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The human microbiome has garnered significant interest in recent years as an important driver 
of human health and disease. Likewise, it has been suggested that the intra-tumoral microbiome 
may be associated with specific features of cancer such as tumour progression and metastasis. 
However, additional research is needed to validate these findings in diverse populations. In this 
study, we characterized the intra-tumoral microbiota of 883 Malaysian breast cancer patients using 
transcriptomic data from bulk tumours and investigated their association with clinical variables 
and immune scores. We found that the tumour microbiome was not associated with breast cancer 
molecular subtype, cancer stage, tumour grade, or patient age, but was weakly associated with 
immune scores. We also found that the tumour microbiome was associated with immune scores in our 
cohort using random forest models, suggesting the possibility of an interaction between the tumour 
microbiome and the tumour immune microenvironment in Asian breast cancer.

Breast cancer is the most common cancer in women across the majority of countries worldwide. Differences in 
distribution of genetic1, lifestyle2 and reproductive factors3 influence the clinical presentation of breast cancer 
in different populations. For example, there is a higher prevalence of triple negative breast cancer in women 
of African descent4, and a higher prevalence of immune enriched breast cancers in women of Asian descent5. 
Whilst part of these differences may be attributable to differences in population genetics, a large proportion of 
these differences remain unexplained.

One factor that may potentially explain some of these differences is the microbial community found on and 
in the human body, also known as the human microbiome. With the advent of next-generation sequencing and 
decreasing cost to sequence genomes, it has become possible to study the human microbiome in much greater 
detail. Early studies were mostly focused on characterising the human microbiome6, but several recent studies 
have studied their association with cancer and other diseases. Routy et al.7 reported a retrospective cohort study 
where cancer patients on antibiotics had shorter progression free-survival and overall survival. Restoring gut 
microbial diversity via live-bacteria supplements7 or faecal microbiota transplant8 improved response to anti-
PD1 therapy, suggesting that the gut microbiome may play an important role in treatment outcomes.

Researchers have also been interested in the intra-tumoral microbiome and its association with cancer, 
though this has been more challenging to study due to its low biomass and accessibility. Recently, intra-tumoral 
bacteria were found to mostly reside within cancer or immune cells, with each tumour type shown to have a 
distinct microbiota composition9. This landmark paper also showed that breast tumours had the richest and 
most diverse intra-tumoral microbiome, which was associated with clinical subtypes. Other recent studies have 
demonstrated the ability of intra-tumoral bacteria to induce the migration of cancer cells and promote cancer 
progression10 and metastasis11.

Notably, global studies that compare the microbiome of different ethnic groups suggest that population-
specific tumour microbiomes may exist. For example, a recent study reported differences between tumoral 
microbiota composition between Caucasians and African Americans but observed no significant differences 
for Asians12. This mirrored findings from Parida et al.13, who also found differences between Caucasians and 
African Americans but not Asians. However, both papers included only a very small number of Asian patients 
in their analyses. This demonstrates the lack of Asian representation in global cancer microbiome studies, which 
may in turn lead to false assumptions regarding the generalizability of microbiome studies to the wider Asian 
population.
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In this study, we characterized the tumoral microbiota of 883 Malaysian breast cancer patients using 
transcriptomic data from bulk tumours and investigated their association with clinical variables and immune 
scores. We found that the tumour microbiome was not associated with breast cancer molecular subtype, cancer 
stage, tumour grade, or patient age, but was weakly associated with immune scores. We also found that the 
tumour microbiome was associated with immune scores in our cohort using random forest models, suggesting 
the possibility of interactions between the tumour microbiome and the tumour immune microenvironment in 
Asian breast cancer.

