were employed to identify and analyze key toxicological targets, 
each chosen for its unique strengths and capabilities in handling complex datasets. The Random Forest (RF) 
algorithm was implemented using the “randomForest” package, allowing for robust classification and regression 
tasks through its ensemble learning approach. Meanwhile, the XGBoost model was developed utilizing the 
“xgboost” package, which is renowned for its efficiency and performance in gradient boosting, particularly in 
scenarios involving large datasets and high-dimensional feature spaces. LASSO regression, a technique known 
for its ability to perform both variable selection and regularization to enhance the prediction accuracy and 
interpretability of the statistical model, was executed using the “glmnet” package. Lastly, the Support Vector 
Machine (SVM) algorithm was executed through the “e1071” package, which is widely recognized for its 
effectiveness in classification tasks, especially in high-dimensional spaces. To visualize the relationships and 
intersections among the identified toxicological targets, an UpSet Venn diagram was created using the “UpSetR” 
package. Detailed descriptions of the machine learning methods are provided in the Supplementary Methods 
section.

Differential expression analysis
The differential expression of the core toxicity targets, which include PLAU, TOP2A, and BAX, was analyzed 
through the use of box plots and receiver operating characteristic (ROC) curves, providing a comprehensive 
visual representation of the data. These informative plots were generated utilizing the “ggplot2” package, 
alongside the “pROC” package, within the R programming environment.

GSVA analysis
The CancerSEA database has categorized the distinct functional states of 14 different tumor cell types. A 
prior study introduced the z-score algorithm, which integrates the expression of characteristic genes to reflect 
pathway activity19. Using the R package GSVA with the zscore parameter, the 14 functional state gene sets were 
computed, and a combined z-score was obtained. We then applied the scale function to further normalize this 
score, defining it as the gene set score. Finally, we calculated the Pearson correlation between each gene and the 
respective gene set scores.

Immune cell infiltration analysis
The ESTIMATE score, a crucial metric in evaluating tumor microenvironments, was computed using the 
“estimate” package. Following this, the single-sample Gene Set Enrichment Analysis (ssGSEA) was conducted 
utilizing the “GSVA” package. To visualize the results, heatmaps that represent the correlation matrix were 
generated using the “pheatmap” package, allowing for a clear depiction of the relationships among the variables. 
Furthermore, the correlation between the core toxicity targets and the infiltration of various immune cell types 
was analyzed employing Pearson correlation.

Cell experiment protocol
The ESO-26 and FLO-1 cell lines, obtained from the American Type Culture Collection (ATCC), were cultured 
in RPMI-1640 medium (Life Technologies, Shanghai, China) supplemented with 10% fetal bovine serum 
(FBS) and 1% penicillin-streptomycin. Cells were maintained at 37 °C in a 5% CO₂ humidified incubator. For 
treatment, cells were incubated with either 2 µM PFOS or a DMSO vehicle control for 48 h. Post-treatment, 
the cells were washed twice with PBS and harvested for downstream analysis. Total RNA was extracted using a 
Thermo Fisher Scientific RNA isolation kit, followed by cDNA synthesis with the PrimeScript RT Reagent Kit. 
Gene expression profiling was performed via quantitative PCR (qPCR) on an ABI 7900HT system (Applied 
Biosystems). The 2–ΔΔCt method was applied to calculate relative gene expression levels.

Molecular docking analysis
To investigate the binding affinities between PFOS and key proteins, we conducted molecular docking 
simulations. We sourced 3D protein structures from the PDB (https://www.rcsb.org/) and refined them by 
eliminating water molecules, heteroatoms, and organic ligands using PyMOL. The PFOS ligand was sourced 
from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and converted to PDBQT format via AutoDockTools, 
followed by energy minimization. We defined a 3D grid around each protein’s active site, carefully choosing 
dimensions to encapsulate the binding area. Docking was executed in AutoDock Vina with the prepared protein 
and ligand files. Binding affinities for each pose were computed, and the poses with the lowest binding energies 
were chosen. Visualization of the docking results was done using PyMOL 2.5.2.

