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Climate projections contain the uncertainty due to the internal variability of the climate system, 
including its chaotic nature. While the uncertainty due to the internal variability can be theoretically 
mitigated by executing large ensemble simulations with perturbed initial conditions, only a limited 
number of large-ensemble experiments are available in CMIP6 future scenario dataset. Here we 
propose a method that increases the effective ensemble sampling size in evaluations of future 
projection by integrating multiple SSP-RCPs for a period corresponding to a specific increase in 
temperature from the preindustrial level (i.e., X°C warming). The success of the method was assessed 
by investigating whether the uncertainty due to small number of ensemble members could be 
reasonably reduced. First, we confirmed that the spatial distributions of the future flood magnitude 
change were similar under a 2 °C warming in all SSP-RCP scenarios. Additionally, the uncertainty due 
to the different SSP-RCPs (5–10%) was smaller than the differences between different warming levels 
such as between 2 and 3 °C (around 20–50%), suggesting differences among SSP-RCPs as to future 
flood discharge change are relatively small. These results suggested that integrating SSP-RCPs to 
increase the effective ensemble size was a reasonable approach, reducing unbiased variance among 
GCMs in about 70% of land grid points comparing to the result using SSP5-RCP8.5 alone.

Climate model outputs contain uncertainties arising from the internal variability of the climate system, model 
responses, and radiative forcing scenarios. Previous study showed that the average of multiple general circulation 
models (GCMs) has been found to align more closely with various observational data than the results of any 
single model1. Averaging multi-model outputs is expected to offset specific limitations of individual GCMs, such 
as challenges in representing complex processes and parameterizations, and to help achieve reasonable climate 
fields, as all climate models are designed to replicate the same Earth climate system in various aspects.

In addition to the multi-model approach, the ensemble simulation approach using multiple simulations with 
perturbed initial conditions is widely used to reduce uncertainty due to the internal variability of the climate 
system, including its chaotic nature (hereafter termed as “internal variability” in this paper). Lehner et al.2 
demonstrated that internal variability poses a significant challenge in future climate change assessments, especially 
during the early decades or at lower levels of warming, where it can dominate over scenario-related differences 
on a global scale. The spatial distribution of hazards related to factors such as precipitation varies greatly due to 
internal variability3–5 and influences climate impact projections6. A large set of ensemble experiments, such as 
50–100 runs conducted with a single GCM with perturbed initial conditions, demonstrates the magnitude of 
internal variability and shows that increasing the number of ensembles helps reduce it7. For example8, showed 
that, for precipitation and temperature, increasing the ensemble size leads to greater agreement (convergence) 
in projection results. Based on a large-ensemble climate simulation of a single GCM9,10, demonstrated that a 
small number of ensembles can lead to significant uncertainty, particularly for severe rainfall and severe floods.

However, studies that have used the output of GCMs in Coupled Model Intercomparison Project Phase 6 
(CMIP6,11) under Scenario Model Intercomparison Project (ScenarioMIP, O’Neill et al.12) face limitations in 
addressing uncertainties in future projections because there are few GCMs that include large ensembles. Some 
studies that have used CMIP5 or 613–15 to project flooding have focused on specific time periods, such as the 
end of the twenty-first century, but the lack of ensembles inevitably leads to large uncertainties. For example, 
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Hirabayshi et al.15 examined future flood risk and associated uncertainty, but the variability in projections 
among GCMs was still large.

To address this problem, here we proposed a method that increases the effective ensemble sample size in 
evaluations of future projections, by integrating multiple SSP-RCPs over the period of a specific temperature 
rise from preindustrial level (i.e., X°C warming). Because each SSP-RCP has a different range of temperature 
rise for use in risk assessments for specific time periods, such as the end of the twenty-first century, different 
SSP-RCPs should be treated as different sampling pools. If the spatial patterns of changes at X°C warming can 
be considered similar among SSP-RCPs, then the different SSP-RCP scenarios can be considered to make up one 
sample pool to increase effective ensemble number (hereafter, “effective ensemble number” denotes the total 
number of ensemble members treated as a single pool by combining multiple SSP-RCP scenario simulations). 
This idea stems from past findings that show the same level of warming produces similar changes in climate 
variables. It is widely recognized that the accumulation of anthropogenic radiative forcing since 1850 exhibits 
a linear relationship with global warming (e.g., IPCC, 2021). In addition, similar linear or direct effect of the 
warming temperature on several climate-related variables have been reported. For example, Shiogama et al.8 
demonstrated a linear increase in global mean precipitation with global warming across all SSP-RCP scenarios, 
except for SSP3-RCP7.0, which incorporates a unique aerosol scenario compared to the others. Hirabayashi et 
al.16 demonstrated that the projected increase in flood exposure across all GCMs and RCPs showed a strong 
correlation with rising temperatures.