Methods
Biospecimen collection and data generation
RNA-seq data that was generated by Pan et al.5 and Pan et al.14 were used to discover the presence of microbes 
in fresh frozen tumours from 977 breast cancer patients from the Malaysian Breast Cancer (MyBrCa) cohort 
recruited at Subang Jaya Medical Centre (n = 843) and University Malaya Specialist Centre (n = 134), Malaysia. 
As the sequencing was conducted in two separate batches, the earlier batch was used as a discovery cohort 
(n = 558), and the latter as a validation cohort (n = 419) (Supplementary Fig. 1). Immune scores included in the 
analysis were scored as described in Pan et al.5; in brief, scoring was done via gene set variation analyses (GSVA) 
of different immune gene sets retrieved from literature, as cited in turn in our results.

Data quality assessment and read alignment
RNA-seq reads that mapped to hs38r42 human genome using STAR aligner were removed15. Non-human, 
unmapped reads were retained and mapped to the Kraken2 32GB database16. Relative abundance of microbial 
reads from Kraken2 were estimated using Bracken17. Read count tables were created for each taxonomic level by 
using the kreport2mpa.py script from KrakenTools18.

Alpha and beta diversity analyses
Reads were converted to relative abundance. Intra-group (alpha) diversity was determined using the number 
of observed species and Shannon index. Inter-group (beta) diversity was measured using a Bray–Curtis 
dissimilarity matrix, plotted using unsupervised, multi-dimensional scaling (MDS) method and visualized on 
a PCoA (Principal Coordinates Analysis) plot. Shepherd’s stress test was used to measure goodness-of-fit of 
the model, that is how well the reduced dimensions reflect the original dissimilarity structure. Beta diversity 
was also measured using supervised ordination, dbRDA (distance-based Redundancy Analysis). PERMANOVA 
(Permutational Multivariate ANOVA) was used to calculate the differences between groups controlled by 
covariates. Covariates included in the analysis were PAM50 subtype, age at diagnosis, cancer stage, tumour 
grade, treatment used, and ethnicity. PERMDISP (Permutational Multivariate Analysis of Dispersion) was 
calculated to ensure homogenous dispersion was observed in the model as skewed dispersion may confound 
findings from PERMANOVA.

Differential abundance analyses
Microbial counts at the genus level were filtered for at least 10% prevalence and centre log-ratio (clr) transformed 
as recommended by Nearing et al.19. Differential abundance analyses were done using the compositional data 
analysis method, namely with ALDEx2, ANCOM-BC2, MaAsLin2, LinDA and Zicoseq. Bacterial taxa were 
deemed to be significantly different if the FDR-corrected p-value was <0.05 in more than two algorithms.

Random Forest modelling
Supervised machine learning using random forest models were tested on a total of 883 samples after filtering out 
samples with missing data or failed filtering QC. The R packages ‘caret’ (v. 6.0-94) and ‘mikropml’ (v. 1.6.1) were 
used to train and test random forest models using an 80:20 training:testing split with 5-fold cross-validation 
repeated five times (the “xgbTree” method was used with the “repeatedCV” option set to 5 repetitions). The R 
packages ‘mikropml’ (v. 1.6.1) and ‘MLeval’ (v. 0.3) were used to calculate F1, AUROC, precision, sensitivity, 
specificity and generate plots.