Molecular dynamics (MD) simulations
MD simulations were carried out using the Desmond/Maestro 2022.1 software package. The system was 
constructed with the TIP3P water model and incorporated a 0.15 M NaCl solution to neutralize the system’s 
charge and replicate physiological conditions. Prior to the production phase, the system underwent energy 
minimization via the steepest descent method to eliminate any steric clashes or unfavorable interactions in the 
initial configuration. The system was then equilibrated for 100 ps under isothermal-isobaric (NPT) conditions 
at 300 K and 1 bar to stabilize the temperature and pressure. Subsequently, a 100 ns production simulation was 
performed at the same conditions, and trajectory analysis was conducted using Desmond’s built-in tools.

Statistical analysis
Data are expressed as mean values ± standard deviation (SD). Comparisons between groups were performed 
using an unpaired two-tailed Student’s t-test, with a p-value below 0.05 considered statistically significant.
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Results
Identification and analysis of PFOS toxicity targets in esophageal cancer
In this study, we utilized the TCGA-ESCA dataset to identify a total of 5,757 differentially expressed genes 
(DEGs) associated with esophageal cancer. Subsequently, we employed the Comparative Toxicogenomics 
Database and SuperPred to predict 255 potential toxicity targets of perfluorooctane sulfonate (PFOS). Through 
the application of the Venn diagram tool, we further refined our analysis to identify 98 toxicity targets that are 
differentially expressed in response to PFOS exposure and are implicated in the pathogenesis of ESCA (Fig. 1A 
and Table S1). The identification of these 98 targets is crucial for understanding the molecular mechanisms by 
which PFOS may contribute to the development of esophageal cancer. In Fig. 1B, we present a heatmap that 
visualizes the expression levels of the 98 identified toxicity targets within the TCGA-ESCA dataset. The heatmap 
reveals distinct expression patterns, indicating that these targets may play significant roles in the biological 
processes associated with ESCA. Furthermore, Fig. 1C depicts the protein-protein interaction (PPI) analysis of 
the 98 toxicity targets. The PPI network elucidates the complex interactions among these proteins, providing 
insights into the potential signaling pathways and biological processes that may be affected by PFOS exposure. 
Overall, our findings contribute to the growing body of evidence linking environmental toxicants, such as PFOS, 
to the risk of esophageal cancer, emphasizing the need for continued research in this area to better understand 
the underlying mechanisms and to inform public health strategies.

Fig. 1.  Analysis of PFOS toxicity targets in esophageal cancer. (A) Venn diagram showing the intersection of 
DEGs in esophageal cancer from the TCGA-ESCA dataset and 255 predicted PFOS toxicity targets, resulting 
in 98 overlapping genes. (B) Heatmap displaying the expression levels of the 98 overlapping toxicity targets in 
the TCGA-ESCA dataset, comparing normal and tumor tissues. The color gradient indicates the level of gene 
expression, with red representing higher expression and blue representing lower expression. (C) PPI network 
analysis of the 98 overlapping toxicity targets. Node colours reflect the degree of connectivity, with larger nodes 
representing more connected proteins.
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Enrichment analyses of differentially expressed PFOS-related toxicity targets in esophageal 
cancer
To elucidate the biological functions and pathways associated with the 98 differentially expressed toxicity targets 
of PFOS exposure in esophageal cancer, enrichment analyses were performed. As shown in Fig. 2A, the top 10 
enriched BP terms include response to oxygen levels, response to hypoxia, response to decreased oxygen levels, 
epithelium migration, and epithelial cell migration. These results suggest that PFOS exposure may influence 
cellular responses to hypoxic conditions and migration-related processes, which are critical in tumor progression 
and metastasis. The top 10 enriched CC terms highlight the involvement of structures and complex assemblies 
such as the serine/threonine protein kinase complex, cell-substrate junction, focal adhesion, cyclin-dependent 
protein kinase holoenzyme complex, and protein kinase complex (Fig. 2B). These components are implicated 
in maintaining cellular architecture and signaling pathways necessary for cell adhesion and migration. The top 
10 enriched MF terms include heme binding, tetrapyrrole binding, protein serine/threonine/tyrosine kinase 
activity, voltage-gated calcium channel activity, and gated channel activity (Fig. 2C). These molecular functions 
are essential for cellular signal transduction and ion transport, which are often dysregulated in cancer cells. 
As shown in Fig. 2D, the KEGG pathway enrichment analysis identified several key pathways associated with 
the 98 toxicity targets. Notable pathways include Small cell lung cancer, Thyroid hormone signaling pathway, 
MicroRNAs in cancer, Oocyte meiosis, Human T-cell leukemia virus 1 infection, Prostate cancer, the AGE-
RAGE signaling pathway in diabetic complications, central carbon metabolism in cancer. The involvement of 
these pathways underscores the multifaceted roles of PFOS exposure in perturbing various signaling mechanisms 
and cellular processes that contribute to the development and progression of ESCA. These comprehensive 
enrichment analyses reveal that PFOS exposure can significantly impact a wide range of biological processes, 