This study investigated whether the projection uncertainty due to the internal variability could be reduced by 
increasing effective ensemble size through merging multiple SSPs and extracting periods with the same warming 
levels under each SSP. Precipitation, particularly daily maximum precipitation, is a major source of uncertainty 
in climate change projections8, such that flood projections are subject to even greater uncertainty. Thus, we 
focused on flood projection, specifically river discharge, and investigated the uncertainty of GCMs. First, we 
determined whether the distribution of changes in flood projections among different SSP-RCPs is similar and 
thus whether integrating SSP-RCPs to increase the effective ensemble size is justified, then we quantified the 
extent to which uncertainty can be reduced by our proposed method, which integrates SSP-RCPs.

Data and methods
We execute global river hydrodynamics model simulations using runoff data from CMIP6 GCMs to discuss 
how to handle climate model ensembles to reduce the uncertainty due to internal variability. In particular, we 
investigate whether this uncertainty—often amplified by the limited number of ensemble members available 
for future climate simulations—can be mitigated by combining outputs from multiple SSP-RCP scenarios. 
The central idea is to extract the period corresponding to a specific global warming level (e.g., 2  °C above 
preindustrial) from each SSP-RCP scenario. If the spatial patterns of flood change are consistent across scenarios 
at the same warming level, these outputs can be integrated as a unified ensemble, thereby increasing the effective 
sample size without requiring additional simulations.

The GCMs and the river model used in this study are described in Section “Flood simulation and runoff 
data”. To evaluate the validity of this approach, we first assess the similarity of flood projections among different 
SSP-RCPs at the same warming level by comparing spatial distributions and statistical characteristics of flood 
discharge change (Section “Similarity of the flood projection under the same warming level among different 
SSP-RCPs”). We then identify potential sources of uncertainty among scenarios (Section “Potential causes of 
uncertainty in flood projections among different SSP-RCPs”), and quantify the extent to which our proposed 
integration method reduces inter-model variance (Section “Ability of SSP-RCP integration to reduce the 
uncertainty for flood projection”). The calculation flow and experimental settings are summarized in (Fig. 1). 
Note that we primary focused on flood discharge change in this study, but the same method can be applicable to 
other flood-related variables such as water depth or inundation extent.

Flood simulation and runoff data
A global river hydrodynamics model CaMa-Flood ver. 4.1017,18 was used to simulate river discharge with 
runoff from GCMs as input forcing. Runoff refers to the amount of water reaching to a river channel from 
land calculated in each GCM’s land surface process, and CaMa-Flood calculates how water moves along river 
networks. CaMa-Flood allows for the simultaneous simulation of river discharge, water depth, and flood 
inundation extent by representing floodplain topography at sub-grid scale. These outputs form the basis not only 
for evaluating changes in hydrological variables but also for constructing spatially explicit flood hazard maps19. 
In our study, these capabilities were leveraged to assess both the changes in discharge and their implications for 
inundation extent and associated flood risk under warming scenarios. For the CaMa-Flood model, consistency 
with historical river level, flow, and inundation area data has been demonstrated20. Additionally, uncertainty 
among models and scenarios for future projections has been examined15,16,19. A detailed description of CaMa-
Flood is provided in17,21,22).

In this study, 6-arcmin resolution river simulations were forced with the daily runoff outputs of the GCMs 
for two time periods: historical (1980–2014) and future (2015–2100). For the latter, three scenarios based on 
a combination of SSP-RCPs (SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5) were used. GCM-output runoff 
was converted from its original spatial resolution to 30-arcmin resolution through bilinear interpolation. Nine 
GCMs from independent institutes were used15: MIROC6, IPSL-CM6A-LR, GFDL-CM4, NorESM2-MM, 
ACCESS-CM2, INM-CM5-0, MPI-ESM1-2-HR, MRI-ESM2-0, EC-Earth3.

Similarity of the flood projection under the same warming level among different SSP-RCPs
We first hypothesized that scenario difference on flood projection becomes small at a specific warming level. To 
proof this hypothesis, the similarity in the future flood discharge among the different SSP-RCP was investigated 
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by comparing the spatial distribution of the flood discharge change ratio for each SSP-RCP. The flood discharge 
change ratio is calculated at 6-arcmin resolution and the flood discharge is the summation of the river channel 
and floodplain flow. The future flood discharge at specific warming levels (SWLs) of X°C above the preindustrial 
temperature was calculated as follows. (1) As in previous research23, SWLs were calculated as the year each SWL 
first surpassed a reference temperature relative to the preindustrial period (1850–1900), using a running mean 
of the 30-year global averaged annual mean temperature (Supplementary Tables S1). We selected the 30-year 
window centered at the SWL year with reference to previous studies(e.g.23). (2) Next, as to each catchment, we 
fitted the Gumbel distribution to the annual maximum discharge of the 30-year used for calculating at SWLs 
(30-year sample including 15 years before and 14 years after the SWL year) with the L-Moments method24. (3) 
Then, 100-years return period discharge for each grid point was calculated from the Gumbel distribution.

