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The manufacturing industry’s continuous digital intelligence transformation has triggered an extensive 
discussion on the environmental impact. In order to further explore this relationship, the panel 
data of 30 provinces in China from 2011 to 2021 is used in this analysis, the index system of digital 
intelligent transformation of manufacturing industry is constructed from two aspects of digitalization 
and intelligence of manufacturing industry, and the principal component analysis method is used 
to calculate. The two-way fixed effect model is used to analyze its impact on energy consumption 
and carbon emissions. The results show that the level of digital intelligence transformation of 
manufacturing industry in the eastern region is relatively high. In addition, the digital intelligence 
transformation of the manufacturing industry has a U-shaped impact on the scale and intensity 
of energy consumption and carbon emissions, and there is a positive linear relationship between 
the digital intelligence transformation of the manufacturing industry and the energy consumption 
structure. Further research has found that the impact of different regions and digital transformation 
indicators on energy consumption and carbon emissions is heterogeneous. This study establishes 
a foundation for quantitative analysis of the digital intelligence transformation of manufacturing 
industry, and makes up for the deficiency of existing research that pays more attention to linear 
relationship. It provides both theoretical basis and policy recommendations for energy conservation 
and emission reduction in manufacturing.
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The content of greenhouse gases, such as carbon dioxide, has continued to rise, and climate problems have 
become increasingly serious. Major economies worldwide have formulated policies aimed at reducing carbon 
emissions and conserving energy to jointly advance low-carbon and environmentally friendly development. 
China is the world ‘s leading energy consumer and carbon dioxide emitter. In 2020, it announced its intention 
to strive to achieve peak carbon emissions by 2030 and carbon neutrality by 2060. According to the MEIC-
China CO2 emissions database, in 2021, China ‘s total carbon emissions exceeded 10  billion tons, of which 
manufacturing accounted for 33.56%. Additionally, from 1997 to 2021, the manufacturing energy consumption 
in China increased from 780 million to 2.9 billion tons. In 2021, manufacturing energy consumption accounted 
for 55.73% of the total energy consumption. These data show that manufacturing carbon emissions and energy 
consumption accounted for a large share of the total emissions. Controlling China’s manufacturing carbon 
emissions and promoting green, energy-saving, and low-carbon development are particularly important for 
achieving the dual-carbon goal1–3. The digital intelligence of the manufacturing industry integrates the core 
features of digitization and intelligence. Data-driven methods comprehensively upgrade and innovate the 
manufacturing industry to achieve more efficient, intelligent, and accurate operations. Digitalization and 
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greening of the manufacturing industry complement each other, and the transformation of digital intelligence 
will also bring about changes in carbon emissions and energy consumption. Therefore, studying the impact of 
the digital intelligence transformation of manufacturing on energy consumption and carbon emissions provides 
a scientific basis for the government to formulate more effective regulatory policies under the dual carbon target, 
guide the rational allocation of digital investment in the manufacturing industry, and promote the realization of 
sustainable development goals.

The digital intelligent transformation of the manufacturing industry refers to the systematic transformation 
process of reconstructing the production mode, operation mode, and value chain of the manufacturing industry 
through the deep integration of digital technology and intelligent manufacturing technology to achieve 
efficiency improvement, cost reduction, and competitiveness enhancement. With information technology 
innovation as the driving force, the industrial Internet and other digital technologies are deeply integrated 
with the manufacturing industry4,5 promoting revolutionary changes in industrial structure and production 
methods and continuously improving the development level of traditional manufacturing6–8. Existing research 
on the digital intelligent transformation of the manufacturing industry first examined the meaning9 statistical 
measurement10 and influencing factors11. The second is the impact of digital intelligence transformation on 
the environment12,13which is still controversial and can be divided into three aspects: (1) Digital intelligence 
transformation can dramatically lower carbon emissions and energy consumption through information 
technology and automated processes14–16. (2) According to some studies, the digitalization process may intensify, 
raising energy demand and, therefore, carbon emissions17,18. (3) Despite these controversies, some studies have 
demonstrated that there is no immutable linear correlation between digital intelligence transformation and 
carbon emissions. A long-term analysis of the two could reveal either an inverted or positive U-shaped curve16,19. 
These controversies may result from the use of different methods to measure digital intelligence transformation 
and from regional differences.

The current research is mostly biased towards the digitalization of manufacturing and intelligent transformation 
of manufacturing. The measurement of the digital intelligence transformation of the manufacturing industry is 
mostly from a micro perspective, measured by indicators such as the frequency of digital intelligence words, 
and very few studies measure the digital intelligence transformation of the manufacturing industry from the 
provincial level. However, previous studies have usually focused on how the transformation of digital intelligence 
changes the single indicator of energy consumption or carbon emissions, and there are few comprehensive 
investigations on energy conservation and emission reduction respectively4,5. Carbon emissions and energy 
consumption are important factors in environmental pollution. The relationship between them is mutually 
reinforcing and tightly interconnected. To solve the disputes and fill in the blanks, this study focuses on the 
definition of digital intelligence transformation of the manufacturing industry at the provincial level, analyzes the 
development level of digital intelligence region, and focuses on the impact of digital intelligence transformation 
of the manufacturing industry on energy consumption and carbon emissions, broadens the research perspective, 
and combines carbon emissions and energy consumption, which is helpful to solve more comprehensively how 
digital intelligence transformation affects energy conservation and emission reduction. Owing to the different 
characteristics of different regions, the study of regional heterogeneity helps China ‘s provincial level to judge 
the stage of the transformation and development of manufacturing intelligence, as well as the impact on energy 
conservation and emission reduction, to formulate corresponding investment strategies and regulatory policies 
to help the manufacturing industry play a more efficient role in energy conservation and emission reduction.

The format of the paper is as follows: the theoretical analysis and research hypotheses are presented in Sect. 2; 
the research methods and data are described in Sect. 3; Sect. 4 provides empirical results and analysis; Sect. 5 
offers a discussion; and the policy implications are concluded in Sect. 6.

