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A new multivariate shared frailty model based on the truncated normal distribution is proposed. For 
the basal distribution of failure times, we assume a parametric approach through the Weibull and 
piecewise exponential distributions and also a nonparametric approach. Similar to the traditional 
gamma frailty model, the Laplace transform, the hazard and survival functions of our proposal have 
a simple and closed form. In addition, the n-th derivative of the Laplace transform can be expressed 
recursively. Parameter estimation is performed by a classical approach through the EM algorithm. 
A simulation study is presented to demonstrate the consistency of the estimators in finite samples. 
Finally, two applications to medical data modelling the recurrence of infection in renal patients and 
patients with fibrosarcoma are presented to demonstrate the effectiveness of the model compared 
to other classical approaches in the literature. The computational implementation of the model is 
available in the extrafrail package of R.
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Survival models study the time to event until a certain event of interest occurs. They are characterized by including 
censored (incomplete) information within the study, either because the individual never presented the event 
during follow-up or because the follow-up of the individual was truncated during the study. Within this context, 
due to the fact of not assuming a specific distribution for failure times, one of the most referenced models in the 
literature is Cox’s proportional hazards (PH). For xi = (xi1, . . . , xip) a set of p observed covariates (without 
intercept term), the hazard risk function for this model is given by

	 h(t | xi) = h0(t) exp(x⊤
i β),� (1)

where β = (β1, . . . , βp) denotes a vector of p observed covariates and h0(·) denotes the baseline hazard 
function. Note that this model provides a proportional hazard structure because the ratio for two individuals 
with profiles xi and xi′

	
h(t | xi)
h(t | xi′ ) = exp

(
(xi − xi′ )⊤β

)
,

does not depend on t. A way to break the proportional hazard risk assumption is by using univariate frailty 
models, although in practice the concept of frailty is more intuitive to explain in the context of data grouped 
into clusters or data that have some type of association (measurements of the same individual, for example). In 
the literature, there are many models considered for the frailty distribution in a univariate context. To name a 
few, gamma1,2, inverse gaussian (IG)3,4, Birnbaum-Saunders (BS)5,6, folded normal7, weighted Lindley (WL)8,9, 
mixture of IG10, among others, where the restriction that the frailty variable has mean 1 is usually required to 
avoid identifiability problems.

However, when the observations are grouped in clusters with different sizes, a multivariate frailty model 
framework is required. In addition to the aforementioned restriction, in this case is required that the derivatives 
of the Laplace transform have a known form because the joint density function depends on it. Few distributions 
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in the literature satisfy these conditions. The gamma, IG and the recently proposed WL shared frailty model9 
satisfies those conditions. For this reason, the literature on frailty models in a multivariate context has increased 
only for the bivariate or trivariate case, in which case all the clusters have 2 or 3 observations, respectively. In 
addition to the three distributions mentioned above, we found the generalized exponential discussed in11 and 
the generalized inverse Gaussian presented in12. The truncated normal (TN) model was mentioned as a possible 
frailty distribution in7. However, it was used without imposing any mean restrictions or reparameterization, 
applying it solely within a copula model and restricting their analysis to the bivariate case. To date, the behavior 
of the TN model in the context of frailty has not been explored for clusters larger than two, let alone for groups 
with varying sample sizes.

In this paper, we use the TN distribution as the frailty distribution for clustered survival data. For our model 
to be identifiable, we employ a TN distribution with mean one and frailty variance as the frailty distribution 
by using a new parameterization of the TN distribution. The conditional distribution of frailties among the 
survivors and the frailty of individuals dying at time t can be explicitly determined. Furthermore, we propose a 
recurrent closed form for the derivatives of the Laplace transform. For parameter estimation, we give a simple 
EM algorithm, since all conditional expectations involved in the E-step are obtained in explicit form. Finally, the 
results of this paper have been implemented into R statistical software. The manuscript is organized as follows. 
Section 2 presents a background of frailty models and introduces the TN frailty model with parameterization 
such that the mean of the distribution is 1. Section 3 discusses the estimation procedure for the model based on 
a classical approach. Section 4 presents a simulation study to assess the performance of the proposed estimators 
in finite samples. In Section 5, we present two real data, the first related to the recurrence times of patients with 
renal problems and the second fibrosarcoma data. Finally, in Section 6 are presented the main conclusions of 
this work.

Background of frailty models
In this Section, we introduce the truncated normal distribution and we present a background of frailty models. 
Then, we introduced the novelty truncated normal frailty model for the univariate and multivariate cases.

The truncated normal distribution
A variable Z has TN distribution defined in the positive axis if its probability density function (PDF) is given by

	

g(z) =
ϕ
(

z−µ
σ

)

σ Φ
(

µ
σ

) , z > 0,

where ϕ(·) and Φ(·) denote the PDF and cumulative density function (CDF) of the standard normal distribution, 
−∞ < µ < ∞ represents a location parameter and σ > 0 a scale parameter. The mean and variance of the TN 
distribution are given by

	
E(Z) = µ + σ

ϕ(µ/σ)
Φ(µ/σ) , and Var (Z) = σ2

{
1 − µ ϕ(µ/σ)

σ Φ(µ/σ) −
(

ϕ(µ/σ)
Φ(µ/σ)

)2
}

.

Considering the reparameterization ν = µ/σ and the restriction σ =
(

ν + ϕ(ν)
Φ(ν)

)−1

, we obtain that the pdf 

of the model is reduced to

	
g(z) =

γϕ

(
γz − ν

)

Φ
(
ν
) , ν ∈ R, z > 0,

� (2)

with γ = γ(ν) = ν + ϕ(ν)/Φ(ν), and the mean and variance of the model are given by

	
E(Z) = 1 and θ = Var (Z) = γ−2 − ϕ(ν)

Φ(ν)γ−1,

respectively. From now on we will use the notation TN(ν) to refer to a random variable with PDF given in 
Equation (2). We note that this parameterization was not proposed in the statistical literature. But, it is not 
possible to directly reparameterize the frailty variance in terms of θ, however, there is a one-to-one relationship 
between θ and ν. Thus, this parameterization is very useful because allows us to compare different frailty models 
also parameterized in the frailty variance directly.

Note that under the restriction E(Z) = 1, 0 ≤ θ = Var (Z) ≤ 1. In principle, this can be a disadvantage. 
However, in practice usually, the frailty variance satisfies this condition (see Section 6).

Figure 1 shows the pdf and variance of the TN(ν) model with different values for ν. The flexibility of the TN 
distribution is apparent. Furthermore, the variance of the TN distribution decreases as ν increases.

