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The Asteraceae plant family includes the most widespread weedy invaders in Europe, which may 
jointly inhibit natural succession in degraded land under restoration. The complex local drivers of 
co-invasions hinder remote sensing (RS) monitoring efforts, as the links between the ecological and 
the spectral habitat properties are largely unknown. We proposed a comprehensive framework for 
machine learning modeling of the co-invasion of two Erigeron spp. and two Solidago spp. in post-
mining landscapes of S Poland, using both field data and a combination of Sentinel-2, Landsat 7 and 
airborne LiDAR RS predictors. Stochastic Gradient Boosting best captured the non-linear dependencies 
(Accuracy = 0.670–0.886, AUC = 0.675–0.923), and generally outcompeted two other classifiers 
(Random Forest and Support Vector Machines with a Radial Basis Function Kernel). The field-based 
functional diversity metrics were the strongest predictors, corroborating improved resistance to 
invasions by native plant functional richness. In terms of RS data, the most favorable conditions for 
co-invasion were identified by a narrow range of reflectance in the red-edge interval of a Sentinel-2 
image, and constrained by LiDAR-derived vegetation height (for Erigeron spp.) and by high land 
surface temperatures (for Solidago spp.). The highest share of patches suitable for co-invasion was 
consistently found in the low vegetation land cover class, between 36% and 64% cover. We therefore 
advise considering particular management actions, such as increasing the supply of native seed, thus 
improving local community resistance to invasions. The proposed methods and openly available RS 
predictors may facilitate targeted monitoring and cost-effective management interventions.

Keywords  Erigeron spp., Solidago spp., Invasive plants, Natural succession, Novel ecosystems, Machine 
learning

The level of alien plant invasions is particularly high in human-altered, heavily disturbed areas of western 
and central Europe1,2. On the one hand, invasive plants (IPs) benefit from high frequency of ruderal sites and 
increased propagule pressure in urban and industrial landscapes3. On the other hand, high human population 
densities often coincide with a warm and mild climate, at low altitudes, which are optimal conditions for most 
IPs2. While such broad-scale patterns of plant invasions were addressed by several comprehensive studies1–4, 
there is an urgent need for a finer-scale identification of areas which are highly prone to invasions, to support the 
remote monitoring efforts1,5. Particularly, the phenomenon of coexistence of two or several IPs requires special 
attention, while the effects of such co-invasions may exceed the effects of any single IP6–8.

The Asteraceae plant family has the largest number of alien representatives in Europe9, followed by the 
Poaceae and the Rosaceae families. This is partly due to a very large number and ubiquity of the Asteraceae 
plants, but also because of the common weedy habit in this plant family9,10. Several Asteraceae IPs are at the 
top of the list of the most widespread alien plant species in Europe11, including two species of the Erigeron 
genus (annual or biennial herbs: Erigeron canadensis L. and Erigeron annuus (L.) Desf.) and two species of 
the Solidago genus (perennial herbs: Solidago canadensis L. and Solidago gigantea Aiton). These two Asteraceae 
genera contribute to the highest level of plant invasions in industrial habitats, followed by other human-made 
habitats, such as arable land, gardens and parks10,11. Moreover, Erigeron spp. and Solidago spp. may co-invade a 
single vegetation patch, synergistically altering the local environment in a process called invasion meltdown12,13.

The field studies on Erigeron spp. and Solidago spp. co-invasions focused on eastern China, where it is a 
common phenomenon6–8,13. The co-invasion of the North American Asteraceae genera has been reported from 
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a subtropical humid monsoon climate, Anhui Province6 and from a similar location in the urban ecosystems 
in Zhenjiang7,8. These studies identified relatively high soil biological activity and organic matter content in co-
invaded locations6,8, as well as increased overall plant species richness and functional diversity7. These findings 
may sound like positive effects, especially in biologically poor, post-industrial soils; however, few studies have 
investigated the co-invasion effects of IPs on the diversity of native flora alone, i.e. excluding alien plant species14. 
Moreover, to our knowledge, there are no studies explicitly addressing Erigeron spp. and Solidago spp. co-
invasions in Europe. These Asteraceae representatives were reported from southern Poland, particularly from 
the post-coal-mining spoil heaps in the Upper Silesia region15,16, being local heat islands with maximal summer 
temperatures reaching and exceeding 50 °C17. The Erigeron spp. and the Solidago spp. were among the most 
frequent IPs in the degraded landscapes undergoing spontaneous (unassisted) vegetation succession16,18.