Analysis of the influencing mechanism
Manufacturing digital intelligence transformation of manufacturing industry and carbon 
emissions
In the early stage of the digital intelligence transformation in manufacturing, the application of digital intelligence 
technology showed obvious efficiency improvements. By promoting technology spillovers and knowledge 
accumulation, it stimulates green innovation and saves carbon emissions during the R&D process, and the 
entire industrial structure is promoted towards a more low-carbon and sustainable direction20,21. With regard 
to enterprise R&D, management, manufacturing, and market operations, it optimizes the use of resources and 
production processes22. Through intelligent detection, the accuracy of information is improved, resource demand 
is forecasted, timely and effective adjustments are made, unnecessary pollutant emissions and waste of resources 
are reduced, and thus the intensity of carbon emissions23,24. Furthermore, digitization fosters the growth of new 
clean industries25which fundamentally reduces pollutant emissions and presents the manufacturing sector with 
previously unheard-of opportunities for high-quality, environmentally friendly development. However, with 
the advancement of digital intelligence transformation, the efficiency improvement effect brought by digital 
intelligence has gradually become smaller, and the scale effect of economic scale expansion has gradually become 
more important. In addition, the digital infrastructure itself is a high-energy carrier, and the rapid update of 
electronic and electrical equipment and devices also produces a large amount of heat in the manufacturing 
industry, which requires a cooling system to dissipate heat26. The transformation of digital intelligence requires 
the introduction of more automation and intelligent equipment; however, the maintenance and management of 
equipment are still in the stage of industrial 2.0, which can easily cause waste of resources and lead to a rebound 
in total carbon emissions.

Hypothesis 1  The manufacturing digital intelligence transformation has a U-shaped relationship with the scale 
and intensity of carbon emissions, which decreases first and then increases.
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Manufacturing digital intelligence transformation and energy consumption
The impact of the digital intelligence transformation of manufacturing on energy consumption also presents 
complex dynamic interactions. In the early stage, digital technology penetrates rapidly, efficiency improvement 
and structural optimization dominate, and unit energy consumption decreases. Manufacturing companies use 
more energy-efficient production and R&D equipment investments to replace outdated production machines 
and advanced technology to replace traditional processes, prompting them to achieve green production and 
transformation27. Digital technology is applied to the entire process of energy development, processing, 
transmission, conversion, distribution, and final utilization to optimize resource allocation28–30 and reduce waste 
generation31,32. Digital technology is integrated into the energy supply and demand sides to predict and control 
the consumption and circulation of energy production, transportation, and use to realize real-time collection 
of production data, thus formulating more scientific and accurate energy management strategies, promoting 
business process reengineering, and improving productivity and economic output33. However, when the 
transformation process of digital intelligence reaches the later stage, the technological dividend decreases, the 
energy rebound effect gradually appears, the improvement of energy efficiency leads to the decrease of energy 
use cost, stimulates enterprises to expand production or consumers to increase demand34 offsets some energy 
saving, and the marginal effect of energy saving and emission reduction is gradually reduced. In addition, digital 
intelligence technology has continuously spawned new formats and increased energy demand, leading to an 
increase in total energy consumption and intensity.

However, for the energy consumption structure, the transformation of digital intelligence promotes clean 
energy substitution, applies clean energy to technical equipment in the manufacturing process, reduces 
dependence on the combustion of traditional coal and other high-energy fuels, helps improve the utilization 
rate of renewable energy, and makes more efficient use of environmental resources by accelerating the creation 
of new energy technologies35. The marginal cost of clean energy, such as wind, solar, and electricity, is close 
to zero. Digitization further reduces operation, maintenance, and transaction costs. It generates less energy 
consumption and fewer emissions. The scale effect has little impact on the energy consumption structure, and 
the efficiency improvement effect has always dominated the scale effect. Therefore, the digital transformation 
of the manufacturing industry can promote the optimization of the energy consumption structure. A specific 
theoretical logic diagram is shown in Fig. 1. In light of this, the following hypothesis is proposed:

Hypothesis 2  The manufacturing digital intelligence transformation has a positive U-shaped relationship with 
the scale and intensity of energy consumption, and can optimize the energy consumption structure.

Methods and data
Model building
Ehrlich and Holdren (1971)36 proposed the IPAT model, which is used to study the human disturbance factors 
of environmental pollution. They believe that population growth, improvement of material living standards, and 
scientific and technological progress of resource development and utilization are the root causes of increasing 
environmental pressure. In addition, previous studies have found that pollution emissions are affected by various 
other factors8. Therefore, combined with the IPAT model and previous research, the following specific models 
were constructed:

I = F (P, A, T, Other V ariables)
Where I represents the impact on the environment, represented by energy consumption (Ec) and carbon 

emissions (Ce). P, A, and T are population, affluence, and technical level, respectively, expressed by population 
size, living standards, and technological innovation. Other variables represent other effects on carbon emissions. 
In order to study the impact of manufacturing digital intelligence transformation on carbon emissions, the 

Fig. 1.  Theoretical logic analysis.
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manufacturing digital intelligence transformation is taken as another variable affecting carbon emissions, and its 
square term is added together in order to observe the existing nonlinear relationship. In addition, manufacturing 
scale and foreign investment were selected as control variables related to energy consumption and carbon 
emissions. The following equations are obtained:

	 Ecit = a0 + a1DIMit + a2DIM2
it + a3P Sit + a4LSit + a5T Iit + a6MCit + a7F DIit + µt + vi + εit� (1)

	 Ceit = a0 + a1DIMit + a2DIM2
it + a3P Sit + a4LSit + a5T Iit + a6MCit + a7F DIit + µt + vi + εit� (2)

Ec is expressed by energy consumption scale, energy consumption structure and energy consumption intensity 
respectively, and Ce is carbon emission scale and carbon emission intensity respectively. DIM, PS, LS, TI, MC and 
FDI represent manufacturing digital intelligence transformation, population size, living standard, technological 
innovation, manufacturing scale and foreign direct investment respectively, a0 is a constant term; µ t is a time 
fixed effect; vi is an individual fixed effect; and ϵ it is a random error term.

Variables selection

Explained variables

	(1)	 Energy consumption. Based on Wang et al. (2022)30 and Yang et al. (2022)8energy consumption scale (TEC), 
energy consumption structure (ECS), and energy consumption intensity (ECE) are selected as surrogate 
variables. Total energy consumption serves as a representation of TEC. ECS is depicted by the proportion 
of natural gas consumption to total energy consumption, as natural gas is a clean energy source, the energy 
consumption structure is better the higher the natural gas percentage. ECE refers to the energy consump-
tion per unit of GDP. The lower the value is, the higher the energy efficiency is.

