
Improvement in genetic evaluation 
of quantitative traits in sheep 
by enriching genetic model with 
dominance effects
Farhad Ghafouri-Kesbi1, Morteza Mokhtari2 & Mohsen Gholizadeh3

Although dominance effects play a major role in quantitative genetics, most studies on 
quantitative traits have often neglected dominance effects, assuming alleles act additively. 
Therefore, the aim followed here was to quantify the proportion of variation in the early growth 
of Baluchi sheep that was attributed to dominance effects. Data collected over a 28-year 
period at the Baluchi sheep breeding station was used in this study. Traits evaluated were birth 
weight (BW), weaning weight (WW) and average daily gain (ADG). Each trait was analyzed with 
a series of twelve animal models which included different combinations of additive genetic, 
dominance genetic, maternal genetic and maternal permanent environmental effects. The 
Akaike’s information criterion (AIC) was used to rank models. The predictive ability of models was 
measured using the mean squared error of prediction (MSE) and Pearson’s correlation coefficient 
between the real and predicted values of records (r( y, ŷ)). Correlations between traits due to 
additive and dominance effects were estimated using bivariate analyses. For all traits studied, 
including dominance effects improved the likelihood of the fitting model. In addition, models that 
included dominance effects had the better predictive ability as provided higher r( y, ŷ) and lower 
MSE. However, accounting for dominance effects significantly increased the computing burden 
evidenced by considerably longer computing time and a huge amount of memory required. By 
including dominance effects in the model, additive genetic variance did not change, but residual 
variance decreased significantly up to 41%, which indicated that the dominance component 
distangelled from residual variance. For BW, WW and ADG, dominance genetic variance was 
6.61, 1.91, and 2.73 times greater than additive genetic variance and contributed 87%, 65% and 
73% to the total genetic variance, respectively. Estimates of dominance heritability ( h2

d), were 
0.29 ± 0.06, 0.15 ± 0.07 and 0.20 ± 0.07 for BW, WW and ADG, respectively. Additive heritability 
( h2

a), was 0.05 ± 0.01 for BW, 0.08 ± 0.02 for WW and 0.07 ± 0.02 for ADG, respectively. By including 
dominance effects in the model, the accuracy of additive breeding values increased by 8%, 8% and 
11% for BW, WW and ADG, respectively. Correlation between additive breeding values obtained 
from the best model and the best model without dominance effects were close to unity for all 
traits studied, indicating negligible changes in the additive breeding values and little chance for 
re-ranking of top animals across models. While additive genetic correlations were all positive and 
high, the dominance genetic correlation between WW and ADG was positively high (0.99), and 
between other pairs of traits was negative. Although the inclusion of dominance effects in the 
model did not change the ranking of top animals and had high computational requirements, it 
improved the predictive performance of the model and led to a significantly better data fit and 
an increase in the accuracy of additive breeding values. Therefore, including dominance effects 
in the model for genetic evaluation of the early growth of Baluchi lambs can be a reasonable 
recommendation.
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Abbreviations
BW	� Birth weight
WW	� Weaning weight
ADG	� Average daily gain
AIC	� Akaike’s information criterion
REML	� Restricted maximum likelihood
GLM	� Generalized linear model
BLUP	� Best linear unbiased prediction
MSE	� Mean squared error of prediction

Production traits in farm animals are mostly quantitative traits. They have continuously distributed phenotypes 
that do not show simple Mendelian inheritance. These traits are controlled by a large number of genes, each of 
which has a partial effect, and the cumulative and individual effects of such genes, along with the environmental 
effects, cause continuously distributed phenotypes​​ in the population1,2. The phenotypic variation of quantitative 
traits observed within a population may be due to genetic variation, environmental variation or a combination 
of both3. Animal breeders want to quantify the former as it is necessary for response to selection. The presence of 
genetic variation in the population shows that there is variation in the genetic merit or so-called “breeding values” 
of animals for a particular trait. Breeding value, the heritable portion of an individual’s observed phenotypic 
value, defines the superiority or inferiority of the offspring of an animal and is exploited by breeders to rank and 
select superior animals to be the parents of the next generation to achieve genetic improvement. Remarkably, 
this selective breeding, or artificial selection, has a long and successful application in animal breeding, resulting 
in a significant improvement in the production and reproduction performance of livestock4.

Selection on a heritable trait generates a response in the phenotypic distribution of the trait, the extent of 
which is determined by the magnitude and form of selection and the heritability of the trait3. Therefore, to design 
an effective selection program, information regarding trait heritability and its genetic relationship with other 
traits is required. By estimating the amount of additive genetic variation in the traits, and genetic correlations 
between them, we can make predictions about their response to selection5.

Many studies have been conducted to estimate the heritability of economic traits in animal and plant species. 
However, models used in these studies only include additive genetic component6–11, and little effort has been 
made to expand these models to predict genetic merits to account for dominance effects12. This is because of some 
reasons. First, since dominance variance does not contribute to predicting the response to selection, it has not 
been considered important13. The second reason is the cumbersome and complex experimental designs needed 
for the decomposition of the genetic variance to its additive and dominance components14. The third reason 
is the over-parameterization of the models following the inclusion of dominance effects15. The fourth reason 
is that accounting for dominance effects suffers a large computational burden due to the much more complex 
computation for constructing the dominance genetic relationship matrix and its inverse which is needed for 
estimating the dominance genetic component16. The last reason is that the estimation of dominance genetic 
variance is highly sensitive to data structure (i.e., incomplete pedigree) compared to additive genetic variance15.