In vitro validation of microbial counts
The qPCR assays were performed with QuantiNova SYBR Green RT-PCR Kit (Qiagen) using the Applied 
Biosystems Real-Time PCR System. Twenty nanograms per microliter (ng/µL) of DNA extracted from 
tumour samples were used as the template for amplification of the V3V4 region using the forward primer 
(5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and reverse 
primer (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′) 
sequences obtained from Klindworth et al.20. Reaction mixtures consisted of 10 µL master mix, 3 µL each of 
forward and reverse primers, and 4 µL of DNA template. Escherichia coli gDNA was employed as a positive 
control, OKF6/TERT1 gDNA as a negative control, and water was used as a blank control. Cycles consisted of 
the following regime: 2 min at 50 °C, 10 min at 95 °C, 40 cycles of 15 s at 95 °C and 30 s at 60 °C, followed by 
15 s at 95 °C, 1 min at 60 °C, 30 s at 95 °C, and 15 s at 60 °C for melt curve analysis. A total of 5 µL of the final 
qPCR amplicons were subjected to agarose gel electrophoresis in a 2% gel at 100 volts for 30 min and visualised 
under ultraviolet (UV) transillumination on the Azure Biosystems Imaging System. E. coli gDNA was serially 
diluted and ran in triplicates on the qPCR system. The measured threshold cycle (Ct) values were plotted against 
calculated copy numbers for each reaction. Ct values from the V3V4 qPCR analyses were used to estimate copy 
numbers of total bacteria present in tumour samples based on the standard curve. Estimated copy numbers were 
then compared with microbial counts of corresponding samples and used to generate a correlation plot.
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Ethical approval
Patient recruitment and sample collection for the MyBrCa cohort was reviewed and approved by the Independent 
Ethics Committee, Ramsay Sime Darby Health Care (Reference no: 201109.4 and 201208.1), as well as the 
Medical Ethics Committee of the University Malaya Medical Centre (Reference no: 842.9). All research was 
performed in accordance with relevant guidelines and regulations. Written informed consent to participation in 
research was given by each individual patient.

Results
Alpha, beta diversity and most prevalent genera in the Malaysian breast tumour microbiome
Using our discovery cohort (n = 558), bacteria read counts were converted to relative abundance to observe the 
overall distribution of each taxonomy when grouped by PAM50 subtype (Fig. 1A). Proteobacteria, Firmicutes, 
Actinobacteria, and Heunggongvirae were the most dominant phyla of the breast tumour microbiota. There was 
significant heterogeneity, where some phyla, such as Acidobacteria, were observed in some samples but were 
completely absent in others. The top ten most abundant genera in our discovery cohort by median read counts 

Figure 1..  Detection of intratumoral microbiota from transcriptomic sequencing of Asian breast cancer 
samples. (A) Relative abundance of microbial phyla detected in breast cancer samples from the MyBrCa 
discovery cohort (n = 558), grouped by PAM50 molecular subtype (NL = normal-like). Also shown are the 
number of species observed (B) and the Shannon diversity index (C) for detected intratumoral microbiota 
across different breast cancer molecular subtypes.
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were Pseudomonas, Siphoviridae, Bacillus, Escherichia, Klebsiella, Streptomyces, Priestia, Cutibacterium, Serratia, 
and Acinetobacter.

The intra-group diversity of breast tumour microbiota was mostly homogenous when comparing between 
molecular subtypes. A slightly higher diversity was observed in Basal subtype when using observed number 
of species as alpha diversity metric, although it did not reach statistical significance (Fig. 1B, p > 0.05). The 
diversity of the Basal subtype microbiota was significantly higher than the Her2 subtype when compared using 
the Shannon index (Fig. 1C, p = 0.027).

We calculated relative abundance of tumour microbiome and multi-dimensional scaling (MDS) using the 
Bray–Curtis index to find differences between group (beta-diversity). Unsupervised coordination using PCoA 
revealed no distinct patterns by PAM50 subtype (Supplementary Fig. 2). We also plotted a Shepherd’s stress plot 
to measure how well the reduced dimensions reflect the original dissimilarity structure. Relative stress, which is 
a measure of goodness of fit in MDS and preferably lower value, was 0.29 (Supplementary Fig. 3), indicating that 
the MDS was a decent fit to the original dissimilarity structure.

In order to examine dissimilarity between groups (inter-group diversity) and the variance contributed 
by each covariate, we conducted a PERMANOVA analysis, which revealed significant differences between 
individuals with high versus low IFNγ immune scores21 (F-statistic = 2.431, p = 0.015, Table 1). Dissimilarity 
contributed by immune scores remained significant when substituted by other immune scores such as Bindea22 
and ESTIMATE23. We also calculated homogeneity using PERMDISP to ensure that differences in group was due 
to variance and not sample dispersion. All variables examined had homogenous dispersion, with the exception 
of age at diagnosis (F-statistic = 1.715, p = 0.003, Supplementary Table 1). It is interesting to note that age at 
diagnosis explained 19% of variance observed for dispersion. This is expected because patients in this cohort 
range from 22 – 85 years old, thus resulting in high dispersion.