	(2)	 Carbon emissions. Similar to energy consumption, carbon emissions scales (TCE) and carbon emission in-
tensity (CEE) were selected as substitute variables. TCE was expressed as the total carbon emissions in man-
ufacturing, and CEE was expressed as carbon emissions per unit of GDP, aiming to explore the effectiveness 
of the digital intelligence transformation in manufacturing industry in promoting carbon reduction.

Core explanatory variables
Digital intelligence transformation of the manufacturing industry (DIM). Digital intelligence transformation is 
the upgrading and reconstruction of digitization and intelligence, which reflects the linkage effect of digitization 
and intelligence. The digital intelligent transformation of the manufacturing industry is based on digitization, 
highlighting the standardized governance of data and the intelligent design of algorithms, drawing on the 
innovative achievements of digital technology and intelligent technology, carrying out technological innovation 
based on massive data resources, and applying high-level intelligent algorithms to promote the creation of 
intelligent scenarios, forming super-strong perception ability and value-added ability, and then driving the whole 
industry to improve quality and efficiency and transformation and upgrading. To more fully express the digital 
intelligent transformation of the manufacturing industry, the index system of digital intelligent transformation 
of the manufacturing industry was constructed by selecting indicators from both digital and intelligent aspects.

In terms of digital indicators, Lyu et al. (2023)37 and Yang et al. (2022)8 are used to measure the four dimensions 
of manufacturing digital infrastructure construction, manufacturing digital innovation ability, manufacturing 
digital application ability and manufacturing sustainable development ability. Digital infrastructure construction 
is the embodiment of digital investment and network construction ability of manufacturing industry, which is 
comprehensively considered through the number of domain names and Internet broadband access ports. In 
addition, digital innovation capability reflects the absorption and transformation of emerging technologies by 
manufacturing enterprises, including the input level of digital products and the intensity of R&D investment. 
Digital application ability reflects the combination and application of advanced technology and traditional 
industrial practice in all aspects of manufacturing industry, and measures the growth of e-commerce, patent 
application and innovation of new products in manufacturing industry. The ability of sustainable development 
reflects the improvement of digital green development and ecological benefits of manufacturing industry.

In terms of intelligent indicators, referring to the research of Li and Ling (2023)38 and Yang et al. (2019)39 
the intelligence is measured from two aspects: intelligent basic input of manufacturing industry and intelligent 
benefit of manufacturing industry. The intelligent basic investment of manufacturing industry includes the 
investment of personnel and intelligent equipment. The intelligent benefit reflects the improvement of intelligent 
manufacturing efficiency from two aspects of market profit and market efficiency of intelligent equipment. 
Table 1 lists these indicators in detail. The principal component analysis method and the average sum of the 
two dimensions are used to calculate the comprehensive level of digital and intelligent transformation of 
manufacturing industry in each province.

Control variables
In order to reduce the interference of other factors and prevent the deviation caused by missing variables, 
referring to other studies21,40 the following control variables are selected.

(1) Population size (PS): The increase in population will bring more energy demand, resource consumption 
and waste emissions, resulting in increased energy consumption and carbon emissions, which are measured 
by the logarithm of the number of people in each province. (2) Living standard (LS): Higher living standards 
pay more attention to low-carbon consumption patterns, which will reduce energy consumption and carbon 
emissions, using the per capita GDP of each province. (3) Technological innovation (TI):Energy consumption 
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per unit of production decreases as technical innovation in energy utilization increases. The quantity of patent 
applications that are granted to a province is referred to as technological innovation. (4) Manufacturing scale 
(MC): The energy consumption in the region is proportional to the number of manufacturing industries, which 
is expressed by the logarithm of the number of manufacturing industries above the scale of each province. 
(5)Foreign direct investment (FDI): Multinational companies will bring advanced clean technology and 
management experience, reduce energy consumption and carbon emissions through technology spillover 
effects, expressed as the ratio of import and export trade to GDP.

Data source
This study selected the panel data of 30 provinces in China (except Tibet, Hong Kong, Macao, and Taiwan) from 
2011 to 2021, and the data involved were from the China Statistical Yearbook, China Energy Statistical Yearbook, 
China Industrial Statistical Yearbook, provincial statistical yearbooks, and CEADs databases. For individual 
indicators, missing data for individual years were supplemented by interpolation. The descriptive statistics for 
every variable are presented in Table 2.

Results
Evaluation of digital intelligence transformation in manufacturing
The principal component analysis method is used to measure the level of manufacturing digital intelligence 
transformation (DIM) in each province. Figure  2 shows the spatial distribution of the DIM values of each 
province in 2011, 2016 and 2019 and the average annual growth rate (AAGR=(DIM value in 2021/DIM value in 
2011)^(1/10)-1) of each province during this period.

The evaluation results show that China ‘s manufacturing industry is widely distributed and that the 
digital intelligence transformation of manufacturing is increasing every year in most provinces. The level of 
manufacturing digital intelligence transformation has spatial distribution characteristics that are high in the east 
and low in the west. Generally, the eastern regions exhibit the highest levels of digital intelligence transformation, 

Variable Obs. Mean Std. dev. Min Max

DIM 330 0.204 0.125 0.057 0.843

DIM2 330 0.057 0.084 0.003 0.711

TCE 330 3.412 2.198 0.349 9.472

CEE 330 0.017 0.012 0.0002 0.067

TEC 330 1.534 0.912 0.160 4.461

ECS 330 0.078 0.073 0.004 0.406

ECE 330 0.749 0.428 0.009 2.053

PS 330 8.207 0.736 6.342 9.448

LS 330 0.087 0.369 0.016 5.724

TI 330 9.095 1.562 4.466 13.15

MC 330 8.843 1.194 5.814 11.10

FDI 330 0.110 0.162 0.0001 0.984

Table 2.  Descriptive statistics of variables.

