Table 6 Comparison of developed model with traditional machine learning classifiers and recent deep learning models.

From: Adaptive deep SVM for detecting early heart disease among cardiac patients

Deep learning technique

Methods

GCN21

RawECGNet22

O-SBGC-LSTM3

EAVSRO-AD-SVM

Accuracy

Adam

89.35

91.15

88.6

96.37681

SGD

87.6

90.425

87.975

96.58863

RMSprop

88.875

89.975

87.425

96.20553

Adagrad

89.675

91.45

90.625

96.95652

Gradient Descent

88.725

91.475

90.525

96.70807

Precision

Adam

89.3

91.3

88.8

88.75171

SGD

87.3

90.3

87.9

89.87138

RMSprop

89.4

89.9

87.4

89.88327

Adagrad

89.8

91.6

90.7

91.48936

Gradient Descent

89.1

91.7

90.5

91.38462

MCC

Adam

0.741

0.782

0.725

98.4197

SGD

0.702

0.765

0.711

98.35304

RMSprop

0.732

0.755

0.699

97.81746

Adagrad

0.749

0.789

0.770

98.36066

Gradient Descent

0.729

0.790

0.768

98.05447

Machine learning technique

Optimizers

TML-EML13

Machine learning- based framework26

LS-SVM27

SVM29

Accuracy

Adam

87.600

91.275

89.400

96.37681

SGD

89.425

89.775

89.150

96.58863

RMSprop

88.150

88.650

88.575

96.20553

Adagrad

89.425

91.200

90.975

96.95652

Gradient Descent

88.525

91.850

90.475

96.70807

Precision

Adam

87.400

91.200

89.200

88.75171

SGD

89.800

89.600

89.100

89.87138

RMSprop

88.100

88.300

88.700

89.88327

Adagrad

89.500

91.200

91.000

91.48936

Gradient Descent

88.600

92.100

90.400

91.38462

MCC

Adam

0.702

0.785

0.742

98.4197

SGD

0.744

0.750

0.737

98.35304

RMSprop

0.715

0.725

0.725

97.81746

Adagrad

0.743

0.783

0.778

98.36066

Gradient Descent

0.723

0.799

0.766

98.05447