We used multiple ensemble simulations to increase the sample size for this extreme value calculation. 
Specifically, three ensembles were used in one SSP-RCP (Supplementary Tables S2), and the presence of extreme 
values was analyzed for 90 samples (30 years × 3 ensembles), by fitting to the Gumbel distribution. The same 
procedure was used to calculate the flood discharge for the historical period (1980–2014), and then the flood 
discharge change ratio was calculated using Eq. (1):

	
ChangeRatio = 100yearDischarge (atX◦C) − 100yearDischarge (historical)

100yearDischarge (historical) � (1)

This ratio reflects the relative change in extreme flood magnitudes due to climate warming.
Even for the same GCM and under the same SSP-RCP, the timing of X°C warming may differ between 

different ensembles, due to internal variability. The timing of the 2.0 °C warming was therefore investigated in 
three multiple ensembles of IPSL-CM6A-LR under the same SSP-RCP, which showed a difference of only about 
1 year between ensembles. The same was true for other GCMs (ACCESS-CM2 and EC-Earth3) with multiple 
ensemble experiments under the same SSP-RCP. Those results support the use of the same period for the other 
ensembles, assuming that the timing of the X°C warming is the same as “r1i1p1f1”, which is the first available 
initial condition ensemble member.

Whether the change trends in each grid are similar across various SSP-RCP scenarios was determined 
in a global-scale analysis, based on25. That study compared the differences in runoff, discharge, and related 
factors between the high-end climate scenario (RCP 8.5) and lower RCPs (RCP2.6 and RCP4.5). Then the flood 
discharge change ratios between the lower SSP-RCPs and the higher SSP-RCP were compared25. Also compared 

Fig. 1.  Simulation procedure flowchart and experimental settings. Each experimental setting shows 
representative combinations of SSP-RCP scenarios, ensemble members (ens), and specific warming levels (+ 2 
to + 4 °C). Note that only illustrative combinations are displayed; the full range is analyzed in the corresponding 
sections.
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the differences in impacts between different warming levels, by plotting the average change attributed to one 
warming level (e.g., 1.5 °C) combined with another level (e.g., 2 °C) for each grid point on a scatter plot. In this 
study, we made a scatter heatmap plot to quantitatively evaluate the similarities and differences of estimated 
flood discharge change ratio between two simulations using different SSP-RCPs input. Here, the flood discharge 
change ratio of one simulation is compared to another simulation at each grid.

Potential causes of uncertainty in flood projections among different SSP-RCPs
We then hypothesized that the flood projections differences among different scenarios at a specific warming level 
is mostly due to the internal variability, rather than the differences due to scenario-specific characteristics. To 
proof this hypothesis, the potential causes of uncertainty among the different SSP-RCPs with respect to the flood 
change ratio in the future climate was analyzed by comparing the spatial distribution patterns of the variation 
(standard deviation) of the flood change ratio among different ensembles (same GCM under SSP5-RCP8.5) and 
among different SSP-RCPs (same GCM). If the spatial distribution of variation among different SSP-RCPs of the 
same GCM was similar to that among the different ensembles (which is most likely due to internal variability), 
the differences due to scenario-specific characteristics can be said to be not so important in terms of the physical 
changes in flood magnitude. In that case, the SSP-RCPs could be treated as effective ensemble members during 
the time of X°C warming and thus merged to reduce the uncertainty due to internal variability.

In addition, we made a scatter heatmap plot to quantitatively evaluate the similarities and differences of 
estimated flood discharge change ratio among different three ensembles (same GCM under SSP5-RCP8.5) and 
among different three SSP-RCPs (same GCM and different ensembles). Then, we evaluated the difference and 
similarities of the two simulations by calculating Mean Absolute Error and Pearson Correlation Coefficient. 
These metrics are calculated for the three possible combinations of two simulations. We calculated the metrics 
for three different climate models (ACCESS, EC-Earth, and IPSL) and at 1.5 and 2.0 °C warming levels.

