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Dryland grasslands cover approximately 16% of Earth’s land surface and support the livelihoods 
of people worldwide. However, the mechanisms driving their nutrient dynamics under changing 
environmental conditions remain poorly understood. This study, conducted in a dry savanna ecosystem 
in South Africa, investigated how grassland management interacted with drought and nitrogen 
addition in their effects on soil faunal activity and plant-available macro- and micronutrients. Extreme 
drought did not significantly affect soil invertebrates’ feeding activity in the top 8 cm, likely due to 
consistently dry conditions during the experimental period. In contrast, moderate grazing stimulated 
soil fauna feeding activity in the topsoil. Both nitrogen addition and grazing increased faunal activity, 
particularly at 7–8 cm depth. Drought conditions were associated with higher concentrations of 
manganese, zinc, and sulphur, while ambient rainfall conditions resulted in higher total nitrogen, 
magnesium, iron, and copper. Nitrogen addition enhanced mineral nitrogen availability and led 
to a fivefold increase in iron, and manganese, and doubling of copper. These findings suggest that 
moderate grazing management improves soil health in savanna grasslands, even under challenging 
climatic conditions.
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Grasslands cover approximately 30% of the Earth’s land surface, making them the largest terrestrial biome1. They 
store an estimated 10–30% of the world’s soil organic carbon, serving as an important global carbon reservoir2. 
Grasslands also support the livelihoods of more than two billion people worldwide3 provide habitat for a rich 
diversity of flora and fauna, including many endemic and threatened species4 and play a critical role in global 
food production by sustaining the majority of the world’s grazing livestock.

Managed grasslands dominate the marginal bioclimatic and edaphic regions of drylands, which are defined 
by an aridity index (AI; mean annual precipitation divided by mean annual potential evapotranspiration) of less 
than 0.655. Here, grasslands and savanna grasslands represent the most widespread land cover type, occupying 
ca. 40% of dryland areas6 which corresponds to 16% of Earth’s terrestrial surface. Despite their relatively low 
primary productivity7 dryland grasslands contribute substantially to rural livelihoods, with livestock rearing 
being the primary land-use type8. They also sequester substantial amounts of carbon in their soils due to slow 
decomposition rates under limited water availability9,10. While water is a key limiting factor for plant growth11 
nutrient availability – particularly nitrogen – is widely considered another main determinant of aboveground 
net primary production (ANPP) in dryland grasslands12. However, increasing evidence suggests that grassland 
productivity is co-limited by other nutrients, such as phosphorus13,14. Craine, et al.15 argue that several nutrients 
can simultaneously limit production, and others have shown that nutrient supply not only constrains grassland 
productivity but also affects plant species composition and diversity16,17. Assessing nutrient supply is therefore 
fundamental to understanding both the functioning and the structure of grassland ecosystems.
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In this context, external nutrient inputs may have important effects on the nutrient supply of grassland 
ecosystems, with consequences for ecosystem functions and services. Here, airborne nitrogen deposition, 
which results primarily from nitrogen emissions into the atmosphere, is of major importance18. These emissions 
originate largely from agricultural activities such as livestock farming and fertilizer application, as well as from 
fossil fuel combustion19. Once in the atmosphere, reactive nitrogen compounds can be transported over long 
distances before being deposited onto ecosystems. Climate change may further influence nitrogen deposition 
patterns by altering precipitation regimes, atmospheric circulation, and chemical reaction rates, potentially 
increasing the spatial extent and variability of nitrogen inputs to terrestrial ecosystems20. The improved soil N 
availability may feed back to the soil environment21 and to soil fauna communities22 .

Global climate change is projected to increase the frequency and intensity of drought events, particularly in 
dryland regions, with far-reaching consequences for ecosystem functioning and the provision of key ecosystem 
services6,23. Drought can disrupt fundamental ecological processes such as nutrient cycling and organic matter 
decomposition24 both of which are closely linked to soil fauna activity and sensitive to changes in soil moisture 
availability25,26.

In addition to drought, livestock grazing significantly influences soil properties, fertility, and faunal 
communities. Herbivores contribute to nutrient inputs by depositing urine and dung, thereby affecting soil 
carbon and nitrogen pools and enhancing nutrient availability27. Conversely, trampling by herbivores can lead to 
soil compaction, reducing infiltration rates and negatively impacting soil fauna habitats28. Grazing management 
practices can thus modify soil properties, underscoring the complex interplay between biotic and abiotic factors 
in shaping soil ecosystem dynamics.