 

First-level Second-level indicator Third-level indicator Unit
Indicator 
attribute

Digitization

Construction of digital infrastructure in 
the manufacturing industry

Number of Internet broadband access ports 104psc +

Number of domain names 104psc +

Manufacturing digital innovation 
capability

New product development expenditure/total assets % +

R&D internal expenses/main business income % +

Digital application capabilities in the 
manufacturing industry

The number of invention patents within the validity period pcs +

Average e-commerce turnover of manufacturing enterprises 104yuan +

New product sales revenue/main business income % +

Sustainable development capacity in the 
manufacturing industry

Chemical Oxygen Demand (COD) in Industrial Wastewater/Value Added 
in Industry % -

Industrial sulfur dioxide emissions/industrial value added % -

Intelligence

Intelligent basic investment in 
manufacturing industry

Full-time equivalent of R & D personnel in high-tech industry Man-year +

Net investment in fixed assets for computer and communication equipment 108yuan +

Intelligent benefits of manufacturing 
industry

Total profit of high-tech manufacturing industry % +

High-tech manufacturing main business income / number of employees % +

Table 1.  Comprehensive index system of manufacturing digital intelligence transformation.
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followed by the central regions; in contrast, the western region has a low overall development level of digital 
intelligence transformation because of its remote location. A substantial disparity persists between provinces; 
for instance, Guangdong’s value of 0.843 is 8.6 times that of Xinjiang’s 0.098, and eastern coastal provinces 
manufacturing has seen a greater degree of digital intelligence transformation than western inland provinces. 
Owing to the strong economic foundation and advantages of manufacturing scale, convenient transportation, 
strong technical foundation, and policy support, the eastern coastal areas provide the fundamental prerequisites 
for digital intelligence transformation. Regarding average annual growth rates, the highest among all regions is 
in the Central region, which shows a high potential for digitization, followed closely by the Eastern and Western 
regions. The northeastern regions showed slower annual growth rates.

Figure 3 is the box line diagram and violin diagram of the manufacturing digital intelligent transformation 
in the four major regions and the whole country. It can be seen that the development of the four major regions 
is quite different. Among them, the eastern region is higher than the national average, and the western region 
and the northeast region are lower than the national average. The quartile spacing in the eastern region is 
larger than that in other regions, and the violin ' trailing ' is longer, indicating that there is a large gap in the 
level of manufacturing digital intelligent in the eastern provinces, which may be due to the large differences in 
infrastructure, data resources and policy environment in the early stage of manufacturing digital intelligent 
in the eastern provinces. The positive skewness of the sequence distribution of the development level of 
manufacturing digital intelligence transformation in the central region is obvious, and the median is close to the 
lower quartile line, indicating that the level of manufacturing digital intelligence transformation in most parts 
of the central region is relatively high, and the regional differences are large. The distance between the upper 
cut-off point and the upper quartile in the western region is long, indicating that the western region has great 
development potential. The quartile range in Northeast China is narrow, and the peak part of the violin body is 
wide, indicating that the manufacturing digital intelligence transformation is in the middle of the province to 
maintain a small gap.

Baseline regression analysis of digital intelligence transformation of manufacturing industry 
on energy consumption
According to formula (1) and (2), regression analysis using time individual two-way fixed effect model, 
the conclusion of the impact of digital intelligence transformation on energy consumption are displayed in 
Table 3. Among them, the result of adding no control variables is in column (1) (3) (5), and column (2) (4) 
(6) adds control variables. It is clear that the first-order coefficient of DIM is negative, whereas the second-
order coefficient is positive and significant, according to the results of Models (1) and (2). This represents that 
digital intelligence transformation of manufacturing industry and energy consumption scale have a nonlinear 
relationship, showing a positive U-curve that decreases first and then increases. Then, according to the method 
of Lind and Mehlum41Utest was used to test the U-shaped relationship. The result was significantly positive at the 

Fig. 2.  The spatial distribution of DIM values and AAGR in each province in 2011, 2016 and 2021.
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1% level, which verified the U-shaped relationship. According to the vertex coordinate formula of the univariate 
quadratic function, the inflection point was 0.379, as shown in Fig. 4. Therefore, when the DIM is less than 0.379, 
enhancing digitalization of manufacturing industry will reduce energy consumption scale. To maximizing the 
energy-saving benefits brought by digital intelligence transformation, we ought to hasten its adoption in the 
manufacturing. Combined with Table 2, for the entire country, the current national average does not exceed the 
inflection point value. Accelerate the manufacturing sector’s digital intelligence transformation, will help bring 
down the amount of energy used. However, the gap between provinces is wide, the degree of influence on the 
scale of energy consumption also shows a clear imbalance. At present, only a few provinces in the eastern region 
have exceeded 0.379. That might occur when the manufacturing industry experiences a swift development in its 
digital intelligence transformation, the energy saving brought about by it is less than the energy consumption 
due to its economic growth. When it reaches a certain extent, it causes the amount of energy consumed to rise.

Similarly, Models (3) and (4) exhibit that the level of DIM on energy consumption intensity also exhibits a 
positive U-shape curve impact, which first decreases and then increases. When lower than the inflection point of 
0.618, increasing the level of digital intelligence can reduce intensity energy consumption intensity. In 2021, only 
Guangdong province has crossed the inflection point, indicating that China’s manufacturing still needs to go 

Variable

(1) (2) (3) (4) (5) (6) (7)

TEC TEC ECE ECE ECS ECS ECS

DIM -0.508 (-1.112) -1.301*** (-2.930) -1.085** (-2.434) -1.249*** (-3.267) 0.143*** (4.092) 0.269*** (3.017) 0.202*** (5.138)

DIM2 1.291*** (3.107) 1.715*** (3.906) 1.004** (2.478) 1.010*** (2.671) -0.052 (-0.535)

PS 0.711*** (3.460) -0.518*** (-2.927) -0.000 (-0.906) -0.033 (-0.813)

TI 0.221*** (5.927) 0.094*** (2.935) -0.027*** (-3.615) -0.026*** (-3.481)

MC 0.010 (0.453) -0.078*** (-4.084) -0.013*** (-3.030) -0.013*** (-2.999)

FDI -0.056 (-0.310) -0.425*** (-2.748) 0.046 (1.301) 0.055* (1.693)

_cons 1.447*** (24.825) -6.071*** (-3.764) 1.091*** (19.204) 5.364*** (3.863) 0.039*** (6.263) 0.379*** (5.473) 0.607* (1.898)

N 330 330 330 330 330 330 330

R2 0.502 0.593 0.546 0.711 0.319 0.382 0.379

F 24.175 24.243 28.879 40.938 12.317 10.300 10.852

Utest 2.38*** 1.33*

Province fixed Yes Yes Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes Yes Yes

Table 3.  Baseline regression results of DIM on energy consumption. *, **, and *** represent the significance 
level of 10%, 5% and 1%, respectively, and the value in brackets is t value. The meaning in the following table is 
the same.