Inter-group diversity was visualized using supervised ordination with distance-based Redundancy Analysis 
(dbRDA) which reflected similar findings to PERMANOVA (Figure 2). The figure shows that two axes chosen, 
RDA1 and RDA2 explained the highest tumour microbiome variance in a multi-dimensional data at 30.9% 
and 25.2%. The IFNγ immune score had the most significant effect on the variance observed, as confirmed in 
PERMANOVA.

Differential abundance analyses of immune scores
Given the previous observation that immune scores had the most significant association with the variance 
observed in microbial abundance, we investigated which bacteria may be associated with differences in immune 
scores using differential abundance analysis. Immune scores included in the analysis were Bindea, ESTIMATE, 
IMPRES, CD8, and IFNγ immune scores as scored in Pan et al.5. Immune scores were grouped into high and 
low by their median. Multiple algorithms, namely ALDEx2, ANCOM-BC2, MaAslin2, Zicoseq, and LinDA, 
were utilized to search for a consistent pattern while avoiding algorithmic bias towards the identification of 
differentially abundant bacteria taxa19. Significant findings were defined as those genera with FDR-adjusted p-
value < 0.05 by two or more algorithms.

These analyses showed that Sulfidibacter was significantly increased in patients across most high immune 
score groups (Bindea, ESTIMATE, CD8 and IFNγ; p-value  <  0.05, Table 2). Additionally, Priestia and 
Pseudoalteromonas were significantly increased in IFNγ high groups, while Bacillus was significantly increased 
in patients categorized into low IMPRES score group across at least two separate algorithms.

Validation of significant associations in a validation cohort
Samples that were sequenced in a later batch were used as a validation cohort (n = 419). In order to validate our 
previous finding of an association between the microbial abundance of specific bacterial genera with immune 
scores, we compared the normalized abundance of Sulfidibacter, Priestia, and Pseudoalteromonas between 
samples with high versus low immune scores.

We found that Sulfidibacter was significantly higher in abundance among the higher immune score groups 
for Bindea, ESTIMATE, and IFNγ (Fig. 3, t-test p < 0.05), but not CD8 (p = 0.38), in our validation cohort. 
Additionally, Priestia was also significantly higher in patients with high IFNγ scores in our validation cohort 
(p  <  0.0001). However, contrary to our discovery cohort, Pseudoalteromonas was not significantly different 

df SS F Pr(>F) Total variance Explained variance

Model 12 0.87 1.03 0.391 27.69 0.031

PAM50 subtype 4 0.31 1.12 0.283 27.69 0.011

Age at diagnosis 1 0.085 1.21 0.227 27.69 0.0031

Ethnicity 3 0.14 0.68 0.891 27.69 0.0052

Stage 1 0.048 0.69 0.752 27.69 0.0017

Grade 1 0.078 1.11 0.323 27.69 0.0028

Chemotherapy 1 0.060 0.86 0.535 27.69 0.0022

IFNγ group 1 0.17 2.43 0.015 27.69 0.0062

Residual 382 26.83 NA NA 27.69 0.97

Table 1..  PERMANOVA analysis of the tumour microbiome in Malaysian breast cancer patients
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between IFNγ high and low groups (p = 0.16). Overall, the results from our validation cohort confirmed most 
but not all of the associations between bacterial abundance and immune scores from the discovery cohort.