The Laplace transform for the TN(ν) model is given by
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Lg

(
s
)

=
Φ

(
κ
)

Φ
(
ν
) exp

{
s

γ

(
s

2γ
− ν

)}
, � (3)

where κ = κ(s, ν) = ν − s/γ. Let L(d)
g

(
s
)

 be the d-th derivative of the Laplace transform. For d = 1 and 

d = 2 such term is given by

	
L(1)

g

(
s
)

= −
Lg

(
s
)

γ

(
κ + ϕ(κ)

Φ(κ)

)
and L(2)

g

(
s
)

=
Lg

(
s
)

γ2

[
κ

(
κ + ϕ(κ)

Φ(κ)

)
+ 1

]
.� (4)

In13, Corollary 2.1 presents a recurrence relation for derivatives of order 3 or higher of the generating-moment 
function (denoted as Mg(·)) for the TN model. Using the property Mg(s) = Lg(−s) we can derive the 
following relation:

	
L(d)

g (s) = (d − 1)
γ2 L(d−2)

g (s) − κ

γ
L(d−1)

g (s), d = 3, 4, . . . ,� (5)

which depends on the two last derivatives, but it is simple to implement computationally. Higher-order Laplace 
transforms are provided in the table included in the Supplementary Material file. The results in Equations (4) and 
(5) are very important to the development of our approach for the TN model within the context of frailty models.

Univariate frailty models
In a univariate context, the extended Cox model with the unobserved source of heterogeneity has a conditional 
hazard function given by

	 h(t | zi, xi) = zi h0(t) exp(x⊤
i β),� (6)

where xi denotes a vector of covariates and zi is a latent variable representing the unobserved heterogeneity of 
the i-th observation. For z1, z2, . . . , zn a positive distribution is assumed (say one with pdf g(·)), typically with 
mean 1 to avoid identifiability problems14. Similar to Eq. (1), this implies that the quotient of the conditional 
hazard function of two individuals does not depend on t, but we remark that in this case it is the conditional 
(and not marginal) risk function that satisfies this property. Also note that the larger zi is, the greater the 
risk associated with that observation. The conditional survival function for the i-th individual obtained from 
equation (6) is given by

	
S(t | zi, xi) = exp

{
−

∫ t

0
h(u | zi, xi)du

}
= exp

{
− ziH0(t) exp(x⊤

i β)
}

,

Fig. 1.  PDF of the TN model and variance of the distribution in terms of ν. PDF of the TN model (left) and 
variance of the TN distribution (right).
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where H0(t) =
∫ t

0 h0(u)du represents the basal cumulative hazard function. The marginal survival function 
can be obtained as

	
S(t | xi) =

∫ ∞

0
exp

{
− ziH0(t) exp(x⊤

i β)
}

g(zi)dzi = Lg

(
H0(t) exp(x⊤

i β)
)

,

where Lg(·) corresponds to the Laplace transform of the pdf g(·). On the other hand, the marginal hazard 
function is given by

	
h(t | xi) = −∂S(t | xi)/∂t

S(t | xi)
= −

h0(t) exp(x⊤
i β) L(1)

g

(
H0(t) exp(x⊤

i β)
)

Lg

(
H0(t) exp(x⊤

i β)
) ,� (7)

where L(d)
g (·), d ∈ Z, denotes the d-th derivative of Lg(·). It is clear from Eq. (7) that the assumption PH is not 

satisfied in this case. Particularly, when Zi ∼ TN (ν), the marginal survival and hazard functions are reduced 
to

	

S(t | xi) =
Φ

(
ν − H0(t) exp(x⊤

i β)
γ

)

Φ
(
ν
) exp

{
H0(t) exp(x⊤

i β)
γ

(
H0(t) exp(x⊤

i β)
2γ

− ν

) }
, and

h(t | xi) = −h0(t)
γ

exp
(
x⊤

i β
)


ν − H0(t) exp(x⊤

i β)
γ

+
ϕ

(
ν − H0(t) exp(x⊤

i β)
γ

)

Φ
(

ν − H0(t) exp(x⊤
i

β)
γ

)

 .

� (8)

Finally, for the univariate case we present two propositions related to the conditional distribution for the frailty 
given the events T > t and T = t, respectively.

Proposition 1.1  The conditional distribution for the frailty Z | T > t, follows a TN(ε), where 
ε = ε(H0(t), ν) = ν − H0(t)/γ.

Proposition 1.2  The conditional distribution for the frailty Z | T = t follows a modified half Normal (MHN)15, 
which density function is given by

	
f(z|T = t) =

γ2 exp
(

− κ2

2

)
√

2π
(
κΦ(κ) + ϕ(κ)

)z exp
{

− γ2

2 z2 + γκz
}

.

Proofs of Propositions 1.1 and 1.2 are provided in the Supplementary Material.

Multivariate shared frailty model
In a more general context, it is possible to consider that the observations are grouped in m clusters and the 
ith cluster has ni observations, for i = 1, . . . , m. This scenario is ad hoc when the observations in the same 
cluster have some kind of dependence. For instance, measurements in the same individual, or members of the 
same family, among others. The assumption here is that all the observations related to the same cluster are 
conditionally independent given its corresponding frailty term (zi). With this assumption, we obtain that the 
conditional hazard and the joint survival function are given by

	

h(ti1, . . . , tini | zi, Xi) =
ni∑

j=1

h(tij | zi, xij) = zi

ni∑
j=1

exp
(
x⊤

ijβ
)

h0(tij), and

S(ti1, . . . , tini | zi, Xi) = exp

(
−zi

ni∑
j=1

exp
(
x⊤

ijβ
)

H0(tij)

)
,

respectively, where x⊤
ij = (xij1, . . . , xijp) denotes a vector of p covariates related to the j-th individual in the 

i-th cluster and X⊤
i = (x⊤

i1, . . . , x⊤
ini

) denotes the vector with all the information for the p covariates associated 
with the ni observations in the i-th cluster, zi represents the influence of the i-th cluster on its observations. 
Integrating zi over its density function is obtained that the marginal survival function for ti = (ti1, . . . , tini ) 
is given by

	
S(ti | Xi) = Lg

(
ni∑

j=1

H0(tij) exp(x⊤
i β)

)
,

and then, the marginal hazard function is given by
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h(ti | Xi) =

(−1)ni

ni∑
j=1

h0(tij) exp(x⊤
i β) L(ni)

g

( ni∑
j=1

H0(tij) exp(x⊤
i β)

)

Lg

( ∑ni

j=1 H0(tij) exp(x⊤
i β)

) .
� (9)

For the TN, expressions for Equation (8) can be expressed using the recursive formula in (5). For the bivariate 
case (i.e., ni = 2, ∀i = 1, . . . , m), the marginal hazard function is reduced to

	
h(ti1, ti2 | xi1, xi2) = 1

γ2

2∑
j=1

h0(tij) exp(x⊤
ijβ)

[(
ν − si

γ

) ((
ν − si

γ

)
+

ϕ
(
ν − si

γ

)

Φ
(
ν − si

γ

)
)

+ 1

]
,

where si = H0(ti1) exp(x⊤
i1β) + H0(ti2) exp(x⊤

i2β).