Ability of SSP-RCP integration to reduce the uncertainty for flood projection
Lastly, we hypothesized that scenario integration can reduce flood projection difference among multiple climate 
models by mitigating uncertainties due to internal variability. To proof this hypothesis, the extent to which 
integration of the SSP-RCPs could reduce the uncertainty was quantified by comparing the variance among 
GCMs with respect to the change in the flood discharge during the historical climate to in response to 2 °C 
warming, first using only SSP5-RCP8.5 and then using our proposed method integrating multiple SSP-RCPs. 
Unbiased variance is an indicator that allows a comparison of the variance of data derived from different 
numbers of samples: a lower value indicates reduced uncertainty. In this study, unbiased variance was applied 
because sample sizes can vary depending on the method used to integrate the SSPs and ensemble members (see 
Supplement Text S2). Warming of 2 °C was chosen because it is used in many GCMs and SSP-RCPs.

Our proposed method integrates multiple SSP-RCP into a 90-year (or 60-year) time-series data pool at each 
GCM and then performs an extreme values analysis. The procedure involves the following: (1) A survey of 
the nine GCMs and three SSP-RCPs to identify those that reach 2.0  °C (Supplementary Table S1), which in 
this study yielded 21 GCM-SSP-RCPs. (2) Calculation of the flood discharge using multiple SSP-RCPs in one 
GCM and increasing the sample size (i.e., number of years) to mitigate the uncertainty due to extreme values. 
Specifically, three (or two) SSP-RCPs were used in one GCM, and an extreme value analysis was performed for 
90-year (or 60-year) time-series data; flood discharge under the future climate was calculated in each GCM. 
For example, in the case of three SSP-RCPs in one GCM, the extreme value analysis performed for the annual 
maximum discharge for 90  years = 30  years × 3 SSP-RCPs). (3) Performing an extreme value analysis for the 
annual maximum discharge during the historical climate (1980–2014) according to each GCM to calculate the 
flood discharge and flood change ratio at 2  °C warming for each GCM using Eq.  (1). (4) Calculation of the 
unbiased variance of the flood change ratio among the nine GCMs at each grid point.

Results
Similarity in the flood projection at the same warming level among SSP-RCPs
The spatial distribution of the flood discharge change ratio from the historical climate to 2 °C warming in IPSL-
CM6A-LR showed similar patterns among the different SSP-RCPs (Fig. 2). In all of them, flooding increased in 
many areas in Southeast Asia and low-latitude Africa, while it decreased from northern and Eastern Europe to 
western Russia, in central North America, and in northern South America. Thus, the differences among SSP-
RCP scenarios were relatively small in comparisons of the flood change at a specific degree of global warming. 
The same analyses for EC-Earth3 and ACCESS-CM2 showed similar results (Supplementary Figs. S1, S2). The 
close-up views for Europe and Central Africa are shown in Supplementary Fig S3.

In the quantitative analysis, conducted at a global scale, scatter heatmap plot were used to diagram whether 
the trend of a change in each grid was similar between different SSP-RCP scenarios. Figure 3a,b show the flood 
change rate at the same warming level obtained from different SSP-RCPs in IPSL-CM6A-LR. A lot of grids are 
located around y = x, indicating that flood discharge is similar at the same warming level regardless of the SSP-
RCP, the differences between y = x and the slope “b” of the fitted line using principal component regression is 
less than 5%. Figure 3c–f shows the flood change ratio for the different warming levels in IPSL-CM6-LR. For 
all SSP-RCPs, there was a tendency for increased floods with warmer temperatures. For example, the flood 
change ratio in most of the grid cells is larger for 3.0 than for 2.0 and the slope “b” of the fitted line of the flood 
change ratio was 1.29. The value of “b” was similar for 1.5 and 2.0 whereas for 3.0 and 4.0 the magnitude of the 
difference in the flood change ratio between different warming levels was 20–50%, which was larger than the 
difference among different SSP-RCPs at the same warming level. A comparison of the scatter heat maps for 
ACCESS-CM2 and EC-Earth3 is shown in Supplementary Figs. S4 and S5, which summarizes Table S3. For EC-
Earth3 and ACCESS-CM2, the trend was the same as in (Fig. 3). We also confirmed that the spatial distributions 
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of the future flood magnitude change were similar under a 2 °C warming in all SSP-RCP scenarios in case of 
EC-Earth3 and ACCESS-CM2. Additionally, the uncertainty due to the different SSP-RCPs (5–10%) was smaller 
than the differences between different warming levels such as between 2 and 3 °C (around 30–50%), suggesting 
differences among SSP-RCPs as to future flood discharge change are relatively small in both EC-Earth3 and 
ACCESS-CM2.

The above results showed that future flood changes, such as flood discharge, differ between different SSP-
RCPs, but the differences are smaller than those between different warming levels. Although trends may vary by 
GCM, integrating different SSP-RCPs may reduce the uncertainty due to small number of ensemble members. 
In the next section, we analyzed the causes of uncertainty among different SSP-RCPs in the flood discharge of a 
future climate, by examining the spatial distributions of the standard deviations.