Despite the ecological and economic importance of dryland grasslands, the mechanisms underlying nutrient 
dynamics and soil fauna communities under changing environmental conditions remain poorly understood. 
Little is known about how grazing management interacts with global change drivers such as altered precipitation 
regimes and nitrogen deposition. While some studies have investigated these factors individually or in limited 
combinations29–31 few have addressed their joint effects with grazing. This has left substantial gaps regarding 
their combined and potentially interactive effects on biogeochemical processes and soil biological functioning 
under field conditions.

To address these knowledge gaps, this study aims to investigate how grazing, extreme drought, and nitrogen 
addition influence nutrient supply and soil fauna feeding activity in dryland grasslands. We hypothesise that (1) 
both moderate grazing and extreme drought reduce plant nutrient supply; (2) extreme drought decreases soil 
fauna feeding activity, whereas moderate grazing enhances it; and (3) nitrogen addition increases both plant 
nutrient supply and soil fauna feeding activity, which is expected to move to deeper soil layers below 5 mm.

In this study, we employed Plant root simulators (PRS) probes to assess nutrient supply rates. PRS probes 
are ion-exchange membranes encased in plastic supports that functionally mimic plant roots by adsorbing 
available nutrients from the soil solution over a specified burial period. This method provides a dynamic, in 
situ measurement of nutrient availability, effectively integrating the effects of soil moisture, temperature, and 
microbial activity on nutrient fluxes. Previous research has demonstrated that PSR probes correlate well with 
traditional soil analyses and accurately reflect plant nutrient uptake32,33. Additionally, we evaluated the feeding 
activity of soil invertebrates using bait lamina strips. By integrating PRS probes and bait lamina assessments, our 
study aimed to elucidate the complex interactions between grazing management, drought stress, nutrient supply, 
and soil biological activity in grassland ecosystems.

Results
Soil fauna feeding activity
We tested for the combined effects of grazing with two global change drivers (either severe drought or nitrogen 
addition) on the feeding activity of soil invertebrates across different soils depths (Table 1). Feeding activity 
was assessed in 0.5  mm intervals to a depth of 8  cm. Grazing had significant positive effects on soil faunal 

(A) Drought model (B) Nitrogen model

Factor
z-
value

p-
value Sign Factor

z-
value

p-
value Sign

Grazing 2.080 0.038 ** Grazing 2.325 0.020 **

Drought 0.467 0.640 Nitrogen -0.041 0.968

Depth 1.722 0.085 * Depth 1.800 0.072 *

Grazing x Drought -0.889 0.374 Grazing x Nitrogen -0.721 0.471

Drought x Depth 0.416 0.678 Nitrogen x Depth -0.129 0.897

Grazing x Depth -2.131 0.033 ** Grazing x Depth -2.1958 0.028 **

Grazing x Drought x Depth -0.343 0.731 Grazing x Nitrogen x Depth 2.965 0.003 **

Table 1.  Combined effects of grazing with drought or nitrogen addition on soil fauna feeding activity across 
different soil depths. Shown are the results of a cumulative link mixed model (clmm) for (A) a “drought 
model”, with severe “drought” (drought vs. ambient rainfall), “grazing” (grazed vs. rested)), “depth” (soil depth; 
0–8 cm) and all possible interactions, and (B) a “nitrogen model”, with drought replaced by nitrogen addition 
effects. Both models have effective degrees of freedom of 10. Significance levels (Sign) are shown with ** for 
p < 0.05 and * for p < 0.1, and respective p-values are given in bold.
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feeding activity in both the drought and nitrogen model compared to ungrazed conditions. Grazing also had 
significant interactive effects with soil depth in both drought and nitrogen models, and the three-way interaction 
was significant in the nitrogen model (Table 1B), highlighting the importance of aboveground feeding activities 
(grazing) for belowground activities. Unexpectedly, severe drought never exerted significant effects, neither 
alone nor in any interaction (Table  1A). In many soil depth classes, it was visually observed that there was 
higher invertebrate activity in grazed plots (G+) that received additional nitrogen (N+; see Fig.  1). A high 
feeding activity (more than 75% of partly or fully consumed bait substrate) was particularly observed in deeper 
soil layers (depth intervals of 7.0 to 8.0 cm), but also at 4 cm depth. Interestingly, nitrogen application under 
ungrazed conditions (N + G-) tended to negatively impact soil fauna feeding activity.