Kendall’s tau
Kendall’s τ  is a measure that quantifies the dependency between observations in the same cluster. This measure 
is independent of the unit of measurement of the data, so it works better than the variance and the correlation 
of the data due to its limitations (non-existence of the second moment, existence of censored observations, 
different measurement scale, see16,  page 153, for details). Considering the Laplace transform and its second 
derivative (see Equations (3) and (4), respectively), we can determine the value of τ , for TN distribution, which 
is defined as

	

τ = 4
∫ ∞

0
sL(2)(s)L(s)ds − 1,

= 4
∫ ∞

0
s

[
Φ

(
κ
)

γΦ
(
ν
)

]2

exp
{

s

γ

(
s

γ
− 2ν

)}[
κ

(
κ + ϕ(κ)

Φ(κ)

)
+ 1

]
ds − 1.

The integral is solved computationally since it does not have a closed expression. Figure 2 shows the different 
dependency values (τ ) according to the variance value for different frailty models. Note that τ ∈ [0, 0.33], for 
θ ∈ (0, 1) in the TN frailty model. We also note that, for a given frailty variance θ ∈ (0, 0.864), the TN frailty 
model produces a higher degree of dependence τ  than the GA, IG, and WL frailty models.

On the basal hazard function
The basal hazard function h0(t) is usually modeled with common distributions with positive support, such as 
Weibull, gamma, and Gompertz, among others. For the Weibull distribution, we consider the parameterization 
such as h0(t) = λρtρ−1 and H0(t) = λtρ, t, λ, ρ > 0 and we denote T ∼ W (λ, ρ) to refer to this particular 

Fig. 2.  Comparison among Kendall’s τ  for TN, weighted Lindley (WL), gamma (GA) and inverse Gaussian 
(IG).
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parameterization. The Weibull model has been widely used in the literature because it adapts well to diverse 
biological, physical, chemical, and industrial processes, to name a few. Furthermore, its hazard function 
can assume monotonic forms (increasing, decreasing, or constant), which are controlled only by ρ. On the 
other hand, the piecewise exponential (PE) distribution introduced in17 and extended in18 for the case with 
covariates. This model considers a constant risk between each predefined interval, say (a1, ..., aL) such as 
0 = a0 < a1 < ... < aL−1 < aL = ∞. This distribution is extremely useful for adapting critical points 
where there may be abrupt changes in the baseline risk function and which cannot be captured by non-
segmented distributions such as the Weibull distribution. We say that T has PE model with vector of parameters 
λ = (λ1, ..., λL) and known partition time a = (a1, ..., aL−1) (we denote T ∼ P Ea(λ)), if its survival 
function is given by

	
S(t) = exp

(
−

L∑
l=1

λl∇l(t)
)

, t > 0,

where

	
∇l(t) =

{ 0, if t < al−1,

t − al−1, if al−1 ≤ t < al,

al − al−1, if t > al.

The hazard function is given by

	 h0(t) = λℓ, t ∈ (aℓ−1, aℓ], ℓ = 1, ..., L,

and the cumulative hazard function is given by

	
H0(t) =

L∑
l=1

λl∆l(t).

In the literature, when the PE model is used in the context of frailty models, it is typically referred to as a semi-
parametric model19. However, in this work, we also consider a non-parametric form for the baseline hazard 
distribution.

Estimation
In this section, we discuss the parameter estimation for the TN frailty model. Let Yij  and Cij  be the failure and 
censoring times for the j-th individual in the i-th cluster and xij  be a p × 1 covariate vector (without intercept 
term), where 1 ≤ i ≤ m and 1 ≤ j ≤ ni. Under a right censoring scheme, we observe the random variables 
Tij = min(Yij , Cij) and δij = I(Yij ≤ Cij), where I(A) = 1 if the event A occurs (0 otherwise). We assume 
the frailty terms Z1, . . . , Zm to be a random sample from the TN(θ) distribution. Considering the following 
assumptions: 

	i)	 The pairs (Yi1, Ci1), . . . , (Yini , Cini ) are conditionally independent given Zi, and Yij  and Cij  are mutual-
ly independent for j = 1, . . . , ni.

	ii)	 Ci1, . . . , Cini  are non-informative about Zi.

Under this setting, the observed log-likelihood function is given by

	

L(β, H0, ν) =
m∏

i=1

∫ +∞

0

ni∏
j=1

[
zih0(tij) exp

(
x⊤

ijβ
)]δij exp

(
−ziH0(tij)ex⊤

ij β
)

γϕ(γzi − ν)
Φ

(
ν
) dzi

=
(

γe−ν2/2
√

2πΦ(ν)

)m

exp

(
m∑

i=1

ni∑
j=1

δijx⊤
ijβ

)
m∏

i=1

∫ ∞

0
zri

i exp
(

−bνz2
i + c

(i)
ψ zi

)
dzi

ni∏
j=1

h0(tij)δij .

where ri =
∑ni

j=1 δij  is the failures in the i-th cluster, bν = γ2/2 and c
(i)
ψ = γν −

∑ni

j=1 H0(tij)ex⊤
ij β . 

However, the last integral is related to the modified half-normal (MHN) distribution15 and it can be written as

	

∫ ∞

0
zri

i exp
(

−bνz2
i + c

(i)
ψ zi

)
dzi = 1

2 b−(ri+1)/2
ν Ψ

(
ri + 1

2 ,
c

(i)
ψ√
bν

)
,

where

	
Ψ

(
α

2 , x
)

=
∞∑

k=0

Γ( α+k
2 )

k! xk,
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is a specific case of the Fox-Wright function. The supplementary material in15 discusses different ways to 
compute this term. Therefore,

	
L(β, H0, ν) = b−(r+m)/2

ν

(
γe−ν2/2

2
√

2πΦ(ν)

)m

exp

(
m∑

i=1

ni∑
j=1

δijx⊤
ijβ

)
m∏

i=1

Ψ

(
ri + 1

2 ,
c

(i)
ψ√
bν

)
ni∏

j=1

h0(tij)δij ,

with r =
∑m

i=1 ri the total failures in the sample. In a parametric approach, H0(t) or h0(t) are specified by 
a set of parameters, say λ, and then the parameter vector is reduced to (β, λ, ν). For instance, for the Weibull 
(WEI) distribution, we use the parameterization H0(t) = λ tρ and h0(t) = λ ρ tρ−1, where t > 0 and 
λ = (λ, ρ) ∈ R2

+. From a classical approach, the ML estimator can be obtained by maximizing log L(β, λ, ν) 
relative to β, λ and ν. For the flexibility discussed in previous sections, we also consider the PE model. However, 
it can be also attractive to discuss a non-parametric approach for the baseline distribution. For this, in the next 
subsection, we consider an estimation procedure based on the EM algorithm.