Potential causes of uncertainty in flood projections among SSP-RCPs
To investigate the causes of uncertainty among different SSP-RCPs with respect to flood discharge in a future 
climate, the global spatial distribution of the variability (standard deviation) in the flood change ratio from the 
historical climate to 2.0 °C warming was compared among different SSP-RCPs of the same GCM and among 
different ensembles of the same GCM under SSP5-RCP8.5 (Fig. 4). Figure 4a shows the large variability and 
thus the large uncertainty in the same regions, including the Mississippi River (USA), the low-latitude region of 
Africa, and the region extending from China across Southeast Asia. The close-up views for Europe and Central 
Africa are shown in Supplementary Fig S6.

The main source of the variation among different ensembles of the same GCM under the same SSP-RCP is 
internal variability. This variation had a similar spatial distribution as in Fig. 4b, which implies that the main 
source of the difference among SSP-RCPs was internal variability. Thus, the differences in the pathways of 
warming to the same temperature increase can be said to be not very large, in terms of the physical changes in 
flood magnitude under the spatiotemporal resolution covered in this study.

In the top panels of Fig. 5, the flood discharge change ratios of the simulations with “Same SSP scenario, 
different ensemble runs” are compared (note: same model at 1.5 °C warming). Thus, differences of two simulations 
are due to the internal variability. Then, in the bottom panel of Fig. 5, we compared the flood discharge change 
ratio between the simulations with “different SSP scenarios, different ensemble runs”. Thus, the difference in the 
bottom panel is considered to be due to both “internal variability and scenario difference”.

Then, we evaluated the difference and similarities of the two simulations by calculating Mean Absolute Error 
and Pearson Correlation Coefficient as shown in (Table 1). These metrics are calculated for the three possible 
combinations of two simulations (i.e., three panels in top of Fig. 5), and the mean and standard deviation of these 
metrics are listed in (Table 1). We calculated the metrics for three different climate models (ACCESS-CM2, EC-
Earth3, and IPSL-CM6A-LR) and at 1.5 and 2.0 °C warming levels.

Fig. 2.  Spatial distribution of the flood change ratio from the historical climate to 2 °C warming. (a) SSP1-
RCP2.6, (b) SSP2-RCP4.5, (c) SSP5-RCP8.5. Grid cells with a flood discharge in the historical climate < 100 
m3/s were excluded. The results of IPSL-CM6A-LR GCM are shown here, while same results for other GCMs 
are in supplement.
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We found out that the Mean Absolute Errors are almost the same between “comparison of same SSP and 
different ensemble runs” and “comparison of different SSP and different ensemble runs”. This indicates that the 
uncertainties due to scenarios are almost negligible compared to the uncertainties due to internal variability, at 
least at 1.5 and 2.0 °C warming level. The results for Pearson Correlation Coefficient suggested the same pattern. 
These results support our idea of integrating different SSP simulations to increase effective ensemble size, given 
that the differences are mostly due to internal variability, even in different SSP simulations, when the warming 
level is the same. We also did the same analysis for the comparison of different warming levels under the same 
RCP scenario, and found that the difference due to the warming level is larger than the uncertainties due to 
internal variability, for all climate models.

As noted above, integrating different SSP-RCPs may reduce the uncertainty due to small number of ensemble 
members.

Reduction of uncertainty in flood projection by the proposed method
The results of Fig. 2–5 show that the uncertainty in the flood projection could be reduced using our proposed 
method. The uncertainty in flood projection using our method was reduced in approximately 70% of the grid 
points compared to when the simulation was performed only with SSP5-RCP8.5 (Fig.  6). This pattern was 
particularly evident in grid points in which the unbiased variance among GCMs was larger than 0.1. In regions 
characterized by an initially significant unbiased variance among GCMs, the reduction increased to about 80% of 
the grid points, with significant decreases in the Mississippi River (USA) and extending from China to Southeast 
Asia. These results suggest that the uncertainty in flood projection can be reduced by our method. However, even 
after integrating multiple SSP-RCPs, regions with large unbiased variance among GCMs remained, indicating 
a large uncertainty, including differences in the physical parameters of climate models. The close-up views for 
Europe and Central Africa are shown in Supplementary Fig S7.