Soil nutrient supply
As was to be expected, the application of nitrogen in the form of urea hugely improved the availability of total 
mineral nitrogen (total N) and its components ammonium (NH4

+) and nitrate (NO3
−; see Table 2). On average, 

total N experienced a fivefold increase, while the availability of NH4
+ was increased 30-fold. Interestingly, the 

availability of the micronutrients iron (Fe) and manganese (Mn) also increased by more than five times, while 
copper (Cu) increased two-fold. Median values for iron increased from 3.71 (mad = 2.25) µg/10cm2 to 22.26 
(8.82) µg/10cm2 while manganese increased from 7.68 (6.77) to 83.06 (54.13) µg P/10cm2. In the nitrogen 
model, nitrogen addition influenced total N, NO3

−, NH4
+, Ca, Fe, Mn and Cu while grazing only had an effect 

on K and S. In the same model the interaction between grazing and nitrogen had no effect on the supply of all the 
nutrients analysed. However, total mineral N, NO3

− and NH4
+ were higher in plots that were fertilized compared 

to plots that were not fertilized (regardless of the grazing treatment) (Fig. 2). A similar trend was also observed 
for Mn, Fe and Zn.

Grazing – in combination with extreme drought– affected several plant-available macro- and micronutrients, 
specifically the supply of total N, NO3

−, magnesium (Mg), zinc (Zn), iron (Fe), Mn, Cu and sulphur (S) (Table 2). 
Total N, Mg, Fe and Cu were all significantly higher under ambient conditions compared to extreme drought. 
Calcium and Mg were 33% lower under extreme drought compared to ambient rainfall. The impact of drought 
on NO3

−, Mn, Zn and sulphur differed from the trend shown by total N, Ca and Mg as they were higher in the 

Fig. 1.  Feeding activity of soil fauna – quantified as the proportion of bait portions in bait lamina strips 
that was not consumed (black), partly consumed (dark grey) or fully consumed (light grey) – across the six 
treatment combinations and across all depth classes. Shown are combinations of nitrogen addition (yes: N+, 
no: N−), grazing (yes:  G+, rested: G− and severe drought (yes: D+, ambient rainfall: D−) across 0.5 mm soil 
depth intervals.
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drought plots compared to under ambient conditions. Grazing increased total N and NO3
− in soil but decreased 

the supply of bioavailable phosphorus by 29%. No grazing effect was observed for the other nutrients. Ungrazed 
plots supplied 0.55 (0.05) µg P/10cm2 over 23 weeks compared to 0.39 (0.08) µg P/10cm2 over the same period 
in grazed plots. In the drought model, the interaction of drought and grazing influenced the nutrient supply of 
total N, NO3

−, K, Fe and Cu (Fig. 3). The bioavailability of several nutrients, including total N, NO3
− and Fe, were 

significantly higher in plots that were subjected to drought and grazing. The trend was common for many other 
nutrients though not statistically significant.