Dominance genetics describes the relationship between the phenotype and the genotype at a diploid locus 
in heterozygotes. In quantitative genetics, dominance is the phenomenon where the genotypic value of the 
heterozygote deviates from the mean genotypic value of the two homozygotes5. Dominance is not inherent 
to an allele or its traits (phenotype). It is a strictly relative effect between two alleles of a given gene of any 
function; one allele can be dominant over a second allele of the same gene, recessive to a third, and co-dominant 
with a fourth17. Although, using QTL mapping approaches, early research has characterized the contribution 
of dominance effects to the genetic architecture underlying phenotypic variation in murine body weight18,19, 
fertility and production traits in cattle20 and fatness in chicken21, using models including dominance effects for 
genetic evaluation of production traits in livestock is traced back to the recent decade. Varona et al.22 reported 
that including the dominance effects in the genetic model can (1) lead to a better understanding of the genetic 
architecture of traits, (2) increase the accuracy of genetic evaluation, and (3) improve the efficiency of breeding 
programs via determining the relative importance of dominance effects. Garel et al.14 reports stated that ignoring 
dominance effects distorts the prediction of crossover values, as well as genetic variance components and the 
genetic merit of genotypes. In the presence of dominance, the additive + dominance model may yield more 
accurate estimates of the average effect of a single gene or allele substitution effect than the purely additive model 
and, therefore, more accurate estimates of heritability and additive breeding values23. Accordingly, in recent 
years, mixed animal models incorporating restricted maximum likelihood (REML) procedure have been applied 
to estimate both additive and dominance variances for production traits in goat15,24 and chicken25, though, 
to our knowledge, in the framework of animal models (using phenotypic records and pedigree information), 
the contribution of dominance effects to the phenotypic variation of economic traits in sheep has not been 
quantified so far.

The Baluchi sheep is a fat-tailed breed well adapted to a wide range of harsh environmental conditions in 
eastern Iran, one of the arid subtropical areas of the world. This breed comprises 12% of the total sheep population 
in Iran26. The animals of this breed are known for their small size, fat tails, carpet wool and white color with black 
marks on the legs and head. Their face is generally black. They are generally polled in both genders. Although 
genetic parameters for growth traits of Baluchi sheep have been estimated by Yazdi et al.27, Jalil-Sarghale et al.28, 
Bahreini-Behzadi et al.26 and Bahri Binabaj et al.29, genetic parameters for dominance effects are not available for 
this breed. Moreover, there is no previous information regarding the correlation between growth traits caused 
by dominance effects. Therefore, this study was conducted to estimate dominance effects on the pre-weaning 
growth traits of Baluchi sheep. The correlation between traits due to dominance effects was also estimated.
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Materials and methods
Flock and management
The data used in the present study was obtained from the Baluchi sheep breeding station (flock 1) which is 
located in Mashhad, Khorasan Razavi, Iran. Pedigree and body weight records were available from 1980. This 
experimental population of Baluchi sheep was founded in the early 1960s. In general, the flock is reared by 
following conventional industrial procedures. The mating period commenced in August and September and 
lasted for 51 days. Lambing took place from the beginning of February to the end of March. At birth, the 
relevant information about the newborn such as sex, birth type, birth date, birth weight, sir ID and dam ID were 
recorded. In addition, body weights were recorded at monthly intervals starting from birth until 4 months of 
age. Body weights for 6, 9 and 12 months of age were also recorded. Lambs were weaned at an average age of 90 
days. They were raised separately from older animals until one year of age. During this period, they were not 
subjected to any form of culling unless they were physically unsound. Animals are kept indoors during winter 
and receive a ration consisting of wheat and barley straw, alfalfa hay, sugar beet pulp and concentrate. According 
to the requirement, the food of the ewes was supplemented with concentrates during pregnancy and the nursing 
period. To protect animals from various diseases, vaccinations were performed twice a year. The sheep were 
dewormed with drugs and dipped in an anti-parasite bath twice a year. Baluchi sheep selection typically focuses 
on traits related to growth, reproduction, and adaptability to arid environments. Selection criteria often include 
body weight, body conformation score, and type of birth. Mating was random for each ram with 15 to 25 ewes. 
In this flock, about 50% of sires were kept for 2 to 3 mating seasons, and the rest were used just once, and the 
longevity of ewes was up to 7 lambing (about 8 years of age)30.

Data and pedigree
Birth weight (BW) and weaning weight (WW) records were extracted from data files. Because lambs were 
weaned at different ages, weaning weights were adjusted for 90 days of age. Pre-weaning average daily gain 
(ADG) was calculated as total gain divided by the number of days in the period (WW-BW/90). Errors in the 
pedigree including repeated animals, animals that were registered as one of their parents and presence the loop 
in the pedigree were detected and edited with CFC software31. Also, animals in the pedigree were re-coded in 
such a way that the codes for lambs were bigger than their parents’ codes as required for further analyses. The 
final pedigree included 11,658 animals which were progenies of 258 sirs and 3137 dams (Table 1).