EM algorithm
Given the unobservable nature of the frailty terms, the EM algorithm is an ad hoc tool to be 
applied in this context. Let t⊤

i = (ti1, ..., tini ), δ⊤
i = (δi1, ..., δini ) and x⊤

i = (xi1, ..., xini ) the 
observed times, failure indicators and covariates, related to the ni observations in the i-th cluster, 
i = 1, . . . , m. For our particular problem, Dc = (t⊤, δ⊤, X⊤, Z⊤) represents the complete data, 
where t⊤ = (t⊤

1 , ..., t⊤
m), δ⊤ = (δ⊤

1 , ..., δ⊤
m), X⊤ = (x⊤

i , ..., x⊤
m) and Z⊤ = (z1, ..., zm), where 

Do = (tT , δT , XT ) is the observed data and Z⊤ represents the vector of latent variables. Note that the complete 
likelihood function can be written as L(β, H0, ν; Dc) = L1(β, H0; Dc) × L2(ν; Z), where  L1(β, H0; Dc) 
=

∏m

i=1

∏ni

j=1

[
zih0(tij) exp(x⊤

ijβ)
]δij exp(−ziH0(tij)ex⊤

ij β) and L2(ν; Z) =
∏m

i=1 f(zi; ν).
The complete log-likelihood function is given by ℓc(β, H0, ν; Dc) = ℓ1c(β, H0; Dc) + ℓ2c(ν; Z), where 

except for a constant that does not depend on β, H0 or ν, such functions are given by

	

ℓ1c(β, H0; Dc) =
m∑

i=1

ni∑
j=1

{
δij

[
log h0(tij) + x⊤

ijβ
]

− ziH0(tij) exp(x⊤
ijβ)

}
, and

ℓ2c(ν; Z) =
m∑

i=1

{
log γ − log Φ(ν) − 1

2 log(2π) − 1
2

(
z2

i γ2 − 2γνzi + ν2)}
.

Let ψ(k) =
(

β(k), H
(k)
0 , ν(k)

)
 be the estimated vector of ψ = (β, H0, ν) at the k-th iteration and

	 Q(ψ | ψ(k)) = E
(
ℓc(β, H0, ν; Dc) | Do, ψ = ψ(k)) ,

i.e., the conditional expectation of ℓc(β, H0, ν; Dc) given the observed data and ψ(k). Note that 
Q(ψ | ψ(k)) = Q1((β, H0) | ψ(k)) + Q2(ν | ψ(k))

	
Q1((β, H0) | ψ(k)) =

m∑
i=1

ni∑
j=1

{
δij

[
log h0(tij) + x⊤

ijβ
]

− ẑ
(k)
i H0(tij) exp(x⊤

ijβ)
}

, and � (10)

	
Q2(ν | ψ(k)) =

m∑
i=1

{
log γ − log Φ(ν) − 1

2 log(2π) − 1
2

(
ẑ2

i

(k)
γ2 − 2γνẑ

(k)
i + ν2)}

, � (11)

where ẑ(k)
i = E

[
Zi | Do, ψ = ψ(k)] and ẑ2

i

(k)
= E

[
Z2

i | Do, ψ = ψ(k)]. It is possible to show that

	
Zi | t⊤

i , δ⊤
i ∼ MHN

(
ai = 1 + ri, bν = γ2

2 , c
(i)
ψ = γν −

ni∑
j=1

H0(tij) exp(x⊤
ijβ)

)
.� (12)

Refer to the supplementary material file for a proof of this fact. Using this notation, and applying Lemma 2 from 
Sun et al.15, it follows immediately that
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ẑ
(k)
i = E

(
Zi | Do, ψ = ψ(k)) =

Ψ
(

ri+1
2 ;

c
(i)
ψ√
bν

)

√
bνΨ

(
ri
2 ;

c
(i)
ψ√
bν

) , and

ẑ2
i

(k) = E
(
Z2

i | Do, ψ = ψ(k)) =
Ψ

(
ri+1

2 ;
c

(i)
ψ√
bν

)

bνΨ
(

ri
2 ;

c
(i)
ψ√
bν

) .

� (13)

On the other hand, it is possible to construct a discrete version of the cumulative baseline hazard function, 
considering HD

0 (t) =
∑

ℓ:t(ℓ)≤t
H0(t(ℓ)), where t(1), . . . , t(q) are the ordered distinct failure times and q is the 

number of different observed failure times. Replacing H0(·) and h0(·) in Equation (9) is obtained

	

Q1((β, H0) | ψ(k)) =
q∑

ℓ=1

d(ℓ) log
[
h0(t(ℓ))

]
+

m∑
i=1

ni∑
j=1

δijx⊤
ijβ −

q∑
ℓ=1

h0(t(ℓ))
∑

i,j∈R(t(ℓ))

ẑ
(k)
i ex⊤

ij β.

Replacing the solution for h0(t(ℓ)), i.e., ̂h0(t(ℓ)) = d(ℓ)/
[∑

i,j∈R(t(k)) exp
(
x⊤

ijβ + log ẑ
(ℓ)
i

)]
, the expression 

for Q1 is reduced, up to a constant that does not depend on β, to

	

Q1(β | ψ(k)) = −
q∑

ℓ=1

d(ℓ) log


 ∑

i,j∈R(t(ℓ))

exp
(
x⊤

ijβ + log ẑ
(k)
i

)
 +

m∑
i=1

ni∑
j=1

δijx⊤
ijβ.

Note that Q1(·) has the same form of the partial log-likelihood function of the Cox model, except for the offset 
log ẑ

(k)
i . For this, to update β in the M-step we can use the Cox approach. Finally, the non-parametric estimator 

for H0(·) in the k-th step of the algorithm is given by

	

Ĥ
(k)
0 (t) =

∑
ℓ:t(ℓ)≤t

d(ℓ)∑
i,j∈R(t(ℓ)) exp

(
x⊤

ijβ(k) + log ẑ
(k)
i

) , t > 0.

In summary, the EM algorithm is given by the following steps.

•	 E-step: For i = 1, ..., m, compute ẑ(k+1)
i  and ẑ2

i

(k+1)
 using equations (12) and (13), respectively, with β(k), 

H0(·)(k) and ν(k) as the estimated parameters at the k-th iteration.
•	 M1-step: Update β(k+1) and H(k+1)

0 (·) by fitting a Cox regression model with offset log ẑ
(k+1)
i  for the 

nonparametric case, or maximizing Q1(β, H0) for the parametric (WEI) and semi-parametric (PE) cases.
•	 M2-step: Update ν(k+1) by maximizing Q2(ν | ψ(k)) in relation to ν.