(A) Drought model (B) Nitrogen model

Response Factor
Num
DF

Den
DF F p Sign Factor

Num
DF

Den
DF F p Sign

Total N D 1 9 15.645 0.003 ** N 1 9 61.064 < 0.001 **

Total N G 1 9 7.237 0.025 ** G 1 9 1.088 0.324

Total N DxG 1 9 9.379 0.014 ** NxG 1 9 1.459 0.258

NO3 D 1 9 14.82 0.004 ** N 1 9 59.325 < 0.001 **

NO3 G 1 9 6.667 0.03 ** G 1 9 1.422 0.264

NO3 DxG 1 9 8.48 0.017 ** NxG 1 9 1.824 0.210

NH4 D 1 9 3.027 0.116 N 1 12 23.255 0.001 **

NH4 G 1 9 2.251 0.168 G 1 12 0.035 0.854

NH4 DxG 1 9 3.791 0.083 * NxG 1 12 0.004 0.950

Ca D 1 9 4.119 0.073 * N 1 9 6.444 0.032 **

Ca G 1 9 0.449 0.52 G 1 9 0.367 0.560

Ca DxG 1 9 3.459 0.096 * NxG 1 9 3.394 0.099 *

Mg D 1 9 11.062 0.009 ** N 1 9 0.316 0.588

Mg G 1 9 0.508 0.494 G 1 9 1.227 0.297 n

Mg DxG 1 9 4.629 0.06 * NxG 1 9 0.053 0.823

K D 1 9 0.024 0.88 N 1 9 0.133 0.723

K G 1 9 1.551 0.244 G 1 9 6.944 0.027 **

K DxG 1 9 16.053 0.003 ** NxG 1 9 1.512 0.250

P D 1 9 2.766 0.131 N 1 9 2.409 0.155

P G 1 9 5.576 0.043 ** G 1 9 11.061 0.009 **

P DxG 1 9 2.766 0.131 NxG 1 9 1.040 0.334

Fe D 1 12 9.214 0.01 ** N 1 12 48.443 < 0.001 **

Fe G 1 12 3.946 0.07 * G 1 12 0.367 0.556

Fe DxG 1 12 17.062 0.001 ** NxG 1 12 1.255 0.284

Mn D 1 9 20.111 0.002 ** N 1 12 100.573 < 0.001 **

Mn G 1 9 3.204 0.107 G 1 12 0.045 0.836

Mn DxG 1 9 4.005 0.076 * NxG 1 12 1.542 0.238

Cu D 1 9 0.990 0.346 N 1 12 22.719 < 0.001 **

Cu G 1 9 0.000 1 G 1 12 1.067 0.322

Cu DxG 1 9 6.918 0.027 ** NxG 1 12 0.717 0.414

Zn D 1 12 7.561 0.018 ** N 1 12 7.457 0.018 **

Zn G 1 12 7.008 0.021 ** G 1 12 1.529 0.240

Zn DxG 1 12 0.049 0.828 NxG 1 12 0.480 0.502

B D 1 12 0.284 0.604 N 1 12 0.026 0.875

B G 1 12 1.596 0.23 G 1 12 0.166 0.691

B DxG 1 12 1.835 0.2 NxG 1 12 0.232 0.639

S D 1 12 16.129 0.002 ** N 1 12 2.299 0.155

S G 1 12 0.008 0.931 G 1 12 6.395 0.026 **

S DxG 1 12 4.559 0.054 * NxG 1 12 0.913 0.358

Table 2.  Key results of a type III-ANOVA using satterthwait´s method applied to a linear mixed-effect model 
assessing the effect of drought (D) and grazing (G) ((A) Drought-Model), and nitrogen (N) and grazing(G) 
((B) Nitrogen-Model) application on anion/cation- uptake simulated with PRS-probes in an experiment in 
South Africa in 2020. NumDF stands for numerator degrees of freedom, DenDF for denominator degrees of 
freedom (Satterthwaite method). Significance levels (Sign) are shown with ** for p < 0.05, and * for p < 0.1. 
Respective p-values are given in bold.
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Discussion
While the individual effects of global change drivers such as altered precipitation and nitrogen deposition are 
increasingly understood, their interactions with grassland management in dryland ecosystems remain poorly 
resolved24,34. Our findings contribute to narrowing this gap by examining how grazing influences nutrient 
dynamics and soil faunal activity jointly with extreme drought or nitrogen addition.

A key finding was the lack of a significant effect of drought on the feeding activity of soil fauna – a proxy 
for their contribution to decomposition processes35. This result was unexpected, as previous studies have 
consistently reported drought-induced reductions in soil biological activity (e.g36–39. Moreover, a previous study 
from the same experimental site as this study24 reported higher soil carbon stocks and lower soil CO2 emission 
rates under drought, which further supports the idea of a reduced decomposition activity under dry conditions. 
One possible explanation of our findings lies in the fact that the second half of the 2018/19 growing season 
(January to May) received only 35 mm of rainfall and thus more than 80% less than the long-term mean during 
these months, suggesting that baseline soil moisture was already low even in ambient treatments. Consequently, 
differences in water availability between drought and control plots may have been too small to elicit contrasting 
soil faunal responses. Similar underestimations of drought effects have been reported elsewhere40.

It is also possible that the drought led to a spatial redistribution of soil invertebrates rather than a reduction in 
their activity per se. Drier conditions in the topsoil often cause certain invertebrate groups to migrate to deeper 
soil layers41,42 with ants and termites being particularly dominant in southern Africa’s semi-arid grasslands43. In 
this context, we hypothesised that, under drought, soil fauna would shift their feeding activity to layers below the 
top 5 cm of the soil, the region for which Hamel, et al.44 and Filzek, et al.45 reported the highest activity, because 
moisture conditions are usually more favourable. Although the results are not conclusive, our findings (Fig. 1) 
indicate a slight increase in feeding activity at lower soil layers (7–8 cm) compared to the upper most layers. The 
limited response to drought may be explained by the minimal differences in soil moisture between treatments 
and the restricted depth of bait lamina insertion (max. 8 cm). It remains possible that greater feeding activity 
occurred below this depth, but this could not be captured with our method.