Statistical analysis
The generalized linear model (GLM) of SAS32 was fitted to the data to identify fixed effects of the model. Birth 
year, lambing age of dam, lamb sex and birth type were significant (p < 0.05) for all traits and were subsequently 
included in the linear mixed models. The WOMBAT program33 was used to estimate (co)variance components 
and genetic parameters. Each trait was analyzed with twelve univariate animal models, including various 
combinations of additive genetic, dominance genetic, maternal additive genetic and maternal permanent 
environmental effects (Table 2). As the simplest model, Model 1 included only random animal effects, and Model 
12 which was the most complete animal model, included additive genetic, dominance genetic, maternal additive 
genetic, maternal permanent environmental and covariance between direct and maternal additive genetic 
effects. The general representation of Model 12 was as follows:

y = Xb + Z1a + Z2d + Z3c + Z4m + e, cov (a, m) ̸= 0
where y is the vector of observations. β is the vector of fixed effects fitted with design matrix X. Z1, Z2, Z3, 

and Z4 are incidence matrices relating observations to additive genetic, dominance genetic, maternal permanent 
environmental and maternal additive genetic effects, respectively. The (co)variance matrix for the random effects 
was as follows:

No. of generations (including base generation) 17

No. of animals in the pedigree file 11,658

No. of animals with progeny 3395

No. of animals without progeny 8263

No. of non-base animals 10,827

No. of non-base animals with known sire and dam 10,494

No. of non-base animals only with known sire 13

No. of non-base animals only with known dam 320

No. of sire 258

No. of dam 3137

No. of grand sire 210

No. of grand dam 588

No. of great grand sire 181

No. of great grand dam 980

Table 1.  Pedigree structure of the Baluchi sheep.
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where a, d, c, m, and e are vectors for additive genetic, dominance genetic, maternal permanent environmental, 
maternal additive genetic, and residual effects, respectively. σ 2

a, σ 2
d, σ 2

c , σ 2
m, and σ 2

e  are additive genetic 
variance, dominance genetic variance, maternal permanent environmental variance, maternal additive genetic 
variance and residual variance, respectively. A and D are the additive and dominance numerator relationship 
matrices, respectively. Ic, and Ie are identity matrices of appropriate dimensions. The nadiv package34 in R 
software35 was used to create matrix D and its inverse which was then fitted by the GIN option in WOMBAT33. 
When using the GIN file in WOMBAT33, a CODE file and a log determinant value are also required. The CODE 
file was created using the pedigree file and log determinant was calculated with nadiv package34. The Akaike’s36 
information criterion (AIC) was computed to rank the models according to their power to fit the data. AIC 
accounts for both the statistical goodness of fit and the number of parameters that need to be estimated. Let p 
denotes the number of random (co)variance parameters to be estimated, and Log L is the maximum likelihood, 
then the information criterion is defined as AIC = -2 Log L + 2p. The model yielding the smallest AIC fits the 
data best.

To assess the predictive performance of models, we calculated two indices: (1) the mean squared error of 

prediction (MSE) as 
∑

(yi−ŷi)
2

n , where yi and ŷi are real and predicted records of animals, and (2) Pearson’s 

correlation coefficient between real records (y) and predicted values of records ( ŷ) as r( y, ŷ). The predicted 
values ​​of the records were obtained from the WOMBAT33 outputs.

Correlations between traits were estimated by bi-variate analyses. The models applied in the bi-variate 
analyses were those selected as best for underlying traits in the univariate analyses. The matrix notation for the 
bivariate model including BW and WW was as follows:

	

[ y1
y2

]
=

[ X1 0
0 X2

] [ b1
b2

]
+

[ Za1 0
0 Za2

] [ a1
a2

]
+

[ Zd1 0
0 Zd2

] [ d1
d2

]

+
[ Zc1 0

0 Zc2

] [ c1
c2

]
+

[ Zm1 0
0 0

] [ m1
0

]
+

[ e1
e2

]
.

where y1 and y2 denote traits 1 and 2, respectively.
Estimates of additive breeding values were derived using the best linear unbiased prediction procedure 

(BLUP) in WOMBAT33. The accuracy of estimated additive breeding values for the best model and the best 
model without dominance effects was calculated as follows:

	 ri =
√

1 − SE2
i /σ 2

a

where SEi is the standard error of estimated additive breeding values, derived from the diagonal element of the 
inverted left-hand side in the mixed model equations and σ 2

a is the additive genetic variance37. To determine 
the significant difference between the accuracy of estimated breeding values of different models, t test paired 
was used.

Model number

Random effects

σ 2
a σ 2

d σ 2
m σ 2

c σ a.m σ 2
e

1 ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓ ✓

9 ✓ ✓ ✓ ✓

10 ✓ ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓ ✓

12 ✓ ✓ ✓ ✓ ✓ ✓

Table 2.  The random (co)variance components fitted in the animal models for growth traits in Baluchi sheep. 
σ 2

a= additive genetic variance; σ 2
d= dominance genetic variance; σ 2

c=maternal permanent environmental 
variance; σ 2

m=maternal genetic variance; σ a.m= direct-maternal additive genetic co-variance; σ 2
e= residual 

variance.
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The effect of the inclusion of dominance effects in the model on additive breeding values was tested by 
estimating Spearman’s correlation coefficients between additive breeding values obtained by the best model and 
the best model without dominance effects. It was done for all animals and 10% and 50% of top animals. In 
addition, change in the ranking of the top 10 and top 50 animals based on their additive breeding values across 
models was monitored by calculating the number of animals that dropped from the top 10 or top 50 animals 
after including dominance effects in the model.

For each trait, computing time for the best model and the best model without dominance effects was 
calculated as the total time used by the CPU to analyze data. The memory used for running these analyses was 
also measured.