The remote sensing (RS) data, such as satellite or airborne imagery, offer a great potential for cost-effective 
filling of the information gaps between the usually sparse field data collection points5. The modeling efforts for 
distribution of Asteraceae IPs have often operated on a large scale (e.g. country-level), using coarse-grained 
climatic data19 or a mixture of climatic, environmental, reflectance and land cover data1, based on presence-
only IPs records. Lu et al.19 assessed the potential distribution of S. canadensis in China within a 0.1-degree grid 
(above 10 km resolution) and identified large areas suitable for future invasion of the species, especially north of 
the current distribution. More recently, Sittaro et al.1 created species distribution models (SDMs; below 10 km 
resolution) identifying current and future suitable habitats for 46 IPs in Germany (including the Solidago spp.). 
Still, scaling-up of the field-based ecological knowledge using landscape-wide RS proxy variables, through various 
modeling approaches, may be limited and biased by the unknown, confounding variables working globally in 
the models20. Therefore, both abovementioned studies called for finer-scale assessments, due to the need for 
revealing hidden constraints, i.e. not detectable using coarse grids19, such as local variation in temperatures or 
because coarse-grained habitat information may fail to explain differences between IPs distributions1, while the 
local habitat properties may be crucial. However, predicting landscape-level IP distributions using fine-scale RS 
imagery brings several challenges, including: handling large datasets5, outcome uncertainty21, and probability 
thresholding22. Moreover, models based on the presence-only data may produce biased predictions, with the 
false-negative (Type II) errors being more frequent than the false-positive (Type I) errors23. These issues are 
increasingly being coped with by implementing machine learning algorithms, due to their higher flexibility over 
the distributional regression or Bayesian modeling24.

In this study, we leverage a unique dataset of presence-absence records of Erigeron spp. and Solidago spp. 
in post-industrial heterogeneous landscapes of southern Poland, to predict the probability of occurrence of 
both IP genera alone and jointly (co-invasion). The overarching aim of this study was to propose and evaluate 
a framework for predicting the co-invasion of the two Asteraceae invasive plant genera using fine-resolution 
remote sensing data and machine learning methods (Fig. 1). The particular objectives were to:

	 (i)	 Compare the predictive power of field data and remote sensing data in modeling Erigeron spp. and Solidago 
spp. occurrences;

	(ii)	 Provide an ecologically meaningful interpretation of the remote sensing variables;
	(iii)	 Identify the most favorable conditions for co-invasion of both Asteraceae plant genera, in terms of remote-

ly sensed data and Land Use Land Cover (LULC) types.

The first objective is reached by estimating the relative importance of variables in the IPs presence-absence 
classification problem, using three different machine learning algorithms. The second objective is addressed by 
ordinating the IP genera occurrence information using both field data and remote sensing data. Finally, the third 
objective is achieved by pixel-based predictions of the probability of occurrence for both IP genera over three 
ecologically distinct sites, and by characterizing the conditions in the overlap areas. We expect that the remotely 
sensed data may reflect the differences in ecological niches of both IP genera, with Erigeron spp. invading under 
harsher and more initial environmental conditions than Solidago spp. Additionally, we hypothesized that the 
community level invasion of both plant genera is limited by a large number and a high functional richness of 
native plant species.

Materials and methods
Study area and field sampling
The study region is the Upper Silesia in southern Poland, where the coal-mining activities have been transforming 
the landscape for centuries25. The climate is temperate oceanic to continental (from west to east of the region, 
respectively) with a mean annual temperature ranging from 7 to 9 °C and mean annual precipitation between 700 
and 900 mm. The study focuses on the characteristic landscape features of the region: post-mining spoil heaps, 
which are artificial hills made of mineral (waste) material, containing particles of coal and offering poor biological 
potential26. We selected 28 such heaps, to account for size and successional variation (see Supplementary Fig. 
S1 for a map). From this number, three sites were further selected as representative of different dominant land 
cover types (Fig. 2; Table 1), for detailed pixel-based predictions of the IP genera distributions. The field data 
came from a set of 358 circular plots (28.3 m2 each) distributed over the 28 spoil heaps (total area of 1,758.8 ha). 
At the field plots, all plant species were recorded and vegetation cover by species was estimated in summer 
202116,27. The raw field data are available in a public repository (https://doi.org/10.6084/m9.figshare.25289401). 
The Erigeron spp. were recorded in 143 plots (40%), the Solidago spp. were recorded in 144 plots (40%) and both 
genera were present in 75 plots (21%).
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Predictor variables datasets
The predictors were grouped under two broad categories: Field Data (FD) and Remote Sensing (RS) data. These 
categories were further divided into two FD datasets and four RS datasets (Table 2), separating different data 
sources and types of information: habitat properties, propagule pressure, local climate3 or spatial resolution for 

Fig. 2.  Land cover classes in the three ecologically distinct sites: high share of tree cover (high vegetation) in 
Site1; high share of bare ground in Site2; high share of low vegetation (jointly: grassland, cropland, shrubland) 
in Site3; reclassified from the Dynamic World land cover maps28, for the year 2022.

 

Fig. 1.  Framework of the two-part modeling procedure, using: (I) combined field data (FD) variables and 
remote sensing (RS) variables – to uncover the relatedness between the FD and the RS variables using 
Redundancy Analysis (RDA); (II) RS variables alone – to predict the probability of occurrence of both Erigeron 
spp. and Solidago spp. at the pixel- and site-levels; in both (I) and (II), three machine learning techniques are 
employed and compared: Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and Random 
Forest (RF).
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the RS datasets. Throughout the study we used a projected coordinate reference system with units in meters, for 
Poland (EPSG 2180).