Discussion
Uncertainty in flood risk estimation
The variability (unbiased variance) among GCMs can be reduced by performing an extreme value analysis after 
integrating the annual maximum discharges of multiple SSP-RCPs for each GCM. While the main analysis of 

Fig. 3.  Comparison of the flood change ratio among two simulations. (a,b) Among two future scenarios 
characterized by the same warming level but under different RCP-SSP scenarios: (a) 2.0 °C warming between 
SSP1-RCP2.6 and SSP5-RCP8.5; (b) 2.0 °C warming between SSP2-RCP4.5 and SSP5-RCP8.5 (IPSL-CM6-LR). 
(c–f) Among two future scenarios at different warming levels: (c) 1.5 °C and 2.0 °C under SSP1-RCP2.6; (d) 
1.5 °C and 2.0 °C under SSP2-RCP4.5; (e) 2.0 and 3.0 °C under SSP5-RCP8.5; (f) 3.0 and 4.0 °C under SSP5-
RCP8.5. The dashed line is a 1:1 linear. “b” is the slope of the fitted line using principal component regression 
and the R value is the correlation of determination. The results of IPSL-CM6A-LR GCM are shown here, while 
same results for other GCMs are in supplement.
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this study focused on evaluating the uncertainty in extreme river discharge projections under future climate 
conditions, it is important to assess how this uncertainty reduction translates to more societally relevant metrics 
such as flood risk. To this end, we utilized CaMa-Flood’s capability to generate floodplain inundation estimates 
to evaluate the impact on affected populations. This linkage between hydrological uncertainty and flood risk 
enables a more comprehensive understanding of the uncertainty reduction in climate projections.

The future climate inundation depth distribution (future flood hazard map) was constructed based on 
the change in future flood frequency at X°C warming, using the lookup method of19. Detailed explanations 
of the construction of a future flood hazard map and of the population used in this section are provided in 
Supplementary Text S1. We compared the use of our scenario-integration method to the conventional approach 
only using one scenario (SSP5-RCP8.5). Then, the affected population in each case at X°C warming was 
determined to estimate the magnitude of the reduction of uncertainty in future impact assessments that could 
be achieved using the proposed method.

Table 2 shows the change in the size of the affected population at X°C warming compared to the historical 
climate after applying the two approaches described above. The affected population was predicted to be 1.62 
billion under the historical climate and increase by 0.048–0.083 billion (+ 2.9%- + 5.1%) in the case of 1.5–3 °C 
warming according to the future climate hazard map based on our proposed method. In addition, the proposed 
method reduced the variation (unbiased standard deviation) among the nine GCMs with respect to the affected 
population by 5–10% compared to only SSP5-RCP8.5, thus demonstrating its ability to reduce the uncertainty 
in future flood impact assessments.

Uncertainty in the scenario integration method
This study demonstrated that focusing on specific global warming levels—such as 1.5 or 2.0 °C—can reduce 
uncertainty in climate impact assessments by integrating outputs from multiple SSP-RCP scenarios. Our method 
assumes that climate projections are comparable across scenarios at the same warming level, an approach also 
used for mean climate variables (e.g.26). We extended this concept to extreme events, particularly flooding. 
However, the assumption that “climate impacts are comparable under the same warming level” may not hold 
uniformly across all climate variables. For example, Donnelly et al.25 showed that precipitation and runoff are 
broadly consistent among different SSP-RCPs at the same warming level. In contrast, Liu et al.27 found that 
permafrost degradation can differ significantly depending on the scenario, even at the same temperature level. 
Furthermore, for certain sectors—such as ecosystem management—risk assessments based solely on discrete 
warming levels may be insufficient. Overshoot scenarios, where global temperature temporarily exceeds 
critical thresholds, can cause irreversible impacts, highlighting the need for trajectory-based analyses in some 
applications.

Fig. 4.  Spatial distribution of the standard deviation of the flood change ratio from the historical climate to 
2.0 °C warming. (a) Standard deviation among three different SSP-RCPs; (b) standard deviation among three 
different ensembles (SSP5-RCP8.5). Grid cells with a 100-year RP discharge in the historical climate < 100 m3/s 
were excluded. The results of IPSL-CM6A-LR GCM are shown here.
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Additional caution is warranted when applying this method to scenarios with markedly different socio-
economic pathways. For instance, SSP3-RCP7.0 assumes lenient air quality policies, resulting in higher aerosol 
emissions and distinct precipitation patterns compared to other scenarios8,28. Such non-GHG factors can 
introduce inconsistencies in climate response across scenarios, potentially limiting the validity of integrated 
analysis.