Results
Table 3 shows the characteristics of the data structure. The mean of BW, WW and ADG were 4.22 kg, 23.51 kg 
and 212.93 gr, respectively. The variability of body weight at birth (CV = 17.01%) was lower than the variability 
of weaning weight (CV = 20.88%). Table 4 shows the predictive ability of the models. As shown, models that 
included dominance effects had lower MSE and higher r( y, ŷ), i.e., the predictive ability of the models improved 
by including dominance effects. Estimates of variance components and genetic parameters for BW, WW and 
ADG are presented in Tables 5, 6 and 7, respectively. For all traits studied, Model 1 which included only additive 
genetic effects had the least power to fit the data, evidenced by maximum AIC values. For all traits studied, 
models with dominance effects fitted the data substantially better than otherwise identical models, as evidenced 
by the significant decrease in the AIC values. For BW, Model 12 which contained additive, dominance and both 
maternal genetic and permanent environmental effects was the most suitable model. This model had better 
predictive ability compared to model 11 (model 12 without dominance genetic effects) as it provided lower MSE 
and higher r( y, ŷ). For WW and ADG, it was model 4 that fitted the data best. It included additive, dominance 
and maternal permanent environmental effects and showed better predictive ability compared to model 3 
(model 4 without dominance genetic effects) according to estimates of MSE and r( y, ŷ).

By including dominance effects in the model, additive genetic variance did not change, but residual variance 
decreased significantly by 41%, 21% and 25% for BW, WW and ADG, respectively, which indicated that 
dominance effects distangelled from residual variance. For BW, WW and ADG, dominance genetic variance 
was 6.61, 1.91, and 2.73 times greater than additive genetic variance and contributed 87%, 65% and 73% to the 
total genetic variance of BW, WW and ADG, respectively.

Estimates of dominance heritability ( h2
d), were 0.29 ± 0.06, 0.15 ± 0.07 and 0.20 ± 0.07 for BW, WW and 

ADG, respectively. Additive heritability ( h2
a), was 0.05 ± 0.01 for BW, 0.08 ± 0.02 for WW and 0.07 ± 0.02 for 

ADG, respectively. Maternal permanent environmental effects ( h2
c) were 0.13 ± 0.02, 0.15 ± 0.01 and 0.12 ± 0.01 

Trait

r( y, ŷ) MSE

Best model Best model without Dominance effects Best model Best model without Dominance effects

BW 0.95 0.70 0.29 0.65

WW 0.86 0.70 8.84 13.43

ADG 0.88 0.73 880.98 1470.54

Table 4.  Predictive ability of the best model and the best model without dominance effects. BW= birth 
weight, WW= weaning weight, ADG= average daily gain from birth to weaning, MSE= Mean squared error of 
prediction. r( y, ŷ) = Pearson’s correlation coefficient between the real and predicted values of records.

 

BW (kg) WW (kg) ADG (g day−1)

No. of records 7339 7300 6451

No. of sires with progeny 180 209 176

No. of sires with progeny and record 93 100 89

Average number of progeny per sire 40.77 34.92 36.65

No. of dams with progeny 2141 2227 2047

No. of dams with progeny and record 1540 1685 1452

Average number of progeny per dam 3.42 3.27 3.15

Mean 4.22 23.51 212.93

Min. 2.10 10.00 50

Max. 6.50 37.81 359

SD 0.718 4.908 52.01

CV (%) 17.01 20.88 24.42

Table 3.  Characteristics of the data structure in Baluchi sheep. BW= birth weight, WW=weaning weight, 
ADG= average daily gain from birth to weaning, SD= standard deviation, CV= coefficient of variation.
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for BW, WW and ADG, respectively. For BW a maternal genetic component was also significant which 
contributed 9% to the phenotypic variance.

The accuracy of additive breeding values for traits studied estimated by the best model and the best model 
without dominance effects are listed in Table 8. As shown, models with dominance effects provided additive 
breeding values with higher accuracy. For BW, WW and ADG, by including dominance effects in the model, 
the accuracy of additive breeding values increased by 8%, 8% and 11%, respectively.

Correlation between additive breeding values obtained from the best model and the best model without 
dominance effects for all animals, top 50% ranked animals and top 10% ranked animals are shown in Table 9. As 
shown correlations were close to unity for all traits studied, indicating negligible changes in the additive breeding 
values after the inclusion of dominance effects in the model. On average, 9.7 animals out of the top 10 and 49.3 
animals out of the top 50 were common when additive breeding values of lambs were estimated using the best 
model and the best model without dominance effects (Table 10).

Correlations between traits are listed in Table  11. Additive genetic correlation (ra), maternal permanent 
environmental correlation (rc) and phenotypic correlation (rp) were all positive, ranging from 0.21 ± 0.09 to 
0.87 ± 0.04. Dominance genetic correlation (rd) between WW and ADG was positively high (0.99 ± 0.45) and 
between other pairs of traits was negative.