Maximization around H0 refers to optimizing the parameters in H0(·): ρ and λ for the Weibull baseline 
distribution, or the vector λ for the piecewise exponential case. The unified formulation ensures algorithmic 
generality. The algorithm iterates until a convergence criterion is satisfied. For instance, we consider 
||ψ̂

(k−1)
− ψ̂

(k)
|| < ϵ, where ϵ is a predefined value and || · || denotes the Euclidean norm. Initial values are 

derived from the ordinary Cox model, taking ν(0) = 0.5. On the other hand, following the suggestion of20, 
we estimate the standard error of β̂ and ν̂ via a profile log-likelihood function: ℓ(β, ν) = log L(β, H0, ν), 
replacing H0 with its estimate Ĥ0. The variance-covariance matrix of (β̂, ν̂) is then:

	
I(β̂, ν̂) = − ∂2ℓ(β, ν)

∂(β, ν)∂⊤(β, ν)

∣∣∣∣∣
β=β̂,ν=ν̂

.

Finally, more important than ν̂ is θ̂ := γ̂−2 − ϕ(ν̂)
Φ(ν̂)

γ̂−1 (the frailty variance) because allows us to compare 

this term with the variance of other models parameterized directly in the frailty variance. The variance of θ̂ is 
estimated as:

	
V̂ ar(θ̂) = V̂ ar(ν̂)

[
ϕ(ν̂)
Φ(ν̂)

γ̂−2
(

1 − ϕ(ν̂)
Φ(ν̂)

γ̂

)
− 2γ̂−3

(
1 − ϕ(ν̂)

Φ(ν̂)
γ̂

)
+ ϕ(ν̂)

Φ(ν̂)

]2

.
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Remark 1  Note that the result in Equation (11) is also interesting if a Bayesian approach were applied to the 
model, because also is valid conditioning on the parameters. This facilitates, among other things, the application 
of an MCMC type method to simulate from the corresponding conditional distribution related to the frailties.

Computational aspects
The extrafrail21 package of R22 includes the computational implementation for the TN frailty model 
considering as the baseline model the Weibull, exponential and PE distributions and the non-parametric 
specification. For instance, to fit the Weibull case, it can be used

frailty.fit(formula, data, dist = “weibull”, dist.frail=“TN”)
whereas is usually in survival analysis with random effects in R, the formula can be defined as
Surv(time, event) ∼ covariates + cluster(id)
A similar syntax can be used to fit the other cases specifying dist=“exponential”, dist=“pe” or 

dist=“np” in the last sentence. We highlight that the function allows us to perform the estimation even for 
the case where the clusters have different sizes (i.e., n1, n2, ,nm are not necessarily the same).

Simulation study
In this Section, we present a simulation study to assess the performance of the maximum likelihood estimators 
obtained via the EM algorithm with samples of different percentages of censoring.

Recovery parameters
We consider the following three different scenarios:

•	 Scenario 1: 19 clusters with 2 observations each and 19 clusters with 4 observations each, totalling 114 obser-
vations. (n1 = . . . = n19 = 2, n20 = . . . = n38 = 4 and m = 38).

•	 Scenario 2: 38 clusters with 2 observations each and 38 clusters with 4 observations each, totalling 228 obser-
vations. (n1 = . . . = n38 = 2, n39 = . . . = n76 = 4 and m = 76).

•	 Scenario 3: 19 clusters with 4 observations each and 19 clusters with 8 observations each, totalizing 228 ob-
servations. (n1 = . . . = n19 = 4, n20 = . . . = n38 = 8 and m = 38).

The idea is to verify if, under a certain amount of data, it is advisable to increase the number of clusters or increase 
the cluster observations. We consider as baseline model the PE distribution with L = 3 and time partition 
a = (7/365, 56/365). Similar to the real data application, we also consider one dichotomous covariate x, which 
was drawn from the Bernoulli distribution with success probability 20/76. We also consider three values for θ, 
the variance of the frailty terms: 0.20, 0.50 and 0.75. The percentage of censoring was fixed at 10%, 25% and 50%. 
In all the cases, the regression coefficient was fixed as β = 1.8 and the parameters from the PE distribution were 
fixed as λ = (λ1 = 0.3, λ2 = 2.6, λ3 = 1.9). To simulate values from the model, we use the following steps: 

	 i)	 Draw zi ∼ TN (ν), i = 1, . . . , m, using the inverse transform method, i.e., do 

zi =
(

Φ−1(
uiΦ(ν) + Φ(−ν)

)
+ ν

)
γ−1, where ui ∼ U (0, 1) (the standard uniform distribution).

	ii)	 Draw the failure times from the conditional distribution yij | zi ∼ PE (λzi exp(x⊤
ijβ), a).

	iii)	 Define the censoring times, cij , as the 100 × (1 − q)-th quantile of the corresponding conditional distri-
bution PE (λzi exp(x⊤

ijβ), a) distribution.
	iv)	 Define the observed failure times and failure indicators as tij = min(yij , cij) and δij = I(yij ≤ cij), re-

spectively, for i = 1, . . . , m, j = 1, . . . , ni.

For each scenario and combination of censoring and θ, we draw 1,000 samples and compute the ML estimates. 
For each parameter, Tables 1 and 2 summarized the average bias (bias), the root of the estimated mean squared 
error (RMSE), the mean of the standard errors (SE) and the coverage probabilities (CP) of the asymptotic 95% 
confidence intervals.

An increase in the sample size improves the precision and accuracy of the estimates. In particular, scenarios 
2 and 3, which have larger sample sizes, exhibit better performance than scenario 1. In general, an increase 
in heterogeneity (θ) and in the censoring percentage tends to raise the bias, standard error, and RMSE, while 
reducing coverage probability (CP). However, the behavior of the estimator for θ improves under higher 
censoring, showing reduced bias and increased coverage, possibly due to a better identification of the random 
effect in the presence of censored events. The most affected estimator is λ3, since censored information tends to 
concentrate within its interval. When comparing Scenarios 2 and 3, the former yields better results. This suggests 
that for a fixed total sample size, increasing the number of clusters is preferable to increasing the number of 
observations per cluster. This leads to greater diversity in latent effects, which enhances the estimation of frailty 
terms.

Applications with real data sets
In this Section, we present two applications to illustrate the performance of the TN frailty model in comparison 
with traditional models. The first application is related to patients with Chronic Kidney Disease (CKD), while 
the second application is related to patients with fibrosarcoma.

Kidney data set
CKD is the slow and progressive loss of kidney function over time. The main job of these organs is to remove 
waste and excess water from the body. This disease may be asymptomatic for some time until the kidneys have 
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almost stopped working, whereupon kidney disease usually subsides, diagnosed in its final stages. The final stage 
of CKD is called End-Stage Renal Disease (ESRD). At this stage, the kidneys can no longer sufficiently remove 
waste and excess fluid from the body, requiring the patient to undergo dialysis (a life-sustaining treatment) 
or a kidney transplant (US National Library of Medicine). Dialysis is broken down into two main modalities: 
hemodialysis and peritoneal dialysis. Hemodialysis consists of extracting blood from the body to direct it to a 
machine that eliminates waste and excess fluid; after filtration, it is reintroduced into the bloodstream. Peritoneal 
dialysis, for its part, is a simpler process and can be done on an outpatient basis. Liquid is inserted into the 
peritoneal cavity through a catheter located in the stomach. This solution absorbs waste and excess fluid and is 
later extracted. The solution is removed through the same channel.