 

Fig. 3.  DIM levels in eastern, central, western and northeastern China.
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through a faster digital intelligence transformation at this point. For provinces less than the inflection point, it is 
feasible to efficiently minimize the consumption of energy by speeding up the digital intelligence transformation. 
Moreover, the effects of digital intelligence transformation of manufacturing industry on energy consumption 
has a marginal diminishing effect. When DIM < 0.379, the intensity and scale of energy consumption can be 
reduced by improving the digital intelligence level of the manufacturing industry. When 0.379 ≤ DIM < 0.618, 
the development of digital intelligence transformation can reduce the intensity of energy consumption, but not 
the scale of energy consumption; when DIM ≥ 0.618, improving the level of digital intelligence transformation of 
manufacturing industry will not reduce the intensity and scale of energy consumption.

The coefficient of the quadratic term of DIM is not significant, which indicates that there is no U-shaped 
relationship between the digital intelligence transformation of manufacturing industry on the energy 
consumption structure, and it is further tested by the linear model, and the results are shown in Models (7). 
The coefficient of DIM is significantly positive. Therefore, the level of digital intelligent transformation of 
manufacturing industry can significantly optimize the energy consumption structure.

The possible reason is that when the transformation and development of digital intelligence in manufacturing 
industry is at a low level, it can give full play to the advantages brought by digital technology and have a better 
effect of energy saving and emission reduction. With the improvement of the level of digital intelligence, the 
impact on the scale of energy consumption gradually decreases, resulting in the effect of energy saving less than 
the level of unit output, and then the energy consumption per unit of GDP is no longer reduced. The excessive 
development of digital intelligence will also lead to the excessive consumption of energy resources, resulting in 
the increase of total energy consumption. However, the industrial structure transformation brought about by 
digital intelligence can enable manufacturing enterprises to gradually use new clean energy, continuously carry 
out energy transformation, and continuously optimize the energy consumption structure.

Baseline regression analysis of digital intelligence transformation of manufacturing industry 
on carbon emissions
Table 4 shows the final results of the benchmark regression. Similar to the model in Table 3, the conclusions of 
Models (2) and (4) display that the digital intelligence transformation process has a negative first-order coefficient 
and a positive second-order coefficient, all of these coefficients are significant. It clearly demonstrates that the 
manufacturing digital intelligence transformation possesses a U-curve effect on the carbon emissions intensity 
and scale, which decreases first and then increases. The inflection points are 0.599 and 0.528, respectively, as 
shown in Fig. 5.

For carbon emissions scale, the average value of the country and the four major regions has not reached the 
peak value at this stage, indicating that improving DIM at this stage is conducive to reducing carbon emissions 
nationwide and even in various regions. However, for each province, and only Guangdong and Jiangsu provinces 
crossed the inflection point, and the remaining provinces are below the inflection point value during the analysis 
period. It shows that the development level of each province is very different, as so does the impact on carbon 
emissions scale. Similar to energy consumption, when digital intelligence development rises to a certain level, 
while digital intelligence transformation promotes economic growth, it may offset some of the emission reduction 
efforts due to technological upgrading and efficiency improvement, thereby increasing carbon emissions. In 
addition, for carbon emission intensity, at present, the inflection point value is not exceeded by the average 

Fig. 4.  Regression curve of DIM on energy consumption.

 

Scientific Reports |        (2025) 15:29814 8| https://doi.org/10.1038/s41598-025-15821-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


values for the whole country and the four major regions. At present, the DIM has improved, and the digital 
intelligence emission reduction effect has been fully utilized.

There is also a marginal diminishing effect in the nonlinear relationship among manufacturing digital 
intelligence transformation and carbon emissions. Specifically, when DIM < 0.528, improving the manufacturing 
digital intelligence transformation is beneficial to reducing carbon emissions scale and decreasing carbon 
emissions intensity; when 0.528 ≤ DIM < 0.599, improving the level of digital intelligence transformation of 
manufacturing industry is conducive to reducing carbon emissions scale, but cannot reduce the carbon emissions 
intensity. When DIM ≥ 0.599, accelerating the manufacturing digital intelligence transformation could not lower 
the scale and intensity of carbon emissions.

Robustness test
Four aspects of the test are adopted to confirm the accuracy and dependability of the conclusion. (1) For each 
variable in the 1% quantile on both sides of the tail, after eliminating outliers and then regression, as shown 
in Table 5. (2) Qinghai Province and Xinjiang Province, which started late and developed slowly in the digital 
transformation of manufacturing industry, are excluded and then returned, as shown in Table 6. (3) Considering 
the endogenous problem between variables, the two-stage least squares (2SLS) instrumental variable method is 

Fig. 5.  Regression curve of DIM on carbon emissions.

 

Variable

(1) (2) (3) (4)

TCE TCE CEE CEE

DIM -3.404** (-2.588) -5.766*** (-4.398) -0.035*** (-3.195) -0.038*** (-3.885)

DIM2 2.989** (2.502) 4.811*** (4.026) 0.031*** (3.076) 0.036*** (4.079)

PS 60.364 (0.988) -0.012*** (-2.703)

LS -1.948 (-0.302) -0.004*** (-9.260)

TI 68.639*** (6.417) 0.001* (1.677)

MC 2.044 (0.313) -0.002*** (-4.226)

FDI -1.946 (-0.400) -0.001** (-2.250)

_cons 3.557*** (21.223) -6.500 (-1.318) 0.026*** (18.596) 0.139*** (3.796)

N 330 330 330 330

R2 0.311 0.414 0.495 0.658

F 10.852 11.767 23.564 32.032

Utest 2.30** 1.52*

Province fixed Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes

Table 4.  Baseline regression results of DIM on carbon emissions.
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used for testing, using the first-order lag of the explanatory variable as the instrumental variable. The results are 
shown in Table 7, The Kleibergen-Paap rk LM statistics are significant at the 1% level, indicating that there is no 
problem of insufficient identification of instrumental variables. The Cragg-Donald Wald F statistic is greater than 
the Stock-Yogo weak ID test critical values of 10% maximal IV size, indicating that the instrumental variable 
is valid and rejects the assumption of weak instrumental variables. In the regression results, the coefficients of 
DIM and DIM2 are significant, and are consistent with the benchmark regression results, which proves that the 
results are reliable. (4) Further, the system GMM is used to deal with the endogenous problem. The results in 
Table 8 show that AR (1) is less than 0.1 and AR (2) is greater than 0.1, indicating that the random error term 
has first-order autocorrelation, but there is no second-order autocorrelation, which satisfies the premise that the 
GMM model does not have sequence correlation for the disturbance term. The Hansen test value is greater than 
0.1, indicating that the instrumental variables are proved to be effective through the over-identification test, and 
the regression results are consistent with the benchmark regression. the robustness test demonstrates that the 