Model σ 2
a σ 2

d σ 2
c σ 2

m σ a.m σ 2
e

σ 2
p h2

a h2
d h2

c h2
m e2 ra, m AIC

1 4.551 16.750 21.302 0.21 ± 0.03 0.78 ± 0.02 14637.48

2 4.550 2.697 14.115 21.346 0.21 ± 0.02 0.13 ± 0.07 0.66 ± 0.07 14636.69

3 1.632 3.032 16.048 20.713 0.08 ± 0.03 0.15 ± 0.01 0.78 ± 0.02 14559.81

4 1.629 3.114 3.045 13.005 20.794 0.08 ± 0.02 0.15 ± 0.07 0.15 ± 0.01 0.62 ± 0.07 14558.33

5 1.252 3.277 16.847 21.377 0.06 ± 0.02 0.15 ± 0.02 0.79 ± 0.02 14585.06

6 1.249 3.054 3.296 13.860 21.640 0.06 ± 0.02 0.14 ± 0.06 0.15 ± 0.02 0.65 ± 0.07 14583.73

7 1.240 3.244 0.036 16.855 21.378 0.06 ± 0.02 0.15 ± 0.02 0.79 ± 0.02 0.02 ± 0.17 14586.06

8 1.235 3.055 3.253 0.047 13.870 21.641 0.06 ± 0.02 0.14 ± 0.06 0.15 ± 0.02 0.65 ± 0.07 0.02 ± 0.19 14584.73

9 1.431 2.666 0.478 16.153 20.729 0.07 ± 0.02 0.13 ± 0.01 0.02 ± 0.01 0.78 ± 0.02 14559.49

10 1.428 3.117 2.678 0.479 13.106 20.811 0.07 ± 0.02 0.15 ± 0.06 0.13 ± 0.01 0.02 ± 0.01 0.63 ± 0.07 14558.01

11 1.315 2.648 0.336 0.208 16.227 20.736 0.06 ± 0.02 0.13 ± 0.01 0.02 ± 0.01 0.78 ± 0.02 0.31 ± 0.27 14560.29

12 1.355 3.134 2.660 0.327 0.221 13.168 20.818 0.06 ± 0.02 0.15 ± 0.06 0.13 ± 0.01 0.02 ± 0.01 0.64 ± 0.07 0.34 ± 0.40 14558.79

Table 6.  Estimates of variance components and genetic parameters for weaning weight (the best model is 
shown in bold). σ 2

a= additive genetic variance; σ 2
d= dominance genetic variance; σ 2

c= maternal permanent 
environmental variance; σ 2

m= maternal genetic variance; σ a.m= direct-maternal additive genetic covariance; 
σ 2

e= residual variance; σ 2
p= phenotypic variance; h2

a= additive heritability; h2
d= dominance heritability; 

h2
c= maternal permanent environmental effect, h2

m= maternal heritability; e2: ratio of residual variance to 
phenotypic variance; ra, m= direct-maternal additive genetic correlation; AIC= Akaike’s information criterion.

 

Model σ 2
a σ 2

d σ 2
c σ 2

m σ a.m σ 2
e

σ 2
p h2

a h2
d h2

c h2
m e2 ra, m AIC

1 0.196 0.348 0.544 0.36 ± 0.03 0.64 ± 0.03 1068.69

2 0.194 0.191 0.162 0.548 0.35 ± 0.03 0.35 ± 0.06 0.30 ± 0.07 1054.69

3 0.052 0.112 0.347 0.511 0.10 ± 0.02 0.68 ± 0.02 911.59

4 0.050 0.147 0.111 0.205 0.514 0.10 ± 0.03 0.29 ± 0.06 0.39 ± 0.06 901.60

5 0.023 0.155 0.368 0.547 0.04 ± 0.01 0.22 ± 0.02 0.28 ± 0.02 0.67 ± 0.02 914.01

6 0.022 0.159 0.153 0.214 0.550 0.04 ± 0.01 0.29 ± 0.06 0.22 ± 0.02 0.28 ± 0.02 0.39 ± 0.06 902.16

7 0.021 0.138 0.035 0.370 0.549 0.04 ± 0.01 0.25 ± 0.02 0.67 ± 0.02 0.35 ± 0.19 913.63

8 0.020 0.160 0.136 0.019 0.215 0.551 0.04 ± 0.02 0.29 ± 0.06 0.24 ± 0.02 0.39 ± 0.05 0.37 ± 0.19 901.70

9 0.027 0.068 0.061 0.359 0.517 0.05 ± 0.02 0.13 ± 0.02 0.11 ± 0.02 0.69 ± 0.02 894.67

10 0.026 0.151 0.066 0.062 0.213 0.520 0.05 ± 0.01 0.30 ± 0.06 0.13 ± 0.02 0.12 ± 0.02 0.41 ± 0.06 883.96

11 0.024 0.067 0.048 0.017 0.361 0.519 0.05 ± 0.01 0.13 ± 0.02 0.09 ± 0.02 0.70 ± 0.01 0.49 ± 0.22 893.42

12 0.023 0.152 0.065 0.049 0.017 0.214 0.514 0.05 ± 0.01 0.29 ± 0.06 0.13 ± 0.02 0.09 ± 0.02 0.41 ± 0.03 0.50 ± 0.22 882.64

Table 5.  Estimates of variance components and genetic parameters for birth weight (the best model is 
shown in bold). σ 2

a= additive genetic variance; σ 2
d= dominance genetic variance; σ 2

c= maternal permanent 
environmental variance; σ 2

m= maternal genetic variance; σ a.m= direct-maternal additive genetic covariance; 
σ 2

e= residual variance; σ 2
p= phenotypic variance; h2

a= additive heritability; h2
d= dominance heritability; 

h2
c= maternal permanent environmental effect, h2

m= maternal heritability; e2: ratio of residual variance to 
phenotypic variance; ra, m= direct-maternal additive genetic correlation; AIC= Akaike’s information criterion.
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Computing time for the best models and the best models without dominance effects is shown in Fig.  1. 
For the best models which included dominance effects, analyses took 2100, 1350 and 1270 s for BW, WW and 
ADG, respectively; significantly higher than those observed for best models without dominance effects (45, 35 
and 30 s for BW, WW and ADG, respectively). In addition, for all traits, running the best model consumed ≈ 1 
gigabyte of memory, much more than analyses without dominance effects (≈ 50 megabytes) (Fig. 2). Moreover, 
constructing dominance genetic relationship matrix and its inverse with the nadiv package34 needed ≈ 30 
gigabytes of memory (not shown).