Fig. 2.  Enrichment analyses of differentially expressed PFOS-related toxicity targets. GO enrichment analysis 
of the 98 differentially expressed PFOS toxicity targets categorized by BP (A), CC (B), and MF (C). (D) KEGG 
pathway enrichment analysis of the 98 targets identifying significant pathways.
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cellular components, and molecular functions, providing a deeper understanding of the mechanistic pathways 
through which PFOS may influence carcinogenesis in the esophagus.

Identification of key toxicological targets using machine learning algorithms
In this study, we employed four distinct machine learning algorithms to identify key toxicological targets 
associated with esophageal cancer, based on the gene expression profiles of the top 40 toxicity targets derived 
from the PPI network. Figure 3A illustrates the results obtained using the RF algorithm, which successfully 
identified 8 significant toxic targets. Figure  3B presents the findings from the XGBoost algorithm, which 
identified 9 important toxic targets. Figure 3C shows the results from the LASSO algorithm, which pinpointed 
11 significant toxic targets. Figure 3D, E depict the outcomes from the SVM algorithm, which identified a total of 
24 important toxic targets. Finally, Fig. 3F employs the UpSet Venn diagram to reveal 3 core toxic targets (PLAU, 
TOP2A, and BAX) that were consistently identified across multiple algorithms. Overall, the integration of 
machine learning approaches in this study not only enhances our understanding of the toxicological landscape 
associated with PFOS exposure but also provides a foundation for future research aimed at elucidating the 
mechanisms underlying esophageal cancer development.

Survival analysis and expression levels of key targets in esophageal cancer.
The survival analysis for key target genes in the TCGA dataset demonstrated distinct survival probabilities 

based on the expression levels of PLAU, TOP2A, and BAX. Figure 4A shows the Kaplan-Meier survival curve for 
PLAU, indicating that high expression levels of PLAU are significantly associated with poorer overall survival. 
The hazard ratio for high expression vs. low expression is 1.92 (P = 0.047). In Fig. 4B, the survival analysis for 
TOP2A shows that its high expression is associated with a trend towards worse overall survival, though it did 
not reach statistical significance (P = 0.061). Figure 4C illustrates the results for BAX, where high expression 
also correlates with a trend towards reduced overall survival, with a hazard ratio of 1.89 (P = 0.057). The gene 
expression levels of PLAU, TOP2A, and BAX were further analyzed between normal and esophageal cancer 
tissues using the TNMplot database. Figure  4D shows that the expression levels of PLAU were significantly 
elevated in esophageal cancer tissues compared to normal tissues (P < 0.001). Similarly, Fig.  4E indicates a 
significant overexpression of TOP2A in tumor tissues relative to normal tissues (P < 0.001). Figure 4F shows that 
BAX expression was also markedly higher in esophageal cancer tissues compared to normal tissues (P < 0.01). 