Variable

(1) (2) (3) (4) (5) (6) (7)

First First Second Second Second Second Second

DIM DIM2 TEC ECS ECE TCE CEE

IV_L.DIM 0.769*** (0.0802)

IV_L.DIM2 0.183** (0.0762)

DIM -1.003 (0.681) 0.219*** (0.0591) -1.486*** (0.487) -6.369*** (1.892) -0.0479*** (0.0115)

DIM2 1.630*** (0.509) 1.215*** (0.355) 5.396*** (1.357) 0.0367*** (0.00855)

N 300 300 300 300 300

R2 0.233 0.157 0.411 0.149 0.397

KP LM statistic 71.65*** 53.33*** 71.65*** 71.65*** 71.65***

CD F- statistic 215.27
[7.03]

597.72
[16.38]

215.27
[7.03]

215.27
[7.03]

215.27
[7.03]

Control variables Yes Yes Yes Yes Yes Yes Yes

Province fixed Yes Yes Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes Yes Yes

Table 7.  Robustness test results of instrumental variable method.

 

Variable

(1) (2) (3) (4) (5)

TEC ECS ECE TCE CEE

DIM -0.994** (-2.166) 0.182*** (4.270) -1.483*** (-3.789) -4.386*** (-3.338) -0.028*** (-2.886)

DIM2 1.493*** (3.409) 1.112*** (2.977) 3.956*** (3.155) 0.024** (2.500)

N 308 308 308 308 308

R2 0.590 0.389 0.730 0.379 0.700

F 22.271 10.504 41.887 9.451 36.098

Control variables Yes Yes Yes Yes Yes

Province fixed Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes

Table 6.  Robustness test results after excluding Qinghai and Xinjiang province.

 

Variable

(1) (2) (3) (4) (5)

TEC ECS ECE TCE CEE

DIM -2.106*** (-4.126) 0.204*** (5.105) -1.398*** (-3.174) -7.358*** (-4.862) -0.044*** (-4.025)

DIM2 2.821*** (4.813) 1.200** (2.372) 6.906*** (3.974) 0.038*** (2.975)

N 330 330 330 330 330

R2 0.586 0.408 0.697 0.415 0.651

F 23.607 12.254 38.340 11.833 31.040

Control variables Yes Yes Yes Yes Yes

Province fixed Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes

Table 5.  Robustness test results after tail reduction.
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significance and coefficient symbols of each variable correspond to those of the benchmark regression, and the 
conclusion is further verified.

Heterogeneity analysis
Affected by factors such as regional resource status and development stage, the specific influence of the 
manufacturing digital intelligence transformation presents differentiated characteristics. Consequently, the 
influence of the digital intelligence transformation of manufacturing industry, energy consumption, and carbon 
emissions in various regions was studied. Table 9 shows the regression results between regions in detail.

In the eastern region, no significant non-linear relationship is observed between the digital transformation of 
manufacturing industry and energy consumption and carbon emissions. There is a significant positive U-shaped 
relationship between the transformation of manufacturing intelligence in the central region and the scale of 
energy consumption and carbon emissions, with inflection points of 0.283 and 0.348. At present, the average 
value of the central region is located on the left side of the inflection point, and the total carbon emissions and 
energy consumption can be reduced by accelerating the transformation of digital intelligence. In the central 
region, the relationship between digital intelligence transformation and energy consumption intensity and 

Region Variable

(1) (2) (3) (4) (5)

TEC ECS ECE TCE CEE

DIM 2.608*** 0.221*** -0.423 2.451 -0.011

Eastern (3.190) (2.832) (-1.098) (1.041) (-1.513)

DIM2 -0.980 0.489 -0.645 0.013**

(-1.428) (1.432) (-0.326) (2.235)

DIM -6.321** -0.069*** -2.072 -21.079*** -0.046

Central (-3.333) (-4.865) (-1.502) (-3.049) (-1.677)

DIM2 11.174** 7.134* 30.271** 0.133*

(2.967) (2.467) (2.520) (2.073)

DIM -0.636 0.380*** -0.361 -7.334 -0.100**

Western (-0.319) (4.419) (-0.191) (-1.256) (-2.013)

DIM2 -1.474 4.878 1.835 0.278***

(-0.393) (1.369) (0.167) (2.959)

DIM -18.246*** 0.094 -19.267*** -32.353** -0.396**

Northeast (-4.149) (0.569) (-4.117) (-2.360) (-3.006)

DIM2 62.271*** 66.081*** 125.714** 1.445***

(4.237) (4.224) (2.744) (3.280)

Control variables Yes Yes Yes Yes Yes

Province fixed Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes

Table 9.  Regional heterogeneity regression results.

 

Variable

(1) (2) (3) (4) (5)

TEC ECS ECE TCE CEE

L.TEC 0.879*** (20.213)

L.ECS 0.729*** (7.869)

L.ECE 0.496*** (4.374)

L.TCE 0.953*** (40.764)

L.CEE 0.664*** (6.644)

DIM -1.223** (-2.168) 0.077** (2.285) -2.447*** (-2.601) -4.888* (-1.761) -0.059*** (-3.460)

DIM2 2.283*** (3.268) 2.410** (2.471) 5.491** (2.089) 0.061*** (3.192)

N 300 300 300 300 300

Control variables Yes Yes Yes Yes Yes

Province fixed Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes

AR(1) 0.056 0.041 0.038 0.036 0.009

AR(2) 0.851 0.608 0.769 0.493 0.246

Hansen test 0.249 0.964 0.361 0.513 0.628

Table 8.  Robustness test results of GMM.