Trait Top 10 Top 50

BW 9 48

WW 10 50

ADG 10 50

Overall mean 9.66 49.33

Table 10.  The number of animals that were common between the best model and the best model without 
dominance effects based on their additive breeding values. BW= birth weight, WW= weaning weight, ADG= 
average daily gain from birth to weaning.

 

Parameters BW WW ADG

All animals 1.00 1.00 1.00

Top 50% ranked 0.998 1.00 0.998

Top 10% ranked 0.996 0.997 0.999

Table 9.  Correlations between breeding values predicted by the best model and the best model without 
dominance effects. BW= birth weight, WW= weaning weight, ADG= average daily gain from birth to weaning.

 

Model BW WW ADG

Best model 0.571a 0.634a 0.496a

Best model without dominance effects 0.527b 0.586b 0.447b

Table 8.  Accuracy of breeding values estimated by the best model and the best model without dominance 
effects for studied traits. BW= birth weight, WW= weaning weight, ADG= average daily gain from birth to 
weaning. Values within columns that do not have a common superscript are significantly different (p<0.05).

 

Model σ 2
a σ 2

d σ 2
c σ 2

m σ a.m σ 2
e

σ 2
p h2

a h2
d h2

c h2
m e2 ra, m AIC

1 453.571 1871.31 3324.80 0.19 ± 0.03 0.81 ± 0.02 28034.95

2 450.776 405.77 1477.34 2333.23 0.19 ± 0.03 0.17 ± 0.07 0.63 ± 0.07 28033.12

3 171.902 277.506 1816.85 2366.26 0.08 ± 0.03 0.12 ± 0.01 0.80 ± 0.02 27996.11

4 168.513 460.623 279.947 1368.25 2277.34 0.07 ± 0.02 0.20 ± 0.07 0.12 ± 0.01 0.60 ± 0.07 27983.08

5 142.859 272.98 1902.07 2317.91 0.06 ± 0.02 0.12 ± 0.02 0.82 ± 0.02 28008.67

6 138.053 451.382 277.043 1462.83 2329.31 0.06 ± 0.02 0.19 ± 0.07 0.12 ± 0.02 0.63 ± 0.07 28006.10

7 139.954 261.990 12.421 1904.76 2318.13 0.06 ± 0.02 0.11 ± 0.02 0.82 ± 0.02 0.06 ± 0.21 28009.64

8 134.623 451.539 264.600 13.487 1456.39 2329.64 0.06 ± 0.02 0.19 ± 0.07 0.11 ± 0.02 0.62 ± 0.07 0.07 ± 0.23 28007.08

9 161.272 264.03 18.672 1822.19 2266.17 0.07 ± 0.02 0.12 ± 0.02 0.01 ± 0.02 0.80 ± 0.02 27986.73

10 157.192 461.381 266.395 18.890 1373.28 2277.39 0.07 ± 0.02 0.20 ± 0.07 0.12 ± 0.02 0.01 ± 0.02 0.61 ± 0.07 27983.85

11 156.485 262.610 14.804 7.352 1825.14 2266.40 0.07 ± 0.02 0.12 ± 0.01 0.01 ± 0.02 0.80 ± 0.02 0.15 ± 0.69 27987.71

12 150.757 462.83 264.429 13.515 10.135 1375.85 2277.52 0.07 ± 0.02 0.20 ± 0.07 0.12 ± 0.01 0.01 ± 0.02 0.60 ± 0.07 0.22 ± 0.77 27984.80

Table 7.  Estimates of variance components and genetic parameters for average daily gain (the best model is 
shown in bold). σ 2

a= additive genetic variance; σ 2
d= dominance genetic variance; σ 2

c= maternal permanent 
environmental variance; σ 2

m= maternal genetic variance; σ a.m=direct-maternal additive genetic covariance; 
σ 2

e= residual variance; σ 2
p= phenotypic variance; h2

a= additive heritability; h2
d= dominance heritability; 

h2
c= maternal permanent environmental effect, h2

m= maternal heritability; e2: ratio of residual variance to 
phenotypic variance; ra, m= direct-maternal additive genetic correlation; AIC= Akaike’s information criterion.
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Discussion
Despite decades of theoretical and experimental efforts, the quantification of non-additive genetic variation in 
livestock populations such as sheep remains challenging, leading to neglecting these effects from the genetic 
evaluation models. One of the reasons for neglecting dominance effects from the genetic evaluation process is 
presented in Fig. 1. As shown, including dominance effects in the model increased computing time between 42 
and 47 times, depending on the trait. In addition, it needed a huge amount of memory (≈ 20 times). Therefore, 
longer computing time and higher memory requirements can be the “Achilles Heel” of such analyses. Our data 
was not a big dataset, nonetheless, for computing inverse of the relationship matricx for dominance effects from 
our pedigree (including 11658 individuals), nadiv package34 consumed 30 Gigabytes of RAM. Obviously, in 
dealing with big data, the analyses may take several hours and need a huge amount of memory. Therefore, due 
to high computational demand, analysis of big datasets may not be possible with conventional PCs. However, 
current results showed that although presenting dominance effects to the model significantly increased the 
computing burden, it increased the likelihood and predictive ability of the fitting model as well as the accuracy 
of the additive breeding values. Therefore, an additive + dominance model can be superior to a purely additive 

Fig. 2.  Memory requirement for analyses with and without dominance effects.