Field data
The first group of the FD variables are plot-level estimates of the following five functional traits: number of 
species (nbsp), Functional Richness (FRic), Specific Leaf Area (SLA), Seed Mass (SM) and plant Maximal Height 
(H); all calculated in two variants: for all plant species (“.all” suffix) and for the native plants only (“.nat” suffix). 
We used the R v.4.4.129 function FD::dbFD() in the package “FD” v.1.0.12.330 to derive the plot-level metrics. 
The input data were plant cover by species measured in the field27, and functional traits compiled from several 
external databases: LEDA31, BIEN32, BiolFlor33, and Pladias34. For a small fraction of observations (3% in FRic.

Category
/Group No. Acronym

Source/
resolution Description Unit

Habitat 
properties

Propagule 
pressure

Local 
climate

Field 
Data
FD1

1,2 nbsp.all
nbsp.nat Number plant species of all (.all) and number of native plant species (.nat) - × ×

3,4 FRic.all
FRic.nat Functional Richness for all plant species (.all) and only for the native plants (.nat) - ×

5,6 SLA.all
SLA.nat

Community Weighted Mean Specific Leaf Area for all plant species (.all) and only 
for the native plants (.nat)

cm2 
g− 1 × ×

7,8 SM.all
SM.nat n.a. Community Weighted Mean Seed Mass for all plant species (.all) and only for the 

native plants (.nat) g ×

9,10 H.all
H.nat

Community Weighted Mean Maximal Height for all plant species (.all) and only 
for the native plants (.nat) m ×

FD2 11 Succession Major axis of the nonmetric multidimensional scaling (NMDS) of all plant species 
presence-absence data 27 - × × ×

Remote 
Sensing 
data
RS1

1 CHMmean
LiDAR
5 m

Average value in a 5 × 5 cell window of a 1-m resolution LiDAR Canopy Height 
Model m × ×

2 CHMsd Standard deviation value in a 5 × 5 cell window of a 1-m resolution LiDAR Canopy 
Height Model m × ×

RS2
3 NDVI Landsat 7

30 m
Normalized Difference Vegetation Index - × ×

4 LST Land Surface Temperature °C ×

RS3

5 Aerosols Sentinel-2
60 m Aerosols band (442 nm) r* × ×

6 Blue

Sentinel-2
10 m

Blue band (492 nm): soil and vegetation discrimination; chlorophyll and 
carotenoids absorption r* ×

7 Green Green band (559 nm): strongly reflected by green foliage r* ×

8 Red Red band (665 nm): strongly reflected by stressed and dead foliage; chlorophyll 
absorption r* ×

9 RedEdge1 Sentinel-2
20 m Red Edge band (704 nm): differentiates between vegetation types r* ×

10 NIR Sentinel-2
10 m Near InfraRed band (833 nm): biomass content r* ×

11 SWIR1 Sentinel-2
20 m Short-Wave Infrared (1610 nm): moisture content of soil and vegetation r* ×

RS4

12 TCDImean

Sentinel-2
10 m

Focal average value of the Tasseled Cap Disturbance Index in a 5 × 5 cell moving 
window - × ×

13 TCDIsd Focal standard deviation value of the Tasseled Cap Disturbance Index in a 5 × 5 cell 
moving window - × ×

14 SeLImin Focal minimal value of the Sentinel-2 leaf area Index in a 5 × 5 cell moving window - × × ×

15 RaoQ_NDVI Rao’s quadratic entropy index in a NDVI layer 5 × 5 cell moving window - ×

16 RaoQ_NIRv Rao’s quadratic entropy index in a NIRv layer 5 × 5 cell moving window - ×

Table 2.  Summary of the variables used in this study: field data (FD1-2) and remote sensing (RS1-4) datasets; 
the last three columns indicate the assumed environmental significance of the data (see text for the rationale 
and references); r* = reflectance factor.

 

Area (ha) Tree cover (%) Vegetation cover (%) Bare ground (%) Built area (%) Water cover (%)

Site1 167.44 73.4 78.1 0.1 20.5 1.2

Site2 114.39 31.6 41.8 53.0 4.4 0.9

Site3 119.11 41.5 90.8 3.8 0.2 5.2

Table 1.  Characteristics of the three sites selected for pixel-based predictions of Erigeron spp., Solidago spp. 
and co-invasion; class cover percentages were derived from the Dynamic World land cover maps28, for the year 
2022.
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all and 9% in FRic.nat) the function FD::dbFD() did not reach a convergence and we imputed the missing FRic 
data using the Random Forest35 method (R-squared = 0.72 and 0.73 for FRic.all and FRic.nat, respectively) in 
the “caret” v.6.0.94 R package36, based on the remaining FD1 variables plus leaf dry matter content (the latter 
not used further in this study). The second FD group includes a single structural trait (Succession), which is 
the major axis of the nonmetric multidimensional scaling (NMDS) of all plant species (herbs, shrubs and trees) 
presence-absence data27.