Random Forest prediction of immune scores from microbiome data
We used machine learning to explore the possibility of utilising the tumour microbiota to predict samples with 
high or low immune scores. A 5-fold cross-validation random forest model was used with an 80-20 split between 
the training and testing dataset. The random forest model successfully predicted immune high and immune low 
groups in our full dataset (n = 883), with an area under the ROC curve (AUC-ROC) of 0.80 for IFNγ, 0.78 for 
Bindea, 0.72 for ESTIMATE, 0.72 for CD8, and 0.60 for IMPRES (Table 3, Figure 4A). Across all five immune 
scores analysed, the random forest models of the tumour microbiota found an association with immune scores 
that was significantly better than chance (AUC-ROC 95% CI > 0.5) and with moderately high sensitivity and 
specificity in most cases except for IMPRES. The random forest model with the best predictive performance was 
for IFNγ scores, with an area under the precision-recall curve (AUC-PR) of 0.76 (Fig. 4B), and the top three 
features that contributed to the random forest binary classification model for IFNγ were Sulfidibacter, Prestia, 
and Erythrobacter (Fig. 4C). Importantly, the tumour microbiome was still significantly associated with IFNγ 
scores even when Sulfidibacter alone or Sulfidibacter and Priestia were dropped from the training data (AUROC 
of 0.72 [95% CI 0.70–0.76] and 0.70 [95% CI 0.67–0.73] respectively, Supplementary Table 2), suggesting that 
this association may be robust.

In vitro validation
We also sought to validate the existence and overall abundance of the tumour microbiome in our samples 
using orthogonal methods. Thus, we conducted an in vitro validation of microbial abundance using qPCR 
amplification of the bacterial 16S V3V4 region of 20 randomly-selected samples from our cohort. The estimated 
total microbial copy numbers derived from qPCR were then compared with microbial read counts derived from 
RNA sequencing in order to determine their correlation (Fig. 5). Both Spearman’s and Pearson’s correlation 
revealed moderately strong associations between the two variables, with correlation coefficients of 0.513 
(p = 0.020) and 0.7104 (p = 0.00045) respectively, suggesting that our overall per-sample microbial read counts 
derived from RNA sequencing were reliable.

Discussion
In this study, we sought to characterize the tumoral microbiota of Asian breast cancer patients to understand 
its association with molecular subtypes and immune scores. We used a compositional data analysis method 
involving five algorithms to analyze microbial read counts derived from 558 RNA-seq samples, followed by 
validation with a separate cohort of 419 samples as well as qPCR of 20 randomly-selected samples. Our findings 
suggest a lack of association between the intra-tumoral microbiome and most clinical variables, but also suggest 
a potential association between the intra-tumoral microbiome and immune scores in our Asian cohort.

Figure 2..  Inter-group diversity of detected intratumoral microbiota, as visualized using supervised ordination 
with distance-based Redundancy Analysis (dbRDA) against clinical and molecular variables. Clinical and 
molecular variables included in the analysis were PAM50 molecular subtype, IFN-γ scores (grouped according 
to median value), ethnicity, chemotherapy treatment (received or not), age at diagnosis, cancer stage, and 
tumour grade.

 

Scientific Reports |        (2025) 15:31147 5| https://doi.org/10.1038/s41598-025-15877-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Immune score Taxa Effect size/log fold change FDR q-value Test used