CKD represents one of the most important non-communicable diseases worldwide23. For many patients, 
dialysis is the focal point around which their lives revolve, not only because of the time spent travelling to 
and from the sessions in specialized centres and the time dedicated to the dialysis treatment itself but also due 
to the diet that accompanies it, fluid restrictions and medication load24. Thus, one of the most advantageous 
options, considering quality of life, is treatment by ambulatory peritoneal dialysis (with a portable machine). 
The peritoneal catheter is a foreign body that facilitates the appearance of infections and serves as a reservoir 
for bacteria. Infection can appear both in the exit orifice and the tunnel (tunnelled path of the catheter) or 
the peritoneum (peritonitis). Peritonitis continues to be an important complication of PD, as it contributes to 
technique failure, hospitalization, and even death25.

We focus on a real dataset named kidney, available in the R22 package frailtyHL26. For further details, see page 
11 of its documentation: ​h​t​t​p​s​:​​/​/​c​r​a​n​​.​r​-​p​r​o​​j​e​c​t​.​o​​r​g​/​w​e​​b​/​p​a​c​k​​a​g​e​s​/​f​​r​a​i​l​t​y​​H​L​/​f​r​a​i​l​t​y​H​L​.​p​d​f. The study collected 
bivariate times, consisting of the times of first and second recurrence of infection at the catheter insertion point 
in patients with kidney problems using a portable dialysis machine. The catheter is later removed if infection 

Censoring θ Parameter

Scenario 1 Scenario 2 Scenario 3

Bias RMSE SE CP Bias RMSE SE CP Bias RMSE SE CP

10%

0.20

θ −0.003 0.109 0.106 0.894 0.003 0.074 0.073 0.922 −0.011 0.081 0.076 0.887

β 0.005 0.299 0.286 0.941 −0.026 0.213 0.201 0.940 −0.020 0.201 0.193 0.945

λ1 0.076 0.243 0.261 0.941 0.019 0.171 0.166 0.863 0.028 0.177 0.173 0.875

λ2 0.053 0.645 0.599 0.877 0.071 0.460 0.413 0.854 0.049 0.483 0.445 0.874

λ3 −0.073 0.462 0.414 0.857 −0.089 0.331 0.279 0.819 −0.059 0.333 0.290 0.848

0.50

θ −0.076 0.204 0.210 0.806 −0.044 0.150 0.152 0.871 −0.077 0.173 0.160 0.793

β −0.053 0.322 0.287 0.913 −0.046 0.238 0.193 0.877 −0.044 0.206 0.188 0.918

λ1 0.086 0.265 0.203 0.708 0.026 0.193 0.096 0.494 0.024 0.191 0.129 0.655

λ2 0.058 0.741 0.457 0.615 0.004 0.511 0.224 0.425 0.022 0.558 0.341 0.604

λ3 −0.224 0.595 0.377 0.601 −0.237 0.453 0.197 0.460 −0.186 0.448 0.255 0.598

0.75

θ −0.226 0.307 0.26 0.695 −0.172 0.237 0.202 0.750 −0.182 0.261 0.220 0.726

β −0.082 0.329 0.282 0.888 −0.092 0.246 0.193 0.859 −0.047 0.213 0.186 0.920

λ1 0.080 0.265 0.162 0.569 0.039 0.203 0.068 0.345 0.025 0.191 0.105 0.546

λ2 −0.081 0.790 0.357 0.464 −0.048 0.538 0.15 0.278 −0.047 0.642 0.285 0.456

λ3 −0.419 0.708 0.300 0.443 −0.413 0.578 0.153 0.304 −0.274 0.522 0.226 0.463

25%

0.20

θ 0.038 0.149 0.137 0.937 0.030 0.102 0.089 0.942 0.006 0.095 0.087 0.915

β −0.052 0.344 0.307 0.917 −0.053 0.234 0.216 0.922 −0.044 0.225 0.210 0.940

λ1 0.099 0.258 0.285 0.977 0.027 0.226 0.179 0.903 0.030 0.199 0.182 0.919

λ2 0.086 0.673 0.647 0.924 0.066 0.467 0.455 0.915 0.047 0.491 0.482 0.932

λ3 −0.119 0.548 0.478 0.852 −0.180 0.401 0.325 0.817 −0.154 0.400 0.330 0.829

0.50

θ −0.048 0.200 0.239 0.856 0.001 0.171 0.187 0.915 −0.045 0.187 0.185 0.830

β −0.105 0.353 0.307 0.903 −0.103 0.261 0.217 0.886 −0.070 0.230 0.209 0.919

λ1 0.107 0.277 0.248 0.823 0.037 0.184 0.141 0.717 0.044 0.187 0.168 0.831

λ2 0.060 0.771 0.565 0.736 0.045 0.519 0.362 0.659 0.042 0.568 0.468 0.792

λ3 −0.416 0.687 0.415 0.606 −0.398 0.554 0.274 0.508 −0.295 0.519 0.331 0.658

0.75

θ −0.195 0.288 0.298 0.771 −0.119 0.218 0.243 0.838 −0.173 0.254 0.241 0.763

β −0.126 0.370 0.309 0.901 −0.117 0.272 0.216 0.876 −0.099 0.242 0.208 0.915

λ1 0.104 0.277 0.229 0.762 0.050 0.207 0.122 0.590 0.040 0.201 0.149 0.720

λ2 0.003 0.817 0.531 0.653 −0.025 0.541 0.299 0.531 −0.025 0.659 0.426 0.659

λ3 −0.600 0.813 0.366 0.459 −0.561 0.672 0.225 0.353 −0.411 0.594 0.298 0.508

Table 1.  Estimated bias, RMSE, SE and approximated 95% coverage probabilities for the TN frailty model with 
basal distribution PE under different scenarios (cases censoring 10% and 25%).
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occurs and can be removed for other reasons, in which case the observation is censored. Available covariates are 
sex and type of kidney disease: Glomerulonephritis (GN), acute nephritis (AN), Polycystic kidney disease (PKD) 
and others. Previous analysis suggests that only sex is significant in this context27. The study has 38 patients, 10 
men and 28 women, each person has 2 times of recurrence of the infection, so there are a total of 76 observations. 
A summary of such times is presented in Table 3 and Figure 3 presents the Kaplan-Meier (KM) estimator by 
both times and by sex.