In contrast, the combination of nitrogen addition and grazing (N + G+) resulted in increased feeding activity 
throughout the topsoil. This likely reflects enhanced nutrient inputs: Urea provides inorganic nitrogen, while 
livestock contribute additional substrates for soil fauna in the form of urine and dung27. Urine is rich in nitrogen 
(in the form of urea), and dung provides organic carbon10 both of which stimulate microbial and invertebrate 
activity46. Moreover, livestock trampling helps incorporate surface litter into the soil47,48 making it more 
accessible to decomposers49. We found this effect to appear strongest in the upper 0–5 cm, with particularly 

Fig. 2.  Combined effects of nitrogen application (yes: N+, no: N−)) and grazing (yes: G+, no: G−) on the 
uptake of macro- and micronutrients by resin membranes simulating plant roots. The nutrients: nitrates 
(NO3−–N), ammonium (NH4+–N), calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), iron (Fe), 
manganese (Mn), copper (Cu), zinc (Zn), and sulphur (S). All units are in µg/10cm2/160 days. Different letters 
indicate significant differences at p<0.05. If applicable, letters in brackets refer to an alternative threshold level 
of p<0.1.
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elevated activity between 1 and 2 cm. In addition, grazing in subtropical grasslands may enhance belowground 
carbon allocation to roots50 providing further energy sources for soil biota.

Soil invertebrates play a key role in organic matter decomposition and nutrient mineralisation51 making 
their activity essential for plant nutrient supply52,53. Beyond faunal activity, our study also investigated how the 
treatments affected nutrient availability. We found that drought significantly reduced the supply of calcium (Ca) 
and magnesium (Mg) while increasing sulphur (S) availability. The latter aligns with findings from Sardans, et 
al.54 who also found increased soil sulphur due to drought. The reduced availability of Ca and Mg reflects their 
lower solubility or diffusivity in dry soils compared to other nutrients55.

Nitrogen addition increased not only ammonium and nitrate availability but also stimulated the availability 
of several micronutrients, particularly iron (Fe), manganese (Mn) and copper (Cu). The supply of Fe and Mn 
increased fivefold, while Cu supply doubled. These results are consistent with the findings of Rutkowska, et al.56 
and Li, et al.57 who also reported enhanced micronutrient availability following nitrogen addition. Ammonium-
based fertilizers tend to acidify the soil through nitrification58 and since micronutrient mobility increases under 
lower pH, this may explain the observed increase.

Our results suggest that even a modest nitrogen addition (3.3 g N/m2) can enhance the availability of essential 
nutrients in semi-arid grasslands, potentially leading to a higher primary productivity. Cattle grazing can also 
add nitrogen to the system through uneven but locally high deposition of urine and dung59 with faecal nitrogen 
from cattle averaging approx. 0.8 g N per 100 g of dry matter consumed, while nitrogen concentrations in urine 
range from 1 to 20 g/L60. This phenomenon is well-known from semi-arid grasslands, in particular from the 
biospheres around artificial water points61,62. Although not statistically significant, grazed plots in our study 
showed slightly higher mineral and total nitrogen levels, in line with these processes.

Conclusion
This study found that exposure to extreme drought did not significantly affect soil faunal activity. However, 
the very low ambient rainfall during the experimental period may have masked potential treatment effects by 
creating uniformly dry conditions across all plots. In contrast, the combination of livestock grazing and nitrogen 
addition enhanced soil faunal activity in the topsoil, likely due to increased nutrient inputs and improved litter 
incorporation. Furthermore, nitrogen addition in the form of ammonium not only increased the availability of 
inorganic nitrogen but also stimulated the supply of key micronutrients, including iron, manganese, and copper. 
These findings suggest that moderate nutrient inputs and grazing can support belowground processes in semi-
arid grasslands, even under challenging climatic conditions.