Bindea

Sulfidibacter − 0.31 0.002 ALDEx2

Sulfidibacter − 0.70 0.0032

ANCOM-BC2

Bifidobacterium − 0.26 0.0092

Microbacterium 0.0021 0.031

Kocuria 0.095 0.032

Pseudolysobacter 0.099 0.032

Sulfidibacter 0.028 0.0024 MaAslin2

Sulfidibacter – 0.001 Zicoseq

Sulfidibacter − 1.32 1.51E−07

LinDAMycobacteroides 0.26 0.036

Kinneretia 0.36 0.036

ESTIMATE

Sulfidibacter − 0.311 2.10E−06 ALDEx2

Dietzia 0.405 0.00338

ANCOM-BC2

Stenotrophomonas − 0.497 0.00338

Curtobacterium − 0.391 0.00647

Pseudonocardia 0.334 0.0145

Pseudolysobacter 0.372 0.0145

Paraburkholderia 0.309 0.0146

Sulfidibacter − 0.428 0.0403

Alcanivorax 0.306 0.0403

Gordonia 0.352 0.0421

Sulfidibacter − 0.0281 0.00085 MaAslin2

Sulfidibacter – 0.00050 Zicoseq

Sulfidibacter − 1.157 9.27E−06
LinDA

Priestia − 0.816 0.0260

IMPRES
Bacillus 0.0631 0.0033 MaAslin2

Bacillus 0.001 Zicoseq

CD8
Sulfidibacter − 0.263 0.002 ALDEx2

Sulfidibacter – – LinDA

IFNγ

Sulfidibacter − 0.441 0
ALDEx2

Priestia − 0.222 0.024

Sulfidibacter − 0.760 6.28E−06

ANCOM-BC2

Curtobacterium − 0.476 0.00312

Dietzia 0.395 0.00696

Dolosigranulum 0.342 0.00696

Rhizobium − 0.336 0.00850

Micrococcus − 0.495 0.0111

Priestia − 0.547 0.0152

Pseudonocardia 0.288 0.0152

Coefficient in low group

Sulfidibacter − 0.039 0

MaAslin2Erythrobacter − 0.007 0.026

Pseudoalteromonas − 0.005 0.026

Sulfidibacter – –

ZicoseqMycobacterium – –

Priestia – –

Log2 fold change

Sulfidibacter − 1.84 3.15E−16

LinDAPriestia − 1.01 0.000831

Pseudoalteromonas − 0.358 0.0193

Table 2..  Results for differential abundance analysis for each immune score. Also indicated are the the 
effect size/log fold change and the test used. A negative effect size/log fold change indicates that the taxa was 
enriched in the group with high immune scores.
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We observed a largely homogenous intra-group diversity in the Malaysian breast tumor microbiome across 
PAM50 subtypes, except for the basal subtype which had a significantly more diverse microbiota composition 
compared to the HER2-enriched subtype. The homogeneity observed is in line with Desalegn et al.24 who 
reported no significant differences in tumour microbiota between PAM50 subtypes among Ethiopian breast 
cancer patients. Kim et al.25 reported similar findings in a Korean cohort, additionally showing two distinct 
clusters independent of subtypes associated with regional recurrence free survival. Other studies have reported 
distinct microbiome compositions between tumour and normal adjacent tissue samples12,26,27, which is expected 
given that comparisons between healthy and diseased microbiomes have consistently reported lower microbial 
diversity in the latter28.

However, the significant difference in microbiome diversity between the basal and HER2-enriched subtype 
has not been reflected in current literature. Interestingly, Chen et al.29 reported that Asian breast cancer patients 
are less likely to have luminal A and basal subtypes but more likely to have luminal B and HER2-enriched 
subtypes than Western patients. Tumour microbiomes tend to be less well-characterized compared to the gut 
microbiome. This gap in knowledge is further exacerbated by the lack of Asian-centric cohorts25,30. Furthermore, 

Immune score F1 Score Area under the ROC curve (95% CI) Precision (95% CI) Sensitivity (95% CI) Specificity (95% CI)

IFNγ 0.75 0.80 (0.77–0.83) 0.67 (0.63–0.70) 0.87 (0.83–0.89) 0.61 (0.57–0.66)

Bindea 0.72 0.78 (0.75–0.81) 0.70 (0.66–0.74) 0.74 (0.70–0.78) 0.70 (0.65–0.73)

ESTIMATE 0.68 0.72 (0.69–0.75) 0.65 (0.61–0.69) 0.70 (0.66–0.74) 0.63 (0.59–0.67)

CD8 0.65 0.72 (0.69–0.75) 0.65 (0.61–0.69) 0.64 (0.60–0.69) 0.68 (0.64–0.72)

IMPRES 0.27 0.60 (0.54–0.66) 0.17 (0.14–0.21) 0.65 (0.56–0.73) 0.55 (0.51–0.58)

Table 3..  Random forest prediction metrics for prediction of immune scores using intratumoral microbiome 
relative abundance scores (n = 883).