Remote sensing data
RS1 – two 5-m resolution raster layers recalculated from 1 × 1 m Canopy Height Models (CHMs), representing 
local average height (CHMmean) and local standard deviation of height (CHMsd). These layers were derived 
using the raster::focal() function in the R package “raster” v.3.6.2637. The CHMs are based on an airborne LiDAR 
(Light Detection and Ranging) scanning campaign, held within the study area in August 2022, using the Riegl 
VQ780i scanner mounted on an ultralight (KR 030-Topaz) aircraft. The spatial resolution of the LiDAR point 
clouds was around 20 points m− 2.

RS2 – two 30-m resolution raster layers: Normalized Difference Vegetation Index (NDVI) and Land Surface 
Temperature (LST, in °C), derived from the Landsat 7 ETM + sensor products (atmospherically corrected surface 
reflectance bands and a thermal band; available at ​h​t​t​p​s​:​​​/​​/​d​e​v​e​l​o​p​e​r​​s​.​g​o​o​g​​l​​e​.​c​​o​​m​/​e​a​r​​​t​h​-​e​n​g​​​i​n​e​/​d​​a​t​a​s​​e​​t​s​/​c​a​t​​​a​l​o​
g​/​L​​A​N​​D​S​A​​T​​_​L​E​0​​7​_​​C​0​2​_​T​1​_​L​2), acquired and processed via the Google Earth Engine web-based facility38. 
NDVI is indicative of habitat properties (greenness, level of physiological stress) and LST is a leading RS variable 
for local thermal climate determination39. Landsat 7 is known for its high radiometric and geometric accuracy, 
although cloud cover and data gaps are issues that need handling40. For NDVI we used the ten highest quality 
(Tier 1) Landsat 7 images available over the period between the beginning of June and the end of August 2021. 
The Red band (630–690 nm) and the near infrared (NIR; 770–900 nm) band were pixel-wise merged across the 
ten images into single bands by the minimal value, thus minimizing the effects of cloud cover and filling any 
existing data gaps. Subsequently, NDVI was calculated using the formula:

	 NDVI = (NIR - Red) / (NIR + Red)� (1)

following41. Similarly, for LST the Landsat 7 thermal bands (10400–12500 nm) across the ten 2021 images were 
pixel-wise merged, but this time by the maximal value (yearly extreme heat), then scaled to Kelvin by using 
specific constants provided by the data producer42, and recalculated to degrees Celsius by subtracting 273.15. 
We inspected the resulting NDVI and LST images visually (cropped to each spoil heap with a 100-m buffer) for 
spatial consistency, and while the NDVI layers were of a satisfactory quality, some of the LST images still showed 
a striped pattern. We therefore extended the range of included Landsat 7 images for this variable by including the 
two adjacent years (June to August of 2020 and 2022), this resulted in spatially contignous LST images without 
any data gaps.

RS3 – seven reflectance bands from a Sentinel-2B MSI (MultiSpectral Imager) Level-2A image, covering a 
wide range of reflectance spectra (between 442 and 1610 nm). The raw, cloud-free Sentinel-2 image (for the 9th 
of September 2021) was downloaded using the Copernicus Browser43 and processed in EnMAP-Box 3 v.3.1544 to 
surface reflectance values. The selected reflectance bands emphasize different habitat properties, such as biomass 
density (NIR) and moisture content (SWIR1: Short-Wave Infrared)45.

RS4 – a group of five spectral diversity indices based on the Sentinel-2 multispectral data. Spectral diversity 
(local variation in reflectance bands) is thought to explain plant taxonomic and functional diversity46, i.e. the 
spectral variation hypothesis47. Such variables are important in the view of the biotic resistance hypothesis48, i.e. 
that species-rich and diverse communities are more resistant to invasions49,50. The first two indices (TCDImean 
and TCDIsd) were calculated using the Tasseled Cap Disturbance Index (TCDI) 10-m resolution maps51,52, 
and inform about the level and variation of local disturbance (within the neighboring and the target pixel), 
respectively. This information may be indicative of local habitat properties and the magnitude of propagule 
pressure3. The third index is the local minimal value of the Sentinel-2 Leaf area Index (SeLImin)53. Low SeLImin 
values (around zero) indicate presence of bare ground or sparsely vegetated patches (higher invasibility), and 
high SeLImin values (above 0.5) identify more homogeneous vegetation with high leaf area (lower invasibility). 
Finally, we included the Rao’s Q (RaoQ) index54, which is designed as the remote sensing counterpart of the 
field-measured Rao’s quadratic entropy55. The RaoQ was calculated two-fold, using the standard NDVI map as 
input, and using the NIR reflectance of terrestrial vegetation:

	 NIRv = NDVI × NIR� (2)

which may better represent the radiation absorbed by a canopy, especially for low leaf areas56.