Another source of methodological uncertainty is the number of ensemble members used to quantify climate 
variability. While our method showed that scenario integration can enhance the effective ensemble size, it 
remains unclear how many ensemble members are needed to sufficiently constrain uncertainty. As suggested by 
Shiogama et al.8, a more systematic investigation of ensemble size effects is required. Future studies using larger 
ensembles or perturbed initial condition experiments could better quantify the relationship between ensemble 
size and uncertainty reduction. Note that we also compared our proposed method—where SSP-RCP data are 
pooled into a 90-year time series prior to extreme value analysis—with an alternative approach that calculates 
extreme parameters independently for each 30-year scenario-specific segment. As shown in Supplementary 

Mean absolute error (MAE) Pearson correlation coefficient

Climate model

IPSL-CM6A-LR EC-Earth3 ACCESS-CM2 IPSL-CM6A-LR EC-Earth3 ACCESS-CM2Comparison setting

SSP5-RCP8.5, different ensemble runs, 1.5℃ 0.15 ± 0.03 0.15 ± 0.02 0.18 ± 0.00 0.50 ± 0.18 0.58 ± 0.11 0.52 ± 0.03

different SSPs, different ensemble runs, 1.5℃ 0.15 ± 0.03 0.14 ± 0.02 0.19 ± 0.00 0.50 ± 0.19 0.61 ± 0.10 0.49 ± 0.02

SSP5-RCP8.5, different ensemble runs, 2.0℃ 0.22 ± 0.05 0.16 ± 0.02 0.20 ± 0.00 0.48 ± 0.23 0.65 ± 0.10 0.57 ± 0.02

different SSPs, different ensemble runs, 2.0℃ 0.21 ± 0.05 0.16 ± 0.02 0.20 ± 0.00 0.49 ± 0.24 0.65 ± 0.09 0.58 ± 0.02

different SSPs, different ensemble runs, 1.5℃vs2.0℃ 0.22 ± 0.03 0.17 ± 0.02 0.22 ± 0.01 0.40 ± 0.21 0.60 ± 0.07 0.49 ± 0.04

different SSPs, different ensemble runs, 1.5℃vs3.0℃ 0.25 ± 0.02 0.22 ± 0.01 0.27 ± 0.02 0.38 ± 0.13 0.57 ± 0.04 0.42 ± 0.05

Table 1.  Quantitative evaluation of similarities between ensembles. (Mean ± standard deviation of MAE 
between 3SSP or 3 ensemble).

 

Fig. 5.  Scatter heatmap plot showing the similarities and differences of estimated flood discharge change ratio 
between two simulations. (a) using different SSP scenarios. (b) using different ensemble run input. The results 
of ACCESS-CM2 GCM are shown.
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Text S2 and Figures S8 and S9, our method yielded greater reductions in inter-model variance, supporting its 
effectiveness in enhancing robustness despite limited ensemble size.

Other limitations
In this study, climate-induced changes in river discharge were analyzed using daily GCM runoff without 
applying bias correction. This choice was based on our prior work19, which demonstrated that relative changes 
in frequency or magnitude are more robust than absolute values when estimating future flood magnitude and 
inundation area. The “lookup method” used in that study links the projected change in flood frequency from 
raw GCM outputs with historical reanalysis-based inundation depth distributions. This approach avoids bias 
correction, which can itself introduce additional uncertainty, especially when future conditions diverge from 
historical reference periods. In addition, our analysis does not consider non-climatic impacts on river discharge 
such as human interventions (e.g., dam operations, irrigation) which can significantly influence runoff and 
flooding. Also, future sea level rise could increase the inundation area of low-lying regions29, but changes in 
water levels at the river mouth were not considered as boundary conditions in this study due to the uncertainty 
of the projections.

Furthermore, this study does not fully account for uncertainties in land surface hydrological processes, which 
are distinct from those in climate models. Structural assumptions in runoff generation, soil moisture storage, 
and routing schemes introduce independent uncertainty. These can be further amplified by the non-linear 
propagation of atmospheric model biases (Cloke & Pappenberger, 2009; Ferretti et al., 2020). Land use and land 
cover (LULC) changes—another major source of uncertainty—are only implicitly included through prescribed 

At 1.5 °C warming At 2 °C warming At 3 °C warming

9GCM average
Unbiased Standard 
deviation among 9GCM 9GCM average

Unbiased Standard 
deviation among 
9GCM 9GCM average

Unbiased 
Standard 
deviation 
among 
9GCM

(1)Using only SSP5-RCP8.5  + 47 39  + 61 39  + 80 34

(2) Using our proposed method  + 48 37  + 56 36  + 83 31

Change ratio from (1) to (2)  − 5.1% -7.9% -9.7%

Table 2.  Change in the affected population at X°C warming vs. the historical climate according to the two 
approaches based on the lookup method. (unit: million). Note that the affected population was predicted to be 
1.62 billion under the historical climate (1980–2014), the detailed explanations of the historical flood hazard 
map is provided in (Supplementary Text S1).

 

Fig. 6.  Unbiased variance in the flood change ratio from the historical climate to 2.0 °C warming. (a) among 
nine GCMs (only SSP5-RCP8.5) and (b) among nine GCMs integrating multiple SSP-RCP into a 90-year (or 
60-year) time-series data pool at each GCM, performing an extreme value analysis and calculating unbiased 
variances. (c) Change in the variance from (a) to (b) are also shown.
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GCM boundary conditions. Future studies should consider multi-model hydrological ensembles and dynamic 
land surface representations to better capture these uncertainties.