 

Figure 3..  Association of intratumoral microbiota with immune scores in a validation cohort of Asian 
breast cancer samples (n = 419). (A–D) Comparison of RNAseq-derived normalized abundance scores for 
Sulfidibacter between samples with high versus low immune scores according to the median value, for Bindea, 
ESTIMATE, CD8, and IFN-γ immune scores, respectively. (E,F) Comparison of RNAseq-derived normalized 
abundance scores for Priestia (E) and Pseudoalteromoas (F) between samples with high versus low IFN-γ 
immune scores, according to the median value.
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tumour microbiome studies with multiethnic cohorts tend to have a relatively low representation of Asians12,13. 
Considering the sample size of our cohort, it is possible that the observed differences in microbiome diversity 
between basal and HER-2 enriched subtypes could be specific to Asian populations but this requires further 
validation.

The results of our inter-group diversity analysis further revealed that variation in the Malaysian breast tumour 
microbiome was significantly associated with immune scores, while molecular subtype, age at diagnosis, cancer 
stage, tumour grade, ethnicity, and treatment type had no association with the variation found in the Malaysian 
breast tumour microbiome.

There is evidence that microbes can interact with cells patrolling the tumour microenvironment, notably 
close interactions with immune cells possibly affecting tumour inhibition and proliferation31. Microbes have 
been found intracellularly in both cancer and immune cells9. In other cancers such as pancreatic ductal 
adenocarcinoma, a uniquely diverse composition of tumour microbiome distinct from that of adjacent 

Figure 4..  Random forest prediction of IFN-γ scores using intratumoral microbial abundance. Receiver 
operating characteristics (A) and precision-recall curve (B) for a random forest model trained to predict IFN-γ 
scores using intratumoral microbial abundance. (C) Top 20 most important features (abundance of specific 
microbial genera) used by the random forest model to predict IFN-γ scores.
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healthy pancreatic tissue was found to be associated with more sustained CD8+ T cell response in the tumor 
microenvironment8.

Increased immune cell response and variations in immune scores have also been attributed to microbe-
derived metabolites present in the tumour immune microenvironment (TIME)31. Short chain fatty acids 
(SCFAs), such as butyric acid, are known microbe-derived metabolites which can accumulate within tumors 
and inhibit histone deacetylases (HDACs), referring to chromatin regulatory factors expressed abnormally in 
a variety of human cancers32. Butyrate-mediated HDAC inhibition causes the upregulation of transcriptional 
regulator ID2, triggering the IL-12R signaling pathways in CD8+ T cells33. This results in an increased CD8+ T 
cell density and activation in the TIME.

In the case of IFNγ immune score, studies have reported that some bacterial genera can promote IFNγ 
secretion, including a recently defined community of 11 bacteria that induced IFNγ production preferentially 
in CD8+ T cells in the absence of immunotherapy34,35. IFNγ secretion in the TIME have also been linked to 
Bifidobacterium36. One such metabolite is inosine, a purine metabolite which induces naïve T cells to differentiate 
into CD4+ Th1, leading to increased CD8+ T-cell infiltration and IFNγ secretion, especially in combination with 
PD-L1 blockade32,37. It is worth noting that while IFNγ is classically associated with anti tumour effects, IFNγ 
can upregulate proliferative signals and allow tumour cells to escape recognition by immune cells under certain 
conditions38.

Our differential abundance analyses using center log-ratio transformed counts and five different algorithms 
showed that Sulfidibacter was significantly increased in patients with higher immune scores, including Bindea, 
ESTIMATE, and IFNγ. Additionally, Priestia was also more abundant in patients with high IFNγ scores in both 
our discovery and validation cohorts.

The presence of Sulfidibacter in the tumour microbiome was unexpected as it is a novel marine bacterium first 
isolated and identified from corals39. To date, Wang et al.39 is the only publication available which characterizes 
Sulfidibacter. However, given it was proposed as a species of Acidobacteria and members of this phylum are 
typically associated with aquatic, terrestrial, and extreme environments, Sulfidibacter is not expected nor 
likely to appear in human species. Hence, it is possible that its presence in our data is the result of taxonomic 
misclassification due to database contamination by human reads or other contamination instead of a true 
biological signal40.