Fig. 3.  Combined effects of drought (yes: D+; no: D−) with grazing (yes: G+; no: G−) on plant-available 
cations and anions (measured as their uptake by resin membranes simulating plant roots). The nutrients: 
nitrates (NO3- - N), ammonium (NH4+–N), calcium (Ca), magnesium (Mg), potassium (K), phosphorus 
(P), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and sulphur (S). All units are in µg/10cm²/160 days. 
Different letters indicate a significant difference at p<0.05. If applicable, letters in brackets refer to an alternative 
threshold level of p<0.1. 
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Methodology
Study site
The study was conducted at the University of Limpopo’s Syferkuil experimental farm, Limpopo Province, South 
Africa (Fig. 4). The climate is classified as arid steppe hot climate63 which receives annual average rainfall ranging 
from 400 to 600 mm64. Average minimum and maximum temperatures are 4–20 °C in winter and 17–27 °C in 
summer.

Only 32 mm of rain fall was received from March to August 2020, the period in which the experiment was 
carried out. Daily temperature, rainfall and other weather data were recorded from an automatic weather station 
installed at the experimental farm. The maximum temperature, minimum temperature and rainfall recorded in 
the year 2020 are shown in (Fig. 5).

The soils are mainly shallow (30–50 cm), reddish-brown loamy sand soils, underlain by soft plinthic B horizon 
and classified as Plinthisols65,66. The vegetation has been described as an open thorn bush savanna belonging 
to the Pietersburg Plateau False Grassveld type (Acocks, 1994). The herbaceous layer is dominated by perennial 
C4 grasses such as Themeda triandra Forssk., Digitaria eriantha Steud., Schmidtia pappophoroides Steud. ex 
J.A.Schmidt and Eragrostis spp., while the woody component is dominated by Vachellia tortilis (Forssk.) Galasso 
& Banfi (Low and Rebelo, 1998).

The experimental site is part of a rotational camp system that is moderately grazed at a stocking density 
of 0.11 LSU ha− 1 where a Large Stock Unit (LSU) is equivalent to a mature cow with a bodyweight of 450 kg 
(Meissner, 1983). Grazing periods did not exceed 30 days, with intermittent recovery of not less than six weeks 
during the growing season (eight weeks during the dry season, respectively). The rotational management was 
established six years prior to the set-up of the experiment, resulting in good rangeland condition at the onset of 
treatments.

Experimental design
We conducted our experiment within the large field experiment ‘DroughtAct’, which combines a severe drought 
treatment with a resting treatment. A full factorial experimental design was applied, with crossed drought 
treatments (two levels: severe drought D+, or ambient rainfall D-); grazing treatments (two levels: moderate 
grazing G + or resting, G-) and nitrogen addition (two levels: nitrogen added N + or not added N-) replicated 
over four blocks. The resulting 24 plots (10 × 10 m) were separated by corridors with a width of 5 m. Cattle 
grazing on G- plots was excluded with the aid of permanent wire fences. On D + plots, rainfall was reduced 

Fig. 4.  Location of the DroughtAct experiment at the University of Limpopo’s experimental farm in South 
Africa’s Capricorn District of Limpopo Province (adopted from24.
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by 66% through the use of large rainout shelters with a size of 36 m², established at the centre of the plots. The 
rainout shelters allowed for cattle to roam and graze under them. Because the shelters were open on all sides 
and had a minimum height of 2 m, they had negligible effects on the air temperature beneath them (data not 
shown). We also oriented the lower sides of the shelters to intercept rain from the dominant wind direction67. To 
prevent interference of lateral soil water movements, we trenched around the perimeter of the rainout shelters to 
maximum soil depth (≤ 70 cm) and inserted an impermeable plastic sheet. Sampling was restricted to a central 
subplot area in each plot (4.8  m x 4.8  m) to reduce marginal effects. Grazing and drought treatments were 
established in October 2014, i.e., before the vegetation period 2014/15. More information on the experimental 
layout can be obtained in Munjonji, et al.24.

In early 2019, at the onset of the fifth treatment year of DroughtAct, two nitrogen addition treatments were 
conducted as an add-on to the DroughtAct design. Specifically, we added nitrogen to grazed plots (N + G+) and 
to plots with grazing exclosure (N + G-), both under ambient rainfall conditions. In these treatments, 10 g N /
m² in form of granular Urea (46% N) was applied in three single doses at a rates of 7.6 g Urea / m² equating 
3.3 g N m-² (33 kg N ha− 2) in the first half of the rainy season 2019/2020. The latest application was about six 
weeks before installing the bait lamina strips and PRS probes. Nitrogen treatments were not combined with the 
ongoing drought treatment.