Statistical analyses
Workflow overview
The modeling framework was divided into two parts (Fig. 1): in the first part we used a fused dataset of the 
field (FD1-2) and the remote sensing (RS1-4) datasets as predictors of Erigeron spp. and Solidago spp. presence-
absence, to compare the predictive power of both FD and RS datasets, and to establish relatedness between them 
(our first two objectives). In the second part we used solely the RS variables as predictors; although these data are 
available for every pixel of all the included sites, the spatial resolution differed (between 5 and 60 m, see Table 2 
for a detailed list). The goal of the second part is to create site-level maps of the IPs genera and co-invasion and 
to evaluate and compare the most favorable conditions in all cases (the third objective of the study). We expect 
that the finest resolution data (LiDAR CHM-derivatives) will play a major role in the models and thus the final 
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resolution of both the Asteraceae genera distribution maps and the co-invasion map will vary considerably at 
the 5-m resolution. In both modeling parts we largely relied on the “caret” v.6.0.94 R package36,57, providing 
functions for training and evaluating different classification machine learning algorithms. The application or 
combination of several such statistical techniques is often recommended to improve the prediction quality1 
and we chose three such methods: Stochastic Gradient Boosting (GBM), Support Vector Machines (SVM) and 
Random Forest (RF). These algorithms are described below in more detail, in a separate Section.

In both modeling parts, we first created a data partition into training and testing datasets (75% and 25% 
of observations, respectively) using the function caret::createDataPartition(), to balance the class distributions 
within the splits. The models were trained using the function caret::train(), implementing a ten-fold cross-
validation, repeated ten times. The criterium for tuning hyperparameters was the Area Under the receiver 
operating characteristic Curve (AUC). We identified and compared individual variable importance in each 
modeling approach using the caret::varImp() function, and we evaluated the partial effects of the most important 
predictors using the pdp::partial() function in the R package v.0.8.2 “pdp”58. Finally, the testing data were used 
to compare model performance between the different machine learning techniques. We used the following 
classification performance metrics:

	 Sensitivity = TP/ (TP + FN)� (3)

	 Specificity = TN/ (TN + FP)� (4)

	 Precision = TP/ (TP + FP)� (5)

	 F1 = 2 × (Precision × Sensitivity) / (Precision + Sensitivity)� (6)

	 Accuracy = (TP + TN) / (TP + FP + TN + FN)� (7)

where TP, FP, TN, FN are the numbers of: true positive, false positive, true negative and false negative cases, 
respectively. We also accounted for model uncertainty by including standard deviation (SD) of AUC from the 
internal cross-validation21.

Machine learning algorithms
In this study we implemented and compared three machine learning algorithms (Table 3): RF35, GBM59 and 
SVM60, that have been used in similar modeling tasks1. Stochastic Gradient Boosting and Random Forest are 
both based on ensembles of decision trees35,59; however, RF and GBM differ in the model training procedures. 
Random Forest uses the bagging technique (independent learning of individual trees) and GBM implements 
the boosting technique (sequential learning of decision trees)35,59. These result in differences between model 
performances: RF is often reported as more robust to outliers and overfitting, while GBM may be more accurate, 
but somewhat prone to noise in the data and requires more parameters for tuning than RF (Table 3)61. In the 
case of RF, only a single hyperparameter was tuned: mtry (number of variables randomly sampled as candidates 
at each split); in GBM there were four hyperparameters: n.trees (total number of trees to fit), interaction.depth 
(the maximum depth of each tree, e.g. defining an additive model or a model with up to n-way interactions), 
shrinkage (the learning rate or step-size reduction parameter), n.minobsinnode (the minimum number of 
observations in the terminal nodes of the trees); shrinkage and n.minobsinnode were kept constant (at 0.1 and 
20, respectively). In contrast to RF and GBM, Support Vector Machines is a kernel-based machine learning 
method, which maps the input data into a high dimensional feature space and maximizes the width of the 
margin between classes62. We used the SVM with Radial Basis Function Kernel, to allow a nonlinear class 
boundary. SVM had an intermediate number of hyperparameters to tune: C (Cost) and sigma (Radial Basis 
Function sigma).

Multivariate ordination
Redundancy Analysis (RDA) is an appropriate direct canonical analysis for ordination of species field data (Y 
matrix), such as species cover, composition etc., under the constraints of a set of environmental variables (X 
matrix)66. It is also valid for presence-absence data, but requires a transformation of the Y matrix to reduce the 
number of zeros and to avoid the double zeros problem67. In this work we propose another workaround for this 
problem, i.e. we used the testing dataset (n = 88) to predict the probability of occurrence (continuous output) of 
the two Asteraceae IP genera, using the best performing model described in the previous Section. Consequently, 
we used a corresponding dataset of the FD and RS explanatory data. Next, using such prepared X and Y matrices 
we constructed the RDA model using the function vegan::rda() in the R package “vegan” v.2.6.6.168. To assess 

Model Acronym
Libraries
(citation) Tuning Parameters

1. Stochastic Gradient Boosting GBM gbm v.2.2.2 63,
plyr v.1.8.9 64 n.trees, interaction.depth, shrinkage, n.minobsinnode

