Table 4 Architecture details of the generator and discriminator in the PACGAN framework for generating 256 × 256 images. The generator takes the random vector z and the embedded label of the image to be generated, \(\:cl{s}_{embedded}\) as input. It generates an image of size 256 × 256 with a variable number of channels, denoted as Nch. On the other hand, the discriminator receives images of size nch × 256 × 256 and produces two outputs: the realness of the input image, denoted as \(\:{D}_{w}\left(\cdot\:\right)\), and the relative class estimation, denoted as \(\:\widehat{y}\). Both networks consist of convolutional (Conv) and fully connected (FC) layers, with activation functions (Act.) such as leaky rectified linear activation function (LReLU), linear, or softmax.

From: High-resolution conditional MR image synthesis through the PACGAN framework

Generator

Act.

Output shape

Params

Discriminator

Act.

Output shape

Params

z | \(\:cl{s}_{embedded}\)

\(\:-\)

522 \(\:\times\:\) 1 \(\:\times\:\) 1

\(\:-\)

Input image

\(\:-\)

\(\:{n}_{ch}\) \(\:\times\:\) 256 \(\:\times\:\) 256

\(\:-\)

Conv 4 \(\:\times\:\) 4

LReLU

512 \(\:\times\:\) 4 \(\:\times\:\)4

4.28 M

Conv 1 \(\:\times\:\) 1

LReLU

16 \(\:\times\:\) 256 \(\:\times\:\) 256

1k

Conv 3 \(\:\times\:\) 3

LReLU

512 \(\:\times\:\) 4 \(\:\times\:\) 4

2.36 M

Conv 3 \(\:\times\:\) 3

LReLU

16 \(\:\times\:\) 256 \(\:\times\:\) 256

4.6k

Upsample

\(\:-\)

512 \(\:\times\:\) 8 \(\:\times\:\) 8

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

32 \(\:\times\:\) 256 \(\:\times\:\) 256

9.2k

Conv 3 \(\:\times\:\) 3

LReLU

512 \(\:\times\:\) 8 \(\:\times\:\) 8

2.36 M

Downsample

\(\:-\)

32 \(\:\times\:\) 128 \(\:\times\:\) 128

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

512 \(\:\times\:\) 8 \(\:\times\:\) 8

2.36 M

Conv 3 \(\:\times\:\) 3

LReLU

32 \(\:\times\:\) 128 \(\:\times\:\) 128

18.4k

Upsample

\(\:-\)

512 \(\:\times\:\) 16 \(\:\times\:\) 16

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

64 \(\:\times\:\) 128 \(\:\times\:\) 128

37k

Conv 3 \(\:\times\:\) 3

LReLU

256 \(\:\times\:\) 16 \(\:\times\:\) 16

1.18 M

Downsample

\(\:-\)

32 \(\:\times\:\) 64 \(\:\times\:\) 64

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

256 \(\:\times\:\) 16 \(\:\times\:\) 16

590k

Conv 3 \(\:\times\:\) 3

LReLU

64 \(\:\times\:\) 64 \(\:\times\:\) 64

74k

Upsample

\(\:-\)

256 \(\:\times\:\) 32 \(\:\times\:\) 32

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

128 \(\:\times\:\) 64 \(\:\times\:\) 64

147k

Conv 3 \(\:\times\:\) 3

LReLU

128 \(\:\times\:\) 32 \(\:\times\:\) 32

295k

Downsample

\(\:-\)

128 \(\:\times\:\) 32 \(\:\times\:\) 32

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

128 \(\:\times\:\) 32 \(\:\times\:\) 32

147k

Conv 3 \(\:\times\:\) 3

LReLU

128 \(\:\times\:\) 32 \(\:\times\:\) 32

295k

Upsample

\(\:-\)

128 \(\:\times\:\) 64 \(\:\times\:\) 64

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

256 \(\:\times\:\) 32 \(\:\times\:\) 32

590k

Conv 3 \(\:\times\:\) 3

LReLU

64 \(\:\times\:\) 64 \(\:\times\:\) 64

74k

Downsample

\(\:-\)

256 \(\:\times\:\) 16 \(\:\times\:\) 16

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

64 \(\:\times\:\) 64 \(\:\times\:\) 64

37k

Conv 3 \(\:\times\:\) 3

LReLU

256 \(\:\times\:\) 16 \(\:\times\:\) 16

1.18 M

Upsample

\(\:-\)

64 \(\:\times\:\) 128 \(\:\times\:\) 128

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

512 \(\:\times\:\) 16 \(\:\times\:\) 16

2.36 M

Conv 3 \(\:\times\:\) 3

LReLU

32 \(\:\times\:\) 128 \(\:\times\:\) 128

18.4k

Downsample

\(\:-\)

512 \(\:\times\:\) 8 \(\:\times\:\) 8

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

32 \(\:\times\:\) 128 \(\:\times\:\) 128

9.2k

Conv 3 \(\:\times\:\) 3

LReLU

512 \(\:\times\:\) 8 \(\:\times\:\) 8

2.36 M

Upsample

\(\:-\)

32 \(\:\times\:\) 256 \(\:\times\:\) 256

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

512 \(\:\times\:\) 8 \(\:\times\:\) 8

2.36 M

Conv 3 \(\:\times\:\) 3

LReLU

16 \(\:\times\:\) 256 \(\:\times\:\) 256

4.6k

Downsample

\(\:-\)

512 \(\:\times\:\) 4 \(\:\times\:\) 4

\(\:-\)

Conv 3 \(\:\times\:\) 3

LReLU

16 \(\:\times\:\) 256 \(\:\times\:\) 256

2.3k

Minibatch stddev

\(\:-\)

513 \(\:\times\:\) 4 \(\:\times\:\) 4

\(\:-\)

Conv 1 \(\:\times\:\) 1

linear

\(\:{n}_{ch}\) \(\:\times\:\) 256 \(\:\times\:\) 256

1.5k

Conv 3 \(\:\times\:\) 3

LReLU

512 \(\:\times\:\) 4 \(\:\times\:\) 4

2.36 M

Tot params

  

13.7 M

Conv 4 \(\:\times\:\) 4

LReLU

512 \(\:\times\:\) 1 \(\:\times\:\) 1

4.2 M

    

FC \(\:\left({D}_{w}\left(\cdot\:\right)\right)\)

linear

1 \(\:\times\:\) 1 \(\:\times\:\) 1

513

    

FC

linear

150 \(\:\times\:\) 1 \(\:\times\:\) 1

76.9k

    

FC \(\:\left(\widehat{y}\right)\)

Softmax

\(\:{n}_{classes}\) \(\:\times\:\) 1 \(\:\times\:\) 1

151

    

Tot params

  

16.1 M