Priestia is another marine bacterium previously reported as an arginase producer, an enzyme with potential 
in cancer treatment by arginine deprivation therapy41. Priestia was previously identified in a Slovakian breast 
tumour cohort by Hadzega et al.42, who conducted transcriptomic sequencing to investigate the breast tumour 
microbiome and found that Priestia was enriched in breast tumours from patients compared to normal tissues 
from cancer-free women.

Moving forward, our results may have implications for future treatment strategies to modulate IFNγ in 
the TIME via manipulation of the tumour microbiome. Already, engineered bacteria injected at tumour sites 
have been found to trigger IFNγ expression through a cascade of pathways that increases anti-tumour effects43. 
Similarly, Kim et al.44 demonstrated the use of gram-negative bacteria outer membrane vesicles to induce anti-
tumour effects through the production of anti-tumour cytokines such as IFNγ and CXCL10.

One of the strengths of our study, aside from the sizeable cohort, is the analysis strategy used to mediate 
batch effect. Batch effect has been and will continue to be a major issue with the rise of big data and large 
microbiome cohorts. Several strategies to correct it have been reported in literature including conditional 
quantile regression45, MBECS46, Limma47, and ComBat48. Still, there persists the question of whether these 
strategies could overcorrect data to the point of distorting data dispersion, resulting in the detection of false 
positive signals or the masking of true positive signals49. To avoid such data distortion, we adapted a strategy 
from Sepich-Poore et al.49 where we used one sequencing batch as an exploratory cohort and another batch as 
an independent validation cohort.

Figure 5..  Predicted copy number for the combined intratumoral microbiome, as determined by qRT-PCR 
amplification of bacterial 16S V3V4, compared to total transcript counts for all detected microbiota derived 
from RNAseq, for 20 Asian breast cancer tumour samples from the MyBrCa cohort.
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Our study does have some limitations. The dataset was not initially designed for microbiome investigations, 
and thus, there is a lack of microbiome controls to rule out environmental contamination. We attempted to reduce 
the effect of this on our findings by applying appropriate prevalence filtering, testing differential association 
on five different algorithms, and incorporating the use of a sizable validation cohort. We have also conducted 
orthogonal validation via qPCR on tumour DNA. However, we cannot completely rule out the presence of 
contaminants or false positives in our data. Additionally, the inclusion of other omics such as metabolomics, 
genomics, and gut metagenomics could provide more insights into understanding of the human microbiome 
and its role in association with cancer.

Data availability
Whole exome sequencing and RNA-seq data used in this study are accessible from the European Genome-phe-
nome Archive under accession numbers EGAS00001006518 ​(​​​h​t​t​p​s​:​/​/​e​g​a​-​a​r​c​h​i​v​e​.​o​r​g​/​s​t​u​d​i​e​s​/​E​G​A​S​0​0​0​0​1​0​0​6​5​
1​8​​​​​) and EGAS00001004518 (https://ega-archive.org/studies/EGAS00001004518). Access to controlled patient 
data will require the approval of the Data Access Committee. Further information is available from the corre-
sponding author upon request.

Code availability
Code used to produce the analysis are publicly available on GitLab at ​h​t​t​p​s​:​​​/​​/​g​i​t​l​a​​b​.​c​o​​m​/​​l​i​-​​f​a​n​g​y​​​e​o​/​m​y​b​​​r​c​a​-​t​u​​
m​o​u​r​m​​i​c​r​o​b​i​​​​o​​m​e​/​​-​​/​t​r​e​e​​/​7​6​b​7​​3​7​f​6​1​4​​f​9​c​9​7​6​​e​a​b​d​9​c​​d​e​6​2​1​​6​0​e​8​6​8​2​2​3​8​3​4​3​/.
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