Fig. 3.  Identification of key toxicological targets using machine learning algorithms. (A) RF algorithm 
identified 8 significant toxicity targets based on their mean decrease Gini values. (B) XGBoost algorithm 
recognized 9 important toxicity targets, illustrating feature importance values. (C) LASSO algorithm identified 
11 significant toxicity targets, with the tuning parameter (lambda) selection plot showing the binomial 
deviance. SVM algorithm identified 24 significant toxicity targets. (D) Five-fold cross-validated accuracy plot 
and (E) cross-validated error plot display the optimal number of features for maximum model performance. 
(F) UpSet Venn diagram highlighting the 3 core toxicity targets (PLAU, TOP2A, BAX) commonly identified by 
the RF, XGBoost, LASSO, and SVM algorithms.
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These findings collectively suggest that high expression levels of PLAU, TOP2A, and BAX are associated with 
esophageal cancer, and elevated levels of these genes are indicative of poorer prognosis in ESCA patients. The 
differential expression of these genes in tumor versus normal tissues highlights their potential role as biomarkers 
and therapeutic targets in esophageal cancer.

Validation of core gene expression in esophageal cancer cells following PFOS exposure
The expression levels of PLAU, TOP2A, and BAX were significantly increased in esophageal cancer cells following 
PFOS exposure. In ESO-26 cells (Fig. 5A), PFOS treatment led to a notable upregulation of PLAU (P < 0.01), 
TOP2A (P < 0.05), and BAX (P < 0.01). In FLO-1 cells (Fig. 5B), PFOS exposure resulted in a significant increase 
in the expression of PLAU (P < 0.001), TOP2A (P < 0.001), and BAX (P < 0.01). These results indicate that PFOS 
exposure leads to a marked upregulation of PLAU, TOP2A, and BAX gene expressions in esophageal cancer cell 
lines, suggesting a potential mechanism by which PFOS may influence esophageal carcinogenesis.

GSVA analysis of core toxicity targets
GSVA was performed to analyze the association between the core toxic targets (PLAU, TOP2A, and BAX) 
and various oncogenic pathways. As illustrated in Fig. S1A, PLAU expression exhibited significant positive 
correlations with multiple oncogenic pathways, including angiogenesis, apoptosis, differentiation, DNA damage, 
EMT, hypoxia, inflammation, invasion, metastasis, proliferation, and quiescence. Figure S1B demonstrates 
that TOP2A expression significantly correlated with cell cycle, DNA damage, DNA repair, and proliferation. 
In addition, TOP2A negatively correlating with hypoxia and inflammation. In Fig. S1C, BAX was negatively 
correlated with differentiation and hypoxia. In sum, GSVA enrichment analysis highlights significant associations 
between PLAU, TOP2A, and BAX expressions with critical oncogenic pathways, underscoring their importance 
in the molecular pathology of esophageal cancer affected by PFOS exposure. The results provide insights into 
potential mechanisms through which these core targets contribute to cancer progression.

Correlation analysis of core toxicity targets with immune cell infiltration.

Fig. 4.  Survival analysis and expression levels of key targets in esophageal cancer. Kaplan-Meier survival 
curves for overall survival of esophageal cancer patients from the TCGA dataset based on the expression levels 
of PLAU (A), TOP2A (B), and BAX (C). Gene expression levels of PLAU (D), TOP2A (E), and BAX (F) in 
normal and esophageal cancer tissues from the TNMplot database. **P < 0.01, ***P < 0.001.
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We analyzed the correlation between the core toxicity targets (PLAU, TOP2A, and BAX) and immune cell 
infiltration using the ESTIMATE and ssGSEA algorithms. Figure S2A presents the correlation matrix of core 
toxicity targets with StromalScore, ImmuneScore, and ESTIMATEScore. PLAU exhibited a significant positive 
correlation with both StromalScore (p < 0.001) and ESTIMATEScore (p < 0.01). TOP2A showed a negative 
correlation with ImmuneScore (p < 0.01) and ESTIMATEScore (p < 0.05). BAX did not demonstrate significant 
correlations with these scores. Figure S2B illustrates the ssGSEA analysis for immune cell infiltration. PLAU 
expression positively correlated with various immune cells, including iDC, macrophages, NK cells, Tcm, Th1 
cells, Th2 cells and several other immune cell types. TOP2A expression was negatively correlated with CD8 T 
cells, DC, mast cells, neutrophils, and other immune cells. BAX exhibited fewer significant correlations; it was 
correlated with Tcm. These results suggest that PLAU and TOP2A are involved in immune cell infiltration in 
esophageal cancer, potentially influencing the tumor microenvironment and immune response mechanisms 
associated with PFOS exposure.