2. Support Vector Machines with Radial Basis Function Kernel SVM kernlab v.0.9.32 62 sigma, C

3. Random Forest RF randomForest v.4.7.1.1 65 mtry

Table 3.  Overview of the three machine learning algorithms used in this study, including the implementation 
in R programing (Libraries) and a list of model hyperparameters (Tuning Parameters).
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the relatedness between the different components of the X matrix (FD and RS) we applied a standard ordination 
plot method (type 2 scaling: the effects of explanatory variables). We also analyzed the Variance Inflation Factors 
(VIF), which may identify redundant explanatory variables (VIF > 10), and compared the extracted RDA scores 
(biplot coordinates of the arrows representing variables).

Pixel-based site-level predictions
Following the procedure of model evaluation and selection of the best-performing machine learning method 
(Fig. 1) we fitted the model of the selected type using a full set of observations (n = 358). This model was again 
trained using the caret::train() function57 with a ten-fold cross-validation, repeated 10 times. We extracted the 
cross-validated Sensitivity, Specificity and AUC of the final tuned models (for Erigeron spp. and for Solidago 
spp.). For the next step, we extracted the central coordinates (landmarks) for each pixel of the finest-resolution 
RS dataset (LiDAR CHM, 5-m resolution), for each of the three model sites (Fig. 2, Table 1). We kept all raster 
layers in their original resolutions, but the images were projected to a common coordinate reference system (CRS 
EPSG 2180), we then extracted the landmark values of all coarser-resolution layers using the raster::extract() 
function in the “raster”37 R package. Subsequently, the predicted probabilities of occurrence of both Asteraceae 
genera were obtained using the stats::predict(type=“prob”) function. The outcomes were analyzed in the form 
of probability gradients (from 0 to 1) and in a binarized form. While it is known that such binarization is not 
straightforward and probability threshold depends on target prevalence and model performance69, we applied 
the method that minimizes the difference between Sensitivity and Specificity22. To do this, we extracted the 
cross-validation predictions for each genus and binarized them using a sequence of 100 candidate threshold 
values (between 0.01 and 1). We then calculated the differences between Sensitivity and Specificity (assuming 
co-invaded plots as TP) and identified the threshold associated with the lowest difference for each cross-
validation data set. The mean threshold values (0.457 for Erigeron spp. and 0.387 for Solidago spp.) were used to 
create the binary co-invasion layers, with positive class indicating a plausible probability of occurrence of both 
Asteraceae genera in the three selected sites. The statistical analysis included comparison of the absolute (in 
hectares) and relative (percentage) predicted cover of Erigeron spp., Solidago spp. and of the co-invaded patches; 
as well as in the reclassified land use land cover classes28, available at a 10-m resolution. We applied four broad 
land cover classes: high vegetation (high probability of mature trees, but also dense high shrubs), low vegetation 
(grasslands, croplands and shrublands), bare ground (low probability of any vegetation) and built area (high 
proportion of roads and impervious surfaces). The site-specific averages of the most important RS predictors 
were compared using the Welch two-sample t-test (0.05 significance level) and Cohen’s d, to identify the effect 
size70. We used standard R histogram plotting to visualize the differences in remotely sensed niches for Erigeron 
spp., Solidago spp. and co-invasion.

Results
Combined field and remote sensing data
Classifier performance differed by the target genus (Table 4). It was generally better for the Erigeron spp., with 
RF (F1 = 0.88, Accuracy = 0.91) slightly outcompeting GBM (F1 = 0.85, Accuracy = 0.87) and considerably 
outcompeting SVM (F1 = 0.81, Accuracy = 0.85). All three machine learning techniques attained poorer 
predictions of Solidago spp. occurrence, with GBM (F1 = 0.69, Accuracy = 0.78) performing better than SVM 
(F1 = 0.64, Accuracy = 0.76) and RF (F1 = 0.61, Accuracy = 0.74). Similarly, model uncertainties were higher 
for Solidago spp. (SD of AUC between 0.079 and 0.083) than for Erigeron spp. (between 0.050 and 0.054). In 
terms of the FD predictor variables importance, there was a good agreement across the modeling methods 
and target genera (Supplementary Tables S1, S2). The overall Functional Richness (FRic.all) and number of 
species (nbsp.all), as well as the successional gradient (Succession) were the most relevant variables. Functional 
Richness for native species only (FRic.nat) was close behind the aforementioned predictors, in models for both 
genera. Importantly for our first objective, the RS data variables had generally lower importance than those top 
FD variables, and the most relevant RS predictors differed by the target genus. For the Erigeron spp. models, 
LST (representing local thermal climate) was the most important RS variable, followed by TCDImean (local 
disturbance) and CHMmean (fine-scale vegetation height). For the Solidago spp. models, Aerosols (Sentinel-2 
first band) was the most relevant, followed by SeLImean and NDVI (both representing habitat properties and 
vegetation greenness), but LST was also high in the ranking. The partial dependence plots for the most influential 