 

Scientific Reports |        (2025) 15:29814 11| https://doi.org/10.1038/s41598-025-15821-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


carbon emission intensity is not obvious. The digital intelligence transformation in the western region only has 
a significant positive U-shaped relationship with carbon emission intensity, and the inflection point is 0.180. In 
2021, although the average value of the western region exceeds the inflection point value, half of the provinces have 
not yet reached it, and carbon emission intensity can still be reduced through digital intelligence transformation. 
In Northeast China, there is a positive U-shaped relationship between the transformation of digital intelligence 
and the scale and intensity of energy consumption. In addition, there is a positive U-shaped relationship between 
the transformation of digital intelligence and the scale and intensity of carbon emissions. On the other hand, 
in the eastern and western regions, the digital intelligence transformation of the manufacturing industry can 
significantly optimize the energy consumption structure, while in the central region, it shows a relationship 
of inhibiting the energy consumption structure, and the influence relationship in the northeast region is not 
obvious.

The possible reason is that the manufacturing industry in the eastern region has a high degree of digital 
intelligence transformation, and has gradually shifted from high-energy-consuming traditional industries to 
technology-intensive industries. These industries have high energy efficiency, and the marginal effect brought 
by digital intelligence is limited. It is difficult to further significantly reduce energy consumption and carbon 
emissions. The central region is in a period of rapid economic development. Although digital intelligence 
transformation can reduce the total amount of carbon emissions, the demand for economic growth and industrial 
expansion makes the effect on carbon emission intensity not obvious. However, the current energy structure in 
the central region is still dominated by coal power. Although digital intelligence reduces carbon emissions per 
unit of GDP by optimizing the production process, it has limited improvement in the energy structure.

For each inflection point value, the inflection point in the central region is lower than the national average. 
This can be attributed to the region’s high proportion of energy-intensive industries and its heavy reliance on 
energy consumption, which diminishes the promoting effect of digital and intelligent transformation on energy 
conservation and emission reduction, thereby resulting in a smaller inflection point. The western region is in the 
stage of large-scale construction of digital facilities. Although DIM may contribute to reducing carbon emission 
intensity, the scale effect partially offsets the emission reduction benefits, leading to an inflection point for carbon 
emission intensity that is lower than the national average. Among all regions, the northeast region exhibits the 
smallest inflection point. This is primarily due to its climatic characteristics, which drive high energy demand. 
However, the current level of DIM remains relatively low, limiting its capacity to transform traditional industrial 
energy consumption. Consequently, the inflection point appears furthest to the left.

Regression analysis of sub-indicators of digital intelligence transformation in manufacturing 
industry
In order to further study the specific impact of the digital intelligent transformation of manufacturing industry on 
energy conservation and emission reduction, taking manufacturing digitization and manufacturing intelligence 
as independent variables. The regression results are shown in Table 10.

There are significant nonlinear effects between manufacturing digitization and energy consumption intensity, 
carbon emission intensity and carbon emission scale. Among them, manufacturing digitization has a positive 
U-shaped relationship with energy consumption intensity, carbon emission intensity and carbon emission scale, 
and manufacturing digitalization can significantly optimize the energy consumption structure. The possible 
reason is that in the early stage of digital intelligence transformation, digital intelligence transformation of 
manufacturing industry can effectively reduce energy consumption intensity and carbon emission scale and 
intensity through technological innovation, resource allocation efficiency improvement, industrial structure 
upgrading and other ways. But with the deepening of digital intelligence transformation, the increase in 
productivity may lead to more carbon emissions and energy consumption while bringing more output, and the 
effect of energy conservation and emission reduction is gradually weakened. The intelligence of manufacturing 
industry has a positive U-shaped relationship with the scale of carbon emissions, which decreases first and 
then increases, and the intelligent manufacturing industry has a positive effect on the energy consumption 
structure. Similarly, the development of intelligence may promote the transformation of the production process. 
Advanced technology and automation equipment replace the procedural labor of traditional industries, improve 
the efficiency of information transmission, promote the improvement of energy efficiency and the application 
of clean energy technology, optimize energy consumption structure and promote the reduction of carbon 
emissions. With the further development of intelligence, the dependence of stable technical system forms a state 

Index Variable

(1) (2) (3) (4) (5)

TEC ECS ECE TCE CEE

Dig
Dig 2.183 (0.802) 0.169*** (5.351) -1.044** (-2.521) -384.875*** (-3.296) -0.030*** (-2.904)

Dig2 -1.768 (-0.740) 0.961*** (2.645) 341.076*** (3.330) 0.026*** (2.904)

Int
Int -0.952 (-1.145) 0.133*** (3.439) -0.704 (-1.151) -5.391*** (-2.803) -0.023 (-1.486)

Int2 1.289* (1.730) 0.675 (1.222) 4.844*** (3.277) 0.022* (1.703)

Control variables Yes Yes Yes Yes Yes

Province fixed Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes

Table 10.  Further analysis of the regression results.
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of carbon lock-in, which hinders the innovation of low-carbon technology. In addition, the energy rebound 
effect weakens the effect of intelligent energy saving and emission reduction, which leads to the increase of 
carbon emission scale and can no longer continue to optimize the energy structure.

Discussion
Based on the panel data of 30 provinces in China (except Tibet, Hong Kong, Macao, and Taiwan) from 2011 to 
2021, this study uses principal component analysis to measure the level of digital intelligence transformation of the 
manufacturing industry in each province, constructs a two-way fixed effect model, and explores the relationship 
between the digital intelligence transformation of the manufacturing industry and energy consumption and 
carbon emissions. Based on this, the heterogeneity between regional and digital intelligence transformation 
indicators is analyzed. The following conclusions were drawn:

The development level of digital intelligence in China ‘s manufacturing industry shows an overall trend 
of high in the east and low in the west, but each region has maintained a certain growth momentum. The 
eastern coastal areas provide the basic premise for the transformation of digital intelligence with their strong 
economic foundation and manufacturing scale, convenient transportation, strong technical foundation, and 
policy support. The western region started late, the digital intelligence infrastructure is backward, and R&D 
investment, talent investment, and policy support are low, but the growth of some provinces and cities is more 
obvious. The digital intelligence development in the manufacturing industry in the western region is increasing. 
Under the dual promotion of policy and investment, it shows great development potential.

The transformation of digital intelligence in the manufacturing industry has a significant impact on energy 
consumption and carbon emissions. There is a positive U-curve impact on the energy consumption scale, 
intensity, carbon emission scale, and intensity. There is a positive linear relationship between the digital intelligent 
transformation of the manufacturing industry and the energy consumption structure. This conclusion provides 
a new empirical basis for the academic discussion on the environmental impact of the digital transformation of 
the manufacturing industry from the aspects of energy saving and emission reduction.