Molecular docking analysis
Molecular docking analysis was performed to elucidate the interactions between PFOS and the core toxicity 
targets (BAX, PLAU, and TOP2A). The docking results indicate a significant binding affinity between BAX and 
PFOS, with a Vina score of -8.5 (Fig. 6A). Similarly, the interaction between PLAU and PFOS demonstrates a 
moderate binding affinity with a Vina score of -7.1 (Fig. 6B). Notably, TOP2A exhibited the strongest binding 
affinity to PFOS among the three targets, with a Vina score of -10.2 (Fig. 6C). These findings suggest that PFOS 
may directly interact with BAX, PLAU, and TOP2A, potentially influencing their functional roles in esophageal 
cancer pathology. The MD simulation analysis of the interaction between PFOS and PLAU was conducted to 
elucidate the potential mechanisms in ESCA. As illustrated in Fig. 6D, the root mean square deviation (RMSD) 
of the PLAU protein remained relatively stable throughout the simulation, ultimately stabilizing between 2.8 Å 
and 3.2 Å. The RMSD of the ligand PFOS exhibited fluctuations before stabilizing around 6.0 Å. This indicates 
that, despite initial conformational changes, a more stable binding conformation was achieved through the 
dynamics simulation.

Discussion
ESCA is a significant global health concern characterized by its high mortality rates and complex treatment 
challenges. The disease is predominantly classified into two main histological types: squamous cell carcinoma 
and adenocarcinoma, each associated with distinct risk factors and pathophysiological mechanisms. Early 
detection remains a critical challenge, as most patients are diagnosed at advanced stages, leading to poor 
prognoses. The rising incidence of ESCA, particularly in high-risk regions, underscores the urgent need for 
innovative approaches to improve diagnosis and treatment, as well as to understand the underlying biological 
mechanisms that contribute to its development and progression.

This study aims to explore the potential relationship between PFOS, an environmental toxicant, and the 
development of esophageal cancer. By employing a comprehensive bioinformatics approach, including 

Fig. 5.  Upregulation of core genes in esophageal cancer cells following PFOS exposure. Gene expression levels 
of PLAU, TOP2A, and BAX in ESO-26 cells (A) and FLO-1 cells (B) treated with PFOS (red bars) compared 
to the control group (NC, green bars). Data are expressed as mean values ± standard deviation (SD). **P < 0.01, 
***P < 0.001.
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differential expression analysis, machine learning algorithms, and molecular docking simulations, this research 
seeks to identify key toxicological targets and elucidate the molecular pathways involved in ESCA related to 
PFOS exposure. The findings from this study are expected to provide valuable insights into the pathogenesis of 
ESCA and pave the way for the identification of novel biomarkers for early diagnosis and targeted therapeutic 
interventions.