Erigeron Solidago

GBM SVM RF GBM SVM RF

AUC (± SD) 0.923 (± 0.054) 0.921 (± 0.051) 0.920 (± 0.050) 0.768 (± 0.083) 0.795 (± 0.079) 0.782 (± 0.082)

Sensitivity 0.829 0.771 0.857 0.656 0.594 0.563

Specificity 0.925 0.906 0.943 0.857 0.857 0.839

Precision 0.879 0.844 0.909 0.724 0.704 0.667

F1 0.853 0.806 0.882 0.689 0.644 0.610

Accuracy 0.886 0.852 0.909 0.784 0.761 0.739

Table 4.  Evaluation metrics for machine learning Erigeron spp. and Solidago spp. presence-absence 
classification models (GBM, SVM, RF) fitted with fused field and remote sensing data; the highest values for 
each genus are in bold (not tested for differences).
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FD variables revealed increasing probability of both Asteraceae genera occurrence with increasing FRic.all and 
nbsp.all, but the probabilities decreased with increasing FRic.nat in the GBM and SVM models (Fig. 3). The 
optimal values of Succession were low for Erigeron spp. and intermediate for Solidago spp.

Relatedness between field and remote sensing data
Most of the FD and RS variables contributed to the major RDA axis, while the differences between the Erigeron 
spp. and the Solidago spp. were better represented by the second RDA axis (Fig. 4 and Supplementary Table 
S3). In the first RDA axis, the field-based taxonomic and functional diversity metrics and the RS Rao’s entropy 
(RaoQ_NDVI) were opposed to the community weighted functional traits and RS LiDAR-based height metrics 
(CHMmean, CHMsd). This result is relevant for our second objective on establishing the linkages between the 
traditional field-based ecological measures and the RS metrics. The second RDA axis was dominated by the RS 
variables, with LST, most of the Sentinel-2 bands and local disturbance metrics (TCDImean, TCDIsd) being 
opposed to NDVI, NIR, SeLImin and field-based Succession. The former subset was positively related to the 
Erigeron spp. probability of occurrence and the latter subset was positively related to the Solidago spp. probability 
of occurrence. The Variance Inflation Factors were generally lower in the FD datasets (Supplementary Table 
S3a). The lowest VIF values (indicating distinct variables, with little collinearities) in FD were in the cases of Seed 
Mass and Specific Leaf Area (between 1.55 and 5.21). The highest VIF values were for the three optical Sentinel-2 
bands (Red, Green and Blue; up to 513.94) and for TCDImean (296.11). There were only two RS variables with 
low VIF (below 10): TCDIsd and CHMsd, both representing local variation in habitat properties.

Effects of remote sensing variables
Removing the FD variables from all models decreased all model performances (Table 5). The largest drop was 
for the Erigeron spp. RF. Generally, the Erigeron spp. models suffered more from neglecting the FD data than 
the Solidago spp. models, which resulted in more similar model performances across the target genera. Still, the 
Erigeron spp. classifiers performed better, with the GBM (F1 = 0.67, Accuracy = 0.72) outcompeting both RF 
(F1 = 0.61, Accuracy = 0.70) and SVM (F1 = 0.58, Accuracy = 0.67). In the case of Solidago spp., RF (F1 = 0.53, 
Accuracy = 0.69) performed slightly better than GBM (F1 = 0.52, Accuracy = 0.67) and SVM (F1 = 0.51, 
Accuracy = 0.67). Model uncertainties were slightly higher for Solidago spp. (SD of AUC between 0.089 and 
0.096) than for Erigeron spp. (between 0.076 and 0.084). Importantly, for the Solidago spp. the GBM was the 
only classification model where none of the performance metrics dropped below 0.5 (which was the GBM 
Sensitivity score or true positive rate). In all cases, Specificity (true negative rate; here between 0.72 and 0.82) 
was higher than Sensitivity, and considering both metrics GBM was the best performing modeling approach. 
Land Surface Temperature, TCDImean and CHMmean attained high importance in the Erigeron spp. classifiers 
(Supplementary Table S4) after removal of the FD predictors; additionally, SeLImin and RedEdge1 advanced in 
importance (two variables related to habitat properties and succession). Similarly, in the case of Solidago spp. 
classifiers, Aerosols, SeLImin and NDVI maintained high importance (Supplementary Table S5) compared to the 
full-data models. Moreover, SWIR1 increased in importance, particularly in the GBM. The partial dependence 
analysis for the most influential RS predictors revealed some clear differences between Erigeron spp. and Solidago 
spp. (Fig.  5). In Erigeron spp. models, increasing LST was related to a sharp increase in the probability of 
occurrence, particularly in the LST range between 30 and 35 °C. In contrast, the highest probability of Solidago 
spp. occurrence was under low or intermediate LST (depending on the modeling approach). The GBM and RF 
classifiers identified a narrow optimum in RedEdge1 for the Erigeron spp. (around 0.1), while in Solidago spp. 
the probability of occurrence increased with increasing RedEdge1, up to around 0.15, and then plateaued. The 
effects of fine-scale vegetation height (CHMmean) were also distinctly different in the two Asteraceae genera: the 
Erigeron spp. probability of occurrence decreased steeply within the height range up to 5 m, and the probability 
of Solidago spp. occurrence decreased much slower, plateauing at CHMmean between 10 and 25 m (depending 
on the machine learning method).