For comparison purposes, we also consider the GA, WL and IG frailty models with baseline distribution 
WE and PE. Figure 4 shows the cumulative hazard function for the kidney data. The proposed partition for 
the PE model was set at 1 and 8 weeks (indicated by the vertical segments in the graph). A change in the slope 
behavior is evident, as highlighted in the zoomed-in view on the right. This supports the conclusion that the PE 
model provides a better fit than a non-segmented model for this dataset. Practically, this suggests that the risk of 
infection at the catheter insertion site is highest during the first week post-insertion and gradually decreases over 
time. After two months, the risk stabilizes and remains relatively low. This understanding can help healthcare 
professionals in identifying critical time periods for infection prevention and monitoring patients accordingly.

Table 4 shows the Akaike information criterion (AIC)28 and the Bayesian information criterion (BIC)29 
for such models. According to the AIC and BIC criteria, it is suggested that the baseline PE model is more 
appropriate for this data than the WE model, independent of the frailty model used. However, the TN frailty 
model provides better results. Table 5 presents the estimates for all the models considering the PE baseline 
distribution, including the ordinary PE model (i.e., without frailty).

Note that the effect of not considering the dependence among the clusters is the underestimation of the 
effect for sex. On the other hand, the estimated Kendall’s τ  for the different models is around 0.13. However, 
the estimated frailty variance for GA, WL and IG is overestimated by at least 50% concerning the frailty TN 
model. In practical terms, this means that the TN frailty model estimates a greater effect of sex on the recurrence 
of infection at the catheter insertion point and less variability between the measures associated with the same 
individual.

Fibrosarcoma data set
Fibrosarcoma is a rare malignant tumor that originates from fibroblasts, the connective tissue cells responsible 
for the production of collagen and extracellular matrix. This neoplasm exhibits infiltrative growth, a high 
propensity for local recurrence, and metastatic potential. It can develop in any part of the body, although it is 
most commonly found in the extremities, trunk, and retroperitoneal region. Clinically, it typically presents as a 
progressively enlarging mass, initially painless. Diagnosis is based on histopathological findings, where tumor 

n min Q1 median mean Q3 max

TR1 38 0.005 0.042 0.126 0.306 0.403 1.468

TR2 38 0.011 0.049 0.107 0.251 0.395 1.540

Table 3.  Summary of the first and second time of recurrence (TR1 and TR2).

 

Censoring θ Parameter

Scenario 1 Scenario 2 Scenario 3

Bias RMSE SE CP Bias RMSE SE CP Bias RMSE SE CP

50%

0.20

θ 0.054 0.199 0.191 0.904 0.064 0.155 0.131 0.950 0.007 0.107 0.107 0.928

β −0.116 0.377 0.352 0.944 −0.113 0.286 0.248 0.925 −0.092 0.267 0.241 0.926

λ1 0.121 0.279 0.309 0.994 0.046 0.194 0.196 0.947 0.044 0.198 0.194 0.941

λ2 0.086 0.667 0.683 0.964 0.032 0.468 0.480 0.951 −0.010 0.492 0.491 0.930

λ3 −0.533 0.841 0.588 0.682 −0.576 0.717 0.405 0.596 −0.486 0.660 0.421 0.674

0.50

θ −0.038 0.241 0.302 0.861 0.030 0.203 0.243 0.912 −0.041 0.199 0.214 0.840

β −0.191 0.446 0.366 0.893 −0.191 0.342 0.260 0.863 −0.141 0.294 0.249 0.908

λ1 0.135 0.304 0.315 0.971 0.060 0.200 0.200 0.933 0.057 0.217 0.198 0.937

λ2 −0.053 0.729 0.708 0.894 −0.093 0.534 0.504 0.868 −0.082 0.596 0.552 0.883

λ3 −0.917 1.059 0.485 0.443 −0.884 0.971 0.353 0.335 −0.716 0.855 0.407 0.463

0.75

θ −0.205 0.316 0.355 0.776 −0.133 0.247 0.290 0.822 −0.182 0.273 0.270 0.754

β −0.247 0.483 0.374 0.865 −0.232 0.366 0.263 0.842 −0.162 0.307 0.25 0.896

λ1 0.168 0.328 0.325 0.945 0.089 0.233 0.206 0.911 0.051 0.203 0.194 0.911

λ2 −0.219 0.794 0.675 0.816 −0.196 0.593 0.499 0.824 −0.135 0.641 0.555 0.852

λ3 −1.076 1.178 0.412 0.296 −1.047 1.103 0.307 0.193 −0.798 0.902 0.381 0.408

Table 2.  Estimated bias, RMSE, SE and approximated 95% coverage probabilities for the TN frailty model with 
basal distribution PE under different scenarios (case censoring 50%).
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cells are arranged in a characteristic herringbone pattern, and is often supported by immunohistochemical 
studies to differentiate it from other soft tissue tumors30. The treatment of choice is surgical excision with wide 
margins, and adjuvant radiotherapy is frequently considered; chemotherapy is generally reserved for advanced 
or metastatic cases31.

This dataset includes information from 251 patients diagnosed with fibrosarcoma SOE (from the portugues 
“sem outra especificacão, meaning “not otherwise specified”) with diagnosis dates ranging from 2000 to 2022, and 
follow-up data extending through December 2022. The dataset was obtained from the Oncocenter Foundation 
of São Paulo, Brazil (Fundacão Oncocentro de São Paulo, FOSP), which oversees the Hospital Cancer Registry 

Fig. 4.  Cumulative hazard function for kidney dataset considering all the axis time (left panel) and zoom for 
the 100 first days (right panel).

 

Fig. 3.  KM estimator for kidney K-M for kidney dataset considering recurrence time (left panel) and sex (right 
panel).
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of the State of São Paulo (http://fosp.saude.sp.gov.br). This neoplasm is coded as 8810/3 Fibrosarcoma, NOS (not 
otherwise specified), according to the International Classification of Diseases for Oncology (ICD-O32), which 
is used in cancer registries to classify tumors that lack further histological subtyping at the time of diagnosis.

Cancer-specific death was defined as the event of interest, and time-to-event was measured from the date 
of diagnosis to the patient’s death (in years: mean= 5.72, standard deviation (SD)= 5.78, median= 3.12, 
range= 0.025 − 21.86). During the follow-up period, a total of 103 events (39%) occurred. As covariates we 
use the type of treatment, with eight possible labels: A - surgery (84 patients, 32.2%), B - Radiotherapy (14 
patients, 5.4%), C - Chemotherapy (18 patients, 6.9%), D - Surgery + Radiotherapy (42 patients, 16.1%), E 
- Surgery + Chemotherapy (34 patients, 13.0%), F - Radiotherapy + Chemotherapy (11 patients, 4.2%), G - 
Surgery + Radiotherapy + Chemotherapy (29 patients, 11.1%) and I - other combination (29 patients, 11.1%). 
Figure 5 presents the KM estimator by both times and type of treatment. The clusters considered in this analysis 
correspond to the 26 clinical areas responsible for treating the patients, which are summarized in Table 6. Note 

Fig. 5.  Kaplan-Meier estimator for the fibrosarcoma data with 95% confidence interval (left panel) and 
stratified by treatment received (right panel).