The association between PFOS exposure and various cancers has been a subject of increasing interest in 
recent years. However, the current study did not sufficiently address the direct causality between PFOS exposure 
and esophageal cancer carcinogenesis. To clarify, we now specifically examine how PFOS may contribute to 
carcinogenesis in esophageal cancer through the disruption of key biological processes, such as oxidative stress, 
DNA damage, and immune modulation. Previous studies have indicated that PFOS can disrupt endocrine 
functions and induce oxidative stress, leading to cellular damage and tumorigenesis20–22. Our enrichment analyses 
corroborate these findings, as we observed significant involvement of biological processes such as response to 
hypoxia and epithelial cell migration, which are critical in cancer progression23. The upregulation of genes 
related to these processes suggests that PFOS may exacerbate the hypoxic tumor microenvironment, promoting 
aggressive tumor behavior. Moreover, the identification of key pathways such as the Thyroid Hormone Signaling 
Pathways and Human T-cell leukemia virus 1 infection align with previous research that has implicated these 
pathways in various malignancies24,25. The role of the AGE-RAGE signaling pathway in cancer development has 
been previously explored, and it is known to play a role in inflammation, fibrosis, and tumor progression, which 
could be particularly relevant in the context of PFOS exposure26. The Thyroid hormone signaling pathway has 
also been shown to influence the regulation of cell differentiation and proliferation, with implications for tumor 
growth27. The dysregulation of thyroid hormone signaling is linked to various cancers, including esophageal 
cancer, as it could contribute to tumor cell proliferation and survival in the presence of environmental toxins 
such as PFOS. The involvement of microRNAs in cancer, identified in our KEGG pathway enrichment analysis, 
is particularly noteworthy. MicroRNAs are small non-coding RNAs that regulate gene expression at the post-
transcriptional level and have been implicated in cancer progression, including esophageal cancer28. We now 
hypothesize that PFOS exposure may disrupt the normal expression of microRNAs, leading to the upregulation 
of oncogenes and downregulation of tumor suppressor genes, thus contributing directly to cancer initiation and 
progression.

The application of machine learning algorithms in our study has proven effective in identifying core 
toxicological targets associated with ESCA. The convergence of results from multiple algorithms, including RF, 
XGBoost, LASSO, and SVM, underscores the robustness of our findings. Notably, the identification of PLAU, 
TOP2A, and BAX as core targets is particularly significant. These targets are not merely correlated with the 
presence of esophageal cancer but appear to directly contribute to its carcinogenesis. Our analysis now includes 
an evaluation of the functional roles of these targets in cancer development, focusing on their contribution 
to tumorigenesis, cellular survival, and metastasis. Our study found that PLAU expression was significantly 
upregulated in tumor tissues relative to normal tissues, which is consistent with previous reports linking PLAU 
to cancer progression29. PLAU has been implicated in multiple oncogenic processes, including angiogenesis, 
invasion, and metastasis, by regulating the extracellular matrix degradation and promoting cell migration30,31. 
Our analysis showed that PLAU expression was significantly correlated with critical oncogenic pathways, such 
as epithelial-mesenchymal transition (EMT), invasion, and metastasis. This aligns with findings in other cancers, 
where PLAU overexpression facilitates tumor progression by altering the tumor microenvironment32. The strong 
correlation between PLAU expression and immune cell infiltration (e.g., macrophages, NK cells, and T cells) 
further supports its role in influencing the tumor immune microenvironment, as previously demonstrated in 
pancreatic ductal adenocarcinoma32. Thus, PLAU emerges as a promising biomarker for diagnostic purposes and 
a potential therapeutic target for PFOS-related esophageal cancer. The expression of TOP2A was also significantly 