Lastly, while CaMa-Flood includes sub-grid-scale channel representation and has been widely used for global 
flood assessments, it has limitations in resolving floodplain dynamics in urban or topographically complex 
regions. Local hydraulic features such as levees, drainage systems, and urban land use are not explicitly modeled. 
For such regions, local high-resolution hazard maps typically offer more precise information. However, where 
such maps are unavailable—particularly in developing countries—global models like CaMa-Flood still provide 
valuable first-order flood hazard assessments.

Conclusions
This study investigated whether the uncertainty in future flood prediction due to small number of ensemble 
members could be reasonably reduced by merging multiple SSP-RCPs and extracting the periods with the same 
warming level under each SSP-RCP. The uncertainty due to small number of ensemble members is a one of the 
major sources of uncertainty in climate predictions. Projection uncertainty due to the above could be mitigated 
by increasing the effective number of ensemble members. However, only a limited number of large-ensemble 
experiments are available for each of the CMIP6 GCMs. Therefore, while increasing the ensemble size may be 
difficult, evaluating future projections of X°C warming by integrating multiple SSP-RCP with data at the time 
of that warming may increase the sample size. This study investigated whether the uncertainty in future flood 
prediction due to small number of ensemble members could be reasonably reduced by merging multiple SSP-
RCPs and extracting those periods with the same warming level under each SSP-RCP.

A preliminary investigation of the similarity in flood projection at the same level of warming among SSP-RCP 
scenarios showed that at 2 °C warming the change ratio in the flood magnitude showed similar distributions for 
all SSP-RCPs. Moreover, the uncertainty due to the different SSP-RCPs (5–10%) was smaller than the difference 
in flood projection between 2 and 3 °C or between 3 and 4 °C (20–50%), which suggests that differences among 
SSP-RCPs as to future flood discharge change are relatively small. Accordingly, integrating multiple SSP-RCPs 
is an appropriate method for reducing the uncertainty due to small number of ensemble members in impact 
assessments at X°C warming.

The ability of our method to reduce the variability among GCMs regarding future flood changes was 
compared to the use of SSP5-RCP8.5 alone. The unbiased variance among GCMs in our method was reduced 
in about 70% of the grid points compared to when SSP5-RCP8.5 alone was applied. In regions characterized by 
an initially significant unbiased variance among GCMs, the reduction increased to about 80% of the grid points, 
with significant decreases in the Mississippi River (USA) and extending from China to Southeast Asia.

Finally, the proposed method was tested by creating future hazard maps based on the change in flood 
frequency in each GCM using the lookup method with only nine GCMs under the SSP5-RCP8.5 scenario vs. 
using the proposed method. Then the size of the affected population at X°C warming was calculated according 
to these two approaches. The results showed a reduction in the variation among GCMs of the affected population 
of 5–10%.

Based on the above results, our proposed method is very helpful for assessing climate change impacts because 
it could not only meet the growing need to evaluate impacts of specific warming levels but also reduce the 
uncertainty as to future flood impact assessment. Furthermore, the warming-level-based approach adopted in 
this study aligns more directly with international climate policy targets such as those set by the Paris Agreement 
(e.g., 1.5 and 2.0  °C warming goals). Unlike time- or scenario-based projections, which depend heavily on 
assumptions about socioeconomic development and emissions pathways, warming-level approaches enable 
more consistent comparison of physical climate responses across scenarios. This approach is particularly relevant 
for risk assessments and adaptation planning because it focuses on the impacts associated with specific levels 
of global warming, irrespective of the pathway taken to reach them. Therefore, it facilitates actionable insights 
for policymakers by linking projected hazards—such as floods—to clearly defined policy-relevant temperature 
thresholds. Thus, the proposed method is expected to be commonly used as a method to reduce the uncertainty 
of small number of ensemble members regarding future projections in CMIP6 and to provide a more accurate 
and helpful estimates of the impacts of climate change.

Data availability
The topography data MERIT DEM are available from ​h​t​t​p​:​​​/​​/​h​y​d​r​​o​.​i​i​​s​​.​u​-​t​o​k​​​y​o​​.​a​c​.​j​p​/​~​y​a​m​a​d​a​i​/​M​E​R​I​T​_​D​E​M​/​i​n​
d​e​x​.​h​t​m​l (last access: 17 August 2023)30. The CMIP6 data are available from the Earth System Grid Federation 
(ESGF) data platform (https://esgf-node.llnl.gov/search/cmip6/, accessed on 17 August 2023).

Code availability
The global hydrodynamic model CaMa-Flood (v4.10) is available from (https://zenodo.org/records/7597409)18.
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