 

Fig. 1.  Computing time for analyses with and without dominance effects.

 

Trait 1 Trait 2 ra rd rc rp

BW
WW 0.80 ± 0.05 − 0.73 ± 0.54 0.40 ± 0.07 0.39 ± 0.01

ADG 0.73 ± 0.07 − 0.62 ± 0.54 0.21 ± 0.09 0.27 ± 0.01

WW ADG 0.87 ± 0.04 0.99 ± 0.45 0.80 ± 0.04 0.78 ± 0.01

Table 11.  Correlations between studied traits. ra= additive genetic correlation; rd= dominance genetic 
correlation; rc= maternal permanent environmental correlation; rp= phenotypic correlation. BW = birth weight; 
WW = weaning weight; ADG = average daily gain from birth to weaning.
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model in better unraveling the genetic variance components, leading to a more accurate and precise estimation 
of genetic parameters. Jasouri et al.25 and Liu et al.16 in chicken and Sadeghi et al.24 and Sadeghi et al.15 in goat 
reported improvement in general properties of the model by including dominance effects which is in line with 
our findings.

Our finding showed that dominance effects were part of residual variance and did not separate from additive 
genetic variance. Therefore, excluding dominance effects did not cause inflated additive genetic variance. 
Using genomic data, Moghaddar and van der Werf12 estimated additive and dominance genetic variances for 
body weight and body composition traits in Merino sheep and reported a notably lower residual variance in 
models containing the dominance effect. Heidaritabar et al.38 reported that dominance and epistasis effects were 
important for egg production traits in layers and when these effects were ignored from the genomic evaluation 
models, they were accumulated in residual variance. In Adani goat, Sadeghi et al.24 worked on body weight 
traits and reported that by including dominance effects, residual variance decreased in a range between 28.2% 
(weaning weight) to 59.2% (birth weight). Also, Sadeghi et al.15 reported a decrease in residual variance between 
20.6% (ADG from 6 to 9 months of age) to 50.21% (ADG from weaning to 3 months of age) in Adani goat. 
A slight non-significant change in the estimation of additive genetic variance following including dominance 
effects in the model indicated some confounding between random effects. The confounding between additive 
and non-additive genetic effects based on pedigree has been reported in the literature39,40. Nishio and Satoh41 
similarly reported a slight change in the estimation of additive genetic variance following including dominance 
effects in the model. Data size determines the magnitude of confounding between additive and non-additive 
genetic effects. The smaller the data size, the more will be the confounding between additive and non-additive 
genetic effects12.

There is a general scarcity regarding dominance heritability ( h2
d) in the literatures for body weight traits in 

sheep. Using genomic information, some authors tried to estimate the relative contribution of dominance effects 
to economic traits of sheep. For example Moghaddar and van der Werf12 estimated dominance heritability ( h2

d) 
for BW and WW of Merino sheep as 0.07 and 0.11. In Alpine Merino sheep, a large component of phenotypic 
variation for fleece extension rate ( h2

d=0.73), red blood cell count ( h2
d=0.28), and hematocrit ( h2

d=0.25), was 
explained by dominance effects42. In other livestock species, dominance heritability is available for growth traits 
estimated using conventional animal models. For example, Sadeghi et al.24 worked on Adani goats and reported 
h2

d for body weight at birth, weaning, six, nine and twelve months of age as 0.15, 0.17, 0.11, 0.19 and 0.25, 
respectively, smaller than estimates of additive heritability ( h2

a) (0.35, 0.18, 0.36, 0.28 and 0.28, respectively). In 
addition, Sadeghi et al.15 estimated h2

d for pre- and post-weaning average daily gain of Adani goat as 0.15 and 
0.11, respectively. Heidaritabar et al.38 reported h2

d for egg production, average egg weight, albumin height, egg 
color, yolk weight and age at sexual maturity for brown layers as 0.14, 0.22, 0.22, 0.20, 0.13 and 0.13, respectively. 
Jasouri et al.25 who worked on Iranian native fowl, reported h2

d for body weight at birth, eight weeks and twelve 
weeks of age as 0.06, 0.08 and 0.01, respectively. In addition, h2

d was 0.06, 0.06 and 0.08 for the age at sexual 
maturity, average egg weight and number of eggs, respectively. Li et al.43 reported that the dominant variance 
of broiler feed-related traits accounted for 29.5–58.4% of the genetic variance. These studies together with our 
findings show that dominance effects are an important component of phenotypic values.

Current estimates of h2
a are within the range of other reports in Iranian sheep breeds29,44–49. The heritability 

of a trait corresponds to the fraction of the selection differential that can cause a genetic change in the offspring 
generation. The heritability thus acts as a filter that determines how efficiently a population can respond to 
phenotypic selection50. Our estimates of h2

a for traits studied are below 0.1 which indicates that a limited 
response could be expected following the selection on these traits. Strong directional selection is predicted to 
erode additive genetic variance and, subsequently, decrease the heritability of a trait. As a consequence, the 
response to selection will be reduced51.