Further analysis of regional heterogeneity is required. In the eastern region, owing to the more developed 
technical economy and the impact of the manufacturing industry structure, DIM can only increase the 
proportion of clean energy but has no significant impact on other indicators. The high dependence on coal in the 
central region and the solidification of the energy structure of the industry have led to a negative impact of DIM 
on the energy consumption structure. However, owing to the optimization of the production process by digital 
intelligence technology, the total energy consumption and carbon emissions are reduced. The digital intelligence 
of the manufacturing industry in the western region started late, and the decline in the total energy consumption 
caused by digital intelligence has not significantly changed the energy consumption caused by scale expansion. 
Currently, DIM levels in Northeast China are low, and technical effects play a leading role. However, owing to 
the characteristics of the manufacturing industry and regional climate, the overall energy structure has not been 
significantly improved.

Additionally, the digitization of the manufacturing industry has a significant impact on energy consumption 
intensity, carbon emission scale, and carbon emission intensity, showing a U-shaped curve that first decreases 
and then increases, optimizing the energy consumption structure. There is a positive U-shaped relationship 
between manufacturing intelligence and the carbon emission scale, and a positive linear effect on the energy 
consumption structure. Digitization has reached a mature promotion stage. The expansion of manufacturing 
digitization benefits from the support of digital infrastructure and applications, which helps reduce energy 
consumption and carbon emission intensities. Intelligent is still in its early stages. Currently, intelligence is 
mostly used in experimental or small-scale scenarios, which do not immediately improve production efficiency 
and resource utilization efficiency. A wide-scale carbon reduction has not yet been formed; therefore, its impact 
on carbon emission intensity is limited.

This study conducted a lot of work in theoretical and empirical analysis; however, there are still some 
shortcomings. Specifically, (1) using the principal component method to calculate the results of the digital 
intelligence transformation of the manufacturing industry in the range of 0–1, there may be insufficient 
identification of differences. In the future, a more comprehensive evaluation can be achieved by constructing a 
more refined mathematical evaluation system and optimizing the calculation methods. (2) There are significant 
differences in socio-economic conditions among cities in different provinces. Therefore, when complete and 
available county-level data are available, the research may be more accurate and in-depth. Future research 
can use panel data from prefecture-level cities to consider the heterogeneity between cities and improve the 
robustness of the research.

Conclusions
This study focuses on the influence of the digital intelligence transformation of manufacturing industry on 
carbon emissions and energy consumption. The level of digital intelligence transformation of manufacturing 
industry is evaluated. Then, using regression analysis, as is found that the manufacturing digital intelligence 
transformation has a nonlinear and linear relationship with energy consumption and carbon emissions. After 
considering the study findings, the following suggestions are provided:

First, optimize the overall layout of digital intelligence transformation and promote regional coordinated 
development. The research results show that there are differences in the process of digital intellectualization 
transformation in various regions. The state should advocate industrial linkage with surrounding areas, 
strengthen interconnection and synchronization among various production areas, give full play to regional 
resource advantages and industrial characteristics, avoid deviating from the actual pursuit of ' large and 
complete ' development model, and coordinate dislocation development. The process of digital intelligence 
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transformation in the central and western regions is slow. It is necessary to combine the advantages of ecology, 
energy, electricity and other resources, seize the major national strategic opportunities such as “East Number 
West Calculation” transform the resource advantages into industrial advantages, consolidate the construction 
of digital infrastructure within the manufacturing industry, and build a manufacturing cluster with regional 
characteristics. The eastern region uses its advantages in digital technology and location to focus on promoting 
high-tech manufacturing. The high-low matching will form a pattern of mutual echo, coordinated development 
and complementary advantages of the manufacturing industry in the eastern and western regions, and jointly 
promote the digital transformation of the manufacturing industry.

Second, according to local conditions, make full use of digital intelligence transformation to reduce the carbon 
emissions. In regions where the transformation of digital intelligence is still on the left side of the inflection point 
of energy conservation and emission reduction, it is crucial to accelerate the development of digital technology 
infrastructure, drive new technological progress, build an efficient energy system, and increase green energy 
consumption. Vigorously develop the green low-carbon high-end equipment manufacturing industry, focus 
on the layout of national strategic emerging industries, increase the proportion of high-tech manufacturing 
industries, and promote the manufacturing industry to be more low-carbon and green. In the region where DIM 
is within the inflection point range of energy saving and emission reduction, relevant policies are formulated to 
focus on improving the indicators that have not reached the inflection point, make full use of the benefits brought 
by the digital transformation of the manufacturing industry, and promote regional energy savings and emission 
reductions. In areas where the digital transformation of the manufacturing industry is near the inflection 
point, it is necessary to continue to give full play to the comparative advantages of the digital transformation 
of the manufacturing industry, promote the research and utilization of energy-saving and emission-reduction 
technologies, and strive to achieve greater marginal benefits. Simultaneously, considering the rebound effect 
of energy use and carbon emissions, focusing on the balance between economic growth and environmental 
protection, avoiding overexploitation and expanding the scale of emissions, reducing the carbon emissions of 
manufacturing to a lower level, promoting the sustainable development of manufacturing, and promoting the 
realization of dual carbon goals are essential.

Third, innovate the energy consumption mode of manufacturing enterprises and data centers. Manufacturing 
enterprises use digital technology to optimize energy production and consumption, supply and demand; 
install grid intelligent control system; real-time monitoring and collecting energy consumption data; improve 
energy management efficiency. Traditional energy enterprises should speed up the deep integration with digital 
technology, build a digital energy industry cluster with strong competitiveness, use digital technology to enable 
energy power generation, reduce power generation costs, advocate the creation and deployment of new energy 
technologies, and amplify the spillover effects of these technological advances. For the data center with high 
energy consumption, in one aspect, the “East Number West Calculation” initiative must be put into action to 
direct the western region to undertake the computing power demand with the goal of improving overall energy 
efficiency. In addition, it is equally essential to innovate the data center’s energy consumption model. adopt low-
carbon site selection, digital technology to reduce heat energy consumption, eliminate high-energy equipment, 
and boost clean energy consumption to enhance the green development status of the current digital center.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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