Table 1 Model configurations with parameters.

From: Machine learning comparison for biomarker level estimation in wastewater dynamics monitoring

Model

Configuration

FRBS system

Membership function

Number of rules

Number of inputs

Triangular

5

3

SVM models

Kernel function

Function order

Classification

Cubic SVM

Polynomial (Scale 1.7)

3

ECOC 1vs1

Quadratic SVM

Polynomial (Scale 1.7)

2

ECOC 1vs1

Medium Gaussian SVM

Gaussian (Scale 1.7)

ECOC 1vs1

Fine Gaussian SVM

Gaussian (Scale 0.43)

ECOC 1vs1

Linear SVM

Linear (Scale auto)

ECOC 1vs1

Coarse Gaussian SVM

Gaussian (Scale 6.9)

ECOC 1vs1

Ensemble models

Number of splits

Learning cycles

Classification

Bagged Trees

20

30

Adaptive Boosting

RUSBoosted Trees

20

30

RUSBoost

Subspace Discriminant

30

Subspace

Subspace KNN

30

Subspace

Tree models

Number of splits

Split criterion

 

Fine Tree

100

Gini’s diversity index

 

Medium Tree

20

Gini’s diversity index

 

Coarse Tree

4

Gini’s diversity index

 

K-Nearest neighbor models

Number of neighbors

Distance

Weight

Weighted KNN

10

Euclidean

Squared inverse

Cosine KNN

10

Cosine

Equal

Fine KNN

1

Euclidean

Equal

Medium KNN

10

Euclidean

Equal

Cubic KNN

10

Minkowski (exponent 3)

Equal

Neural network models

Layer size

Activation

Iteration

Wide Neural Network

100

ReLU

1000

Narrow Neural Network

10

ReLU

1000

Bilayered Neural Network

[10 10]

ReLU

1000

Medium Neural Network

25

ReLU

1000

Trilayered Neural Network

[10 10 10]

ReLU

1000

Deep Neural Network

[10 10 10 10 10 10 10 10 10 10 10 10]

ReLU & Softmax

1000

Naive Bayes models

Distribution

Support

 

Kernel Naive Bayes

Kernel

Unbounded

 

Gaussian Naive Bayes

Gaussian

Unbounded

 

Discriminant models

Discriminant type

  

Quadratic Discriminant

Quadratic

  

Linear Discriminant

Linear

  

SVM Kernel

Learner

Iteration

Classification

SVM

1000

ECOC 1vs1