Fig. 6.  Molecular docking analysis of core toxicity targets with PFOS. Molecular docking of PFOS with BAX 
(A), PLAU (B), and TOP2A (C). MD simulation analysis of the interaction between PFOS and PLAU (D).
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elevated in esophageal cancer tissues, consistent with findings from other studies in various cancers33,34. TOP2A 
is crucial for DNA replication and repair, and its dysregulation can lead to genomic instability, a hallmark of 
cancer35. Our study’s GSVA analysis indicated that TOP2A expression strongly correlated with DNA damage 
and proliferation. These findings align with earlier reports that showed elevated TOP2A expression in tumors 
correlates with higher cell proliferation rates and poor prognosis36,37. Moreover, TOP2A’s negative correlation 
with hypoxia and inflammation pathways in our analysis suggests that TOP2A may play a complex role in 
modulating the tumor microenvironment, potentially influencing tumor adaptation to stress conditions such 
as hypoxia and immune infiltration38. In the context of PFOS exposure, the upregulation of TOP2A may be 
a result of DNA damage induced by environmental toxins. PFOS has been shown to disrupt the DNA repair 
mechanisms in various cell types, which may enhance the oncogenic potential of molecules like TOP2A39,40. 
These findings underscore the potential of TOP2A as both a biomarker for esophageal cancer and a target for 
therapeutic interventions. Interestingly, BAX exhibited a more variable expression pattern in our study, with 
upregulation observed in cancer tissues compared to normal tissues. The pro-apoptotic protein BAX plays a 
pivotal role in regulating cell survival and apoptosis by interacting with other Bcl-2 family members to promote 
mitochondrial outer membrane permeabilization and caspase activation41. The negative correlations observed 
between BAX and differentiation and hypoxia pathways suggest that BAX may contribute to the deregulation 
of apoptotic signaling in esophageal cancer, potentially allowing for tumor cell survival in adverse conditions 
such as hypoxia. These results corroborate findings in other cancers where reduced BAX expression is linked to 
poor prognosis and resistance to apoptosis42,43. Thus, BAX might serve as an additional target for therapeutic 
strategies aimed at restoring apoptotic sensitivity in PFOS-exposed esophageal cancer cells.

The role of PFOS in esophageal cancer development is a growing area of interest, and our study provides 
new insights into the molecular mechanisms by which this environmental toxin may promote carcinogenesis. 
PFOS, a perfluorinated compound, is known to induce oxidative stress, DNA damage, and inflammation in 
various cell types44. Our findings indicate that PFOS exposure may dysregulate critical genes involved in DNA 
repair, apoptosis, cell proliferation, and immune response, contributing to the development and progression 
of esophageal cancer. Additionally, our analysis of immune cell infiltration revealed that PLAU and TOP2A 
are involved in modulating the tumor immune microenvironment, suggesting that PFOS exposure may affect 
the interaction between cancer cells and immune cells. The immunosuppressive effects of PFOS have been 
documented in other studies, with reports indicating that PFOS exposure can induce immunotoxicity and skew 
immune responses45. These findings point to the importance of investigating the immune-modulatory effects 
of PFOS in future research, as targeting the tumor microenvironment may offer new therapeutic avenues for 
PFOS-related cancers.

The limitations of this study warrant careful consideration. Firstly, the absence of wet lab experiments to 
validate the bioinformatics findings restricts the ability to confirm the biological relevance of the identified 
differentially expressed genes and toxicological targets. Additionally, without clinical validation, the translational 
potential of the identified biomarkers remains uncertain, limiting their applicability in real-world settings. These 
constraints underscore the necessity for subsequent research endeavors that incorporate experimental validation 
and diverse datasets to substantiate the findings of this investigation. Furthermore, while this study focused on 
PFOS due to its well-established carcinogenic potential and emerging evidence linking it to esophageal cancer, 
we acknowledge that other environmentally toxic compounds may also contribute to disease pathogenesis. 
Future studies should expand this framework to include comparative analyses of additional pollutants, such as 
PFOA, BPA, or heavy metals, to provide a more comprehensive understanding of environmental toxicants in 
cancer progression.

Conclusions
In conclusion, this research provides significant insights into the molecular mechanisms by which PFOS exposure 
may contribute to the development of esophageal cancer. The identification of critical differentially expressed 
genes and potential biomarkers highlights the importance of environmental factors in cancer pathogenesis. A 
multidisciplinary approach integrating bioinformatics, experimental validation, and clinical assessments will be 
pivotal in advancing our understanding of the interplay between environmental toxins and cancer progression.

Data availability
The data used in our study are available from the TCGA (https://portal.gdc.cancer.gov/).
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