Assessment of soil fauna feeding activity
To assess the feeding activity of edaphic fauna under field conditions, bait laminas strips were used, which are a 
commonly applied, standardized field method68. Each strip had a size of 6 mm × 120 mm and contained 16 holes 
filled with an artificial organic bait substrate (1.5 mm in diameter) spaced at 5 mm intervals. Five replicate strips 
were carefully inserted vertically into the top 8 cm soil horizon, making sure that they did not break. Bait lamina 
strips were installed in the second half of the rain season, i.e., on 03 March 2020, and remained until well after 
the vegetation period (in total, 23 weeks). Upon retrieval on 23 August 2020, visual inspection was undertaken 
to evaluate feeding activity. For each hole, feeding activity was scored as empty (1), partly empty (0.5), or filled 
(0) for each of the bait-filled holes. When the hole was empty it meant that all the bait was fed on by the soil 
fauna and when partly empty means only a small part was consumed while filled meant that no feeding activity 
occurred.

After retrieval, the strips were visually inspected to evaluate feeding activity. For each hole, feeding was 
scored as: empty (1) if all the bait had been consumed, partly empty (0.5) if some bait remained, and filled (0) if 
no feeding activity was evident.

Fig. 5.  Rainfall, maximum and minimum temperature recorded in the year 2020 at the weather station 
situated in ca. 1 km distance to the field experiment. Minimum T = minimum temperature, Maximum 
T = maximum temperature. The arrows pointing downwards show the onset and end of the period when the 
bait lamina strips and the PRS probes were buried.
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Assessment of plant nutrient supply
We used Plant Root Simulator (PRS®) probes (Western Ag Innovations, Saskatoon, SK, Canada) to assess plant-
available nutrient supply rates in the rooting zone. Each PRS probe consists of a pair of ion exchange membranes 
– one for anions and one for cations – encapsulated in a plastic frame. These membranes have a high density of 
ion adsorption sites on their resin surface, enabling them to function as ion sinks when placed in soil, mimicking 
the nutrient uptake of plant roots. When placed in the soil during the growth period, they provide a seasonally 
integrated estimate of plant-available macro- und micronutrients, also in dryland grasslands69. In each plot, four 
pairs of PRS probes were installed vertically at a depth of 10 cm. The probes remained in the soil for 23 weeks, 
from 3 March to 11 August 2020. After retrieval, they were gently washed with deionised water to remove any 
adhering soil, then packed and sent to the Western Ag Innovations laboratory for analysis (see ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​w​e​s​
t​e​r​n​a​​g​.​​​c​a​/​i​n​n​​o​v​a​t​i​o​​​n​s​/​t​e​​c​h​n​o​l​​​o​g​y​/​a​n​a​l​y​​s​i​s​_​u​n​i​t​s). The analyses were conducted for micro and macro nutrients.

Burial period
The bait lamina strips and PRS probes were originally intended to remain in the ground for six weeks, until the 
end of April 2020; however, due to COVID-19 restrictions, they could only be retrieved in August 2020. This 
delay is unlikely to have affected the results, as the last significant rainfall occurred at the end of May and the 
plant growing season had already concluded by that time.

Data processing and statistical analysis
Soil fauna feeding activity was analyzed using two separate Cumulative Link Mixed Models (clmm from 
R-package ordinal70, whereby the response was a factor of three levels of feeding activity: no activity (filled 
holes), medium activity (partly filled holes), and high activity (empty holes) on the bait lamina strip. One model 
tested drought, grazing, depth and their interactions, the second nitrogen, grazing, depth and their interactions. 
In both models, the individual bait lamina strip was included as random effect. For the visualization, the 
proportion of no, medium, and high activity, was calculated for all treatments and depths separately.

The effects of drought and grazing and their interaction, as well as the effects of nitrogen and grazing and 
their interaction on cation/anion uptake were assessed via two separate linear mixed effect models considering 
the block as random factor and followed by a Type III-ANOVA with Satterthwait´s method, using lmerTest 
package71. If needed, the response variable was log-transformed prior to analysis to meet the assumptions of 
ANOVA. A Tukey-HSD test was further used for a pairwise comparison of treatments. We further calculated 
median values and median absolute deviation (mad) for cation/anion uptake for different treatments. All 
statistics were done with R72.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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