 

Parameter TN GA WL IG Without frailty

βsex 1.763 (0.448) 1.644 (0.467) 1.658 (0.470) 1.417 (0.408) 0.935 (0.284)

λ1 0.328 (0.339) 0.344 (0.357) 0.341 (0.355) 0.384 (0.396) 0.505 (0.509)

λ2 3.214 (0.808) 3.421 (0.874) 3.406 (0.872) 3.677 (0.921) 3.801 (0.785)

λ3 2.217 (0.551) 2.377 (0.673) 2.376 (0.667) 2.365 (0.747) 1.689 (0.350)

θ 0.191 (0.111) 0.333 (0.194) 0.328 (0.183) 0.399 (0.341) -

τ 0.118 0.143 0.143 0.130 -

Table 5.  Estimates, standard errors (in parenthesis) and Kendall’s τ  for the TN, GA, WL and IG frailty model 
with baseline PE and the ordinary PE model for kidney dataset.

 

TN GA WL IG -

WE PE WE PE WE PE WE PE PE

log-Like 10.230 14.786 9.8384 14.289 9.8914 14.321 8.7783 13.676 11.544

AIC −12.460 -19.573 −11.677 −18.577 −11.783 −18.642 −9.5566 −17.353 −15.088

BIC −3.1371 -7.9192 −2.3539 −6.9236 −2.4599 −6.9885 −0.2337 −5.6991 −5.7649

Table 4.  Maximized log-likelihood function (log-Like), AIC and BIC of the TN, GA, WL and IG models for 
kidney dataset.
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that these clusters are highly unbalanced in terms of sample size. In this analysis, we consider the TN, GA, WL, 
and IG frailty models, using the Weibull distribution for the baseline hazard. The results are summarized in 
Table 7. Notably, the TN frailty model provides the lowest AIC among the models considered. Once again, the 
Kendall’s τ  values provided by the models are similar. However, the estimated intra-cluster variance (0.226) is 
lower for the TN model compared to the others. Finally, Figure 6 shows the survival functions (SF) for patients 
treated in neurology and clinical oncology centers, as well as the marginal SF (i.e., the SF for a patient randomly 
selected from the entire cohort).

Concluding remarks
A new survival model with TN frailty was proposed and studied in detail. This model can lead to a complex 
structure for the data, because allows to modelling of univariate and multivariate data, being adaptable even for 
groups of different sizes. For the baseline risk, the Weibull, and PE distributions were adopted as well as a non-
parametric approach. For a fixed variance for the frailty, the TN frailty model provides a greater Kendall’s than 
the gamma and IG frailty models. We get a recursive closed-form expression for the derivatives of the Laplace 
transform for the TN model. Furthermore, the conditional distributions of frailties among the survivors and 
the frailty of individuals dying at time t were determined explicitly. The simulation studies, based on the EM 
algorithm, conclude that having more complete information relative to the censored information improves the 
accuracy and precision of the estimate. Scenarios 2 and 3 did not have a large difference in bias, this suggests 
that the bias depends on the sample size, not on the data configuration. On the other hand, concerning the 
RMSE and SE, Scenario 2 showed an improvement in precision for Scenario 3. This suggests that increasing the 
information in the clusters increases the precision compared to having clusters with little information but more 
numerous. We fitted the proposed frailty model to a real dataset on times to the first and second recurrence of 
infection at the catheter insertion point in patients with kidney problems using a portable dialysis machine to 
show the potential of using the new frailty model. This application demonstrates the practical relevance of the 
new regression model. In particular, the estimated frailty variance for GA, WL and IG is overestimated in the 
frailty TN model.

Parameter TN GA WL IG Without frailty

βB 1.163 (0.471) 1.143 (0.476) 1.140 (0.476) 1.168 (0.478) 1.284 (0.460)

βC 2.664 (0.401) 2.638 (0.407) 2.643 (0.408) 2.578 (0.402) 2.450 (0.381)

βD 0.767 (0.364) 0.749 (0.367) 0.747 (0.367) 0.769 (0.369) 0.939 (0.358)

βE 1.422 (0.367) 1.408 (0.374) 1.414 (0.374) 1.345 (0.372) 1.169 (0.358)

βF 2.749 (0.454) 2.772 (0.457) 2.775 (0.457) 2.754 (0.453) 2.651 (0.437)

βG 1.155 (0.361) 1.150 (0.362) 1.148 (0.362) 1.169 (0.363) 1.281 (0.358)

βI 0.106 (0.465) 0.114 (0.467) 0.113 (0.467) 0.131 (0.466) 0.174 (0.460)

λ 0.058 (0.018) 0.059 (0.019) 0.059 (0.019) 0.060 (0.019) 0.061 (0.017)

ρ 0.655 (0.055) 0.654 (0.055) 0.655 (0.055) 0.647 (0.055) 0.627 (0.053)

θ 0.226 (0.132) 0.337 (0.250) 0.346 (0.248) 0.271 (0.289) -

τ 0.139 0.144 0.150 0.099 -

AIC 645.1 647.4 647.3 649.0 650.1

BIC 680.7 683.1 682.9 684.7 682.1

Table 7.  Parameter estimates, standard errors (in parentheses), and Kendall’s τ  for TN, GA, WL, and IG frailty 
models assuming a Weibull baseline hazard.

 

Allergy – immunology (1) Cardiac surgery (1) Head and neck surgery (1) General surgery (1)

Pediatric surgery (1) Plastic surgery (2) Thoracic surgery (2) Vascular surgery (2)

Medical clinic (2) Dermatology (3) Endocrinology (3) Gastrosurgery (3)

Gastroenterology (3) Geriatrics (4) Ginecology (5) Gynecology – Obstetrics (6)

Hematology (8) Infectology (8) Nefrology (11) Neurosurgery (12)

Neurology (12) Ophthalmology (13) Surgical Oncology (14) Clinical Oncology (32)

Pediatric Oncology (34) Orthopedics (77)

Table 6.  Number of records per medical specialty (cluster size in parenthesis).
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Data availability
The real dataset used, named kidney, is available in the frailtyHL package in R. For details on its use, refer to page 
11 of the manual: ​h​t​t​p​s​:​​​/​​/​c​r​a​​n​.​​r​-​p​r​o​j​e​​c​t​​.​o​​r​g​/​​​w​e​b​/​p​a​​c​k​a​​g​e​​s​/​f​r​a​i​​l​​t​y​H​L​/​f​r​a​i​l​​t​y​H​L​.​p​d​f.
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