Estimates of dominance heritability were higher than additive heritability which did not agree with 
Moghaddar and van der Werf12, Jasouri et al.25, Sadeghi et al.24 and Sadeghi et al.15. This may be explained, to 
some extent, by the effect of the genetic structure of the populations and size of the data used in different studies. 
Another explanation for this finding is the Fisher’s52 hypotheses associated with his theory of dominance which 
predict that traits closely associated with fitness should have a significant dominance variance component, both 
due to the erosion of the additive component of variance and the evolution of directional dominance. Therefore, 
in addition to eroding additive variance, selection is also expected to act directly on genetic dominance, resulting 
in a further relative increase of dominance variance to total genetic variance13. Growth traits may have been 
correlated with fitness in the ancestral populations from which the contemporary Baluchi sheep has been drawn.

The results show that dominance variance was higher in lowly heritable traits. The heritability of BW (0.05) 
was lower than WW (0.08), but dominance heritability was higher for BW (0.29) compared to WW (0.15). 
Comparing WW with ADG and/or BW with ADG, a similar result was observed. Similarly, Moghaddar and 
van der Werf12 and Sadeghi et al.24 reported higher h2

d for traits with lower h2
a, though there were expectations 

in both studies. However, more research is needed to have a clear-cut verdict about this finding. It is notable that 
data size plays a significant role in estimating dominance variance and, consequently, dominance heritability. 
Small data size has been reported as a potential reason for observing almost no dominance effect for body 
composition traits in sheep12.

Spearman’s correlation between the additive breeding values obtained from the best model and the best 
model without the dominance effects was high and close to unity indicating little change in additive breeding 
values after presenting dominance effects to the model. A correlation close to 1.00 means that the ranking of 
animals may not change across models. The later result is supported by information in Table 10 which shows 
that out of 10 and 50 top animals, nearly all of them remained in their groups after presenting dominance effects 
to the model. In other words, the ranking of top animals did not change across models. However, an increase in 
the accuracy of additive breeding values after including dominance effect in the genetic evaluation model has 
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been frequently reported by Toro and Varona53, Duenk et al.23, Sadeghi et al.24 and Sadeghi et al.15 which are 
in agreement with our findings. It means that although the inclusion of dominance effects in the model, may 
not change the ranking of top animals, it increases the accuracy of estimated additive breeding values which 
means the accurate prediction of selection response. On the other hand, there are reports indicating a small 
improvement (2.3%) in the accuracy of genomic breeding values for body weight and body composition traits 
in Merino sheep as a result of accounting for the dominance effect12. They stated that it was because of the small 
variance component of the dominance effect in the studied traits, i.e., whatever the contribution of dominance 
effects is higher, the greater will be the increase in the accuracy of additive breeding values after the inclusion of 
dominance effects. Accordingly, Moghadar et al.12 reported that using additive + dominance models improved 
the accuracy of genomic evaluation for traits with higher dominance variation.

Positive additive genetic correlation between studied traits allows for improving all traits simultaneously. 
In agreement with our findings, some authors including Mokhtari et al.54 Eskandarinasab et al.44 and Singh et 
al.10 reported the positive additive genetic correlation between the growth traits of different breeds of sheep. 
Additive genetic correlation is the heritable relationship between traits. Although, from a breeding perspective, a 
positive additive genetic correlation between growth traits is preferred, a negative genetic correlation may also be 
desirable. For example, negative genetic correlation between two traits may limit the erosion of genetic variance 
of both traits by inducing a response of one trait to selection pressures on the other (correlational selection)55. 
In this study, for the first time, dominance genetic correlations between growth traits in sheep are estimated. 
Dominance genetic correlations between BW and WW and between BW and ADG were negative. Positive ra 
between BW and WW means that the value of BW in parents is correlated to the value of WW in offspring. 
Regarding dominance genetic correlation, regardless of whether the rd is positive or negative, the value of BW 
in the parent does not correlate to the WW value in offspring. While the additive genetic correlation would 
accelerate the response (if both traits were under the same direction of selection), the dominance correlation is 
not heritable, so it does not contribute to the response to selection (and hence doesn’t accelerate the response). 
The SE of dominance genetic correlations is higher than additive genetic correlations. In animal models, SE is 
an indicator of data size, data structure, and deep and quality of pedigree used49. Gerstmayr56 reported that 
the estimation of genetic correlations was more sensitive to data size and data structure than the estimation of 
heritabilities and that a larger sample is required to estimate a genetic correlation with the same accuracy as for 
heritability. In addition, the frequency of full-sib families in the population is also important because dominance 
effects contribute to the (co)variances between full-sib relatives. As a result, compared with additive genetic 
parameters, to have accurate estimates of dominance genetic parameters, a relatively bigger data size including a 
decent frequency of full-sib families is needed.

In conclusion, dominance effects significantly contributed to the phenotypic variation of body weight and 
average daily gain in Baluchi lambs. Accounting for dominance effects improved the likelihood and predictive 
ability of the model. A direct consequence would be more precise and accurate estimates of variance components 
and additive breeding value. In addition, an increase in the accuracy of additive breeding values was observed 
after presenting dominance effects to the model. However, accounting for dominance effects significantly 
increased the computing burden. Correlation between breeding values estimated by models with and without 
dominance effects was close to unity, indicating a little chance for re-ranking of top animals after inclusion 
of dominance effects in the model. While additive genetic correlations between traits were positively high, 
dominance genetic correlations were negative in 2 of 3 cases. Since the inclusion of dominance effects improved 
the general properties of the model and increased the accuracy of additive breeding values, a model including 
dominance effects would have an advantage over a purely additive model in unraveling the genetic variance 
components and prediction of breeding values.

Data availability
The data that support the findings of this study have been deposited in the National Animal Breeding Center and 
Promotion of Animal Products (https://www.abc.org.ir/).
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