Predicted co-invasion
Stochastic Gradient Boosting was chosen for site-level predictions (Tables 4 and 5; see Supplementary Table S6 
for tuned hyperparameter values). The final GBM models (fitted with all available observations, n = 358) again 
attained mostly higher performance statistics for the Erigeron spp. classifier (Sensitivity = 0.68, Specificity = 0.75, 
AUC = 0.81) than for the Solidago spp. classifier (Sensitivity = 0.51, Specificity = 0.75, AUC = 0.70), as identified 
by the internal ten-fold cross-validation procedures. Local thermal conditions (represented by LST) were the 
most important in the Erigeron spp. model (Table  6), while SWIR1 and Aerosols were relevant for Solidago 
spp. occurrence. Four RS variables were relevant in both Asteraceae genera classifiers: RedEdge1, CHMmean, 
SeLImin and RaoQ_NDVI. The predicted occurrence of both genera separately and the co-invasion maps 
(Fig. 6) revealed different proportions of these three presence categories across the three ecologically distinct 
sites (Table 7). In Site1 (with a large proportion of high vegetation) the Solidago spp. (77% predicted cover of 
suitable vegetation patches) dominated over the Erigeron spp. (20%); in Site2 (large proportion of bare ground) 
predicted cover was intermediate for both the IP genera (42% for the Erigeron spp., 31% for the Solidago spp.); 
in Site3 (mostly covered by low vegetation) the Solidago spp. predicted cover (60%) was considerably higher 
than the Erigeron spp. cover (38%). The proportion of the co-invaded areas was highest in Site3 (33%), then 
in Site1 (17%) and the smallest in Site2 (13%). The mean pixel values for the most important RS predictors, 
across the three sites, were always significantly different between the two Asteraceae genera (Table  8), but 
Cohen’s d revealed that the actual effect sizes were sometimes small (Fig. S2). Relevant to our third objective, the 
distributions of RedEdge1 were most similar between the two IP genera and were also most consistent across 
the three sites (RedEdge1 reflectance around 0.1), precisely identifying the co-invaded pixels (Fig. 7; Table 8). 
In contrast, the mismatch between both genera niches was best captured by LST (averaging between 37.5 and 
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Fig. 3.  Partial dependence plots in the probability fraction mode, based on Erigeron spp. or Solidago spp. 
presence-absence classifications, for five field data variables: Functional Richness (FRich) and number 
of species (nbsp) for all plant species (.all) and for native species only (.nat), and successional gradient 
(Succession); different line colors denote different machine learning algorithms (GBM – black solid, SVM – 
red dashed, RF – blue solid).
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45.3 °C for the Erigeron spp. and between 33.2 and 40.6 °C for the Solidago spp.) and by the LiDAR-derived 
CHMmean (averaging between 0.12 and 0.56 m for the Erigeron spp. and between 1.7 and 5.1 m for the Solidago 
spp.). Overall, the habitats suitable for the Erigeron spp. were more frequent in the initial successional stage 
(50% of the bare ground LULC) and the habitats suitable for the Solidago spp. dominated in the late successional 
stage (65% of the high vegetation LULC), both genera attained high potential coverages (well above 50%) in the 
intermediate stage (Table 9; Fig. 8). The proportions of co-invaded areas in the LULC classes were as follows: 
low vegetation (58%) > built area (45%) > bare ground (9%) > high vegetation (6%). The site-specific percentages 
in the two well represented classes (high and low vegetation) agreed well with the overall predictions (Table 9).

Discussion
Local thermal conditions drive Erigeron spp. distribution, but local moisture was more 
important for Solidago spp.
Our study revealed promising avenues for predicting IP genera co-occurrence on local and regional scales using 
a combination of fine to moderate resolution RS data (5–60  m), which integrates multispectral and LiDAR 
information. Following other studies comparing machine learning techniques, the ensemble-based methods 
performed better than the kernel-based method (SVM), and the flexibility of the stochastic GBM proved most 
advantageous71,72. Our analyses identified that LST (maximal summer surface temperature, 30-m resolution) 
carried the most relevant information for the Erigeron spp. habitat suitability, which agrees very well with their 

Erigeron Solidago

GBM SVM RF GBM SVM RF

AUC (± SD) 0.803 (± 0.084) 0.807 (± 0.079) 0.805 (± 0.076) 0.675 (± 0.096) 0.680 (± 0.094) 0.690 (± 0.089)

Sensitivity 0.714 0.571 0.571 0.500 0.469 0.469

Specificity 0.717 0.736 0.792 0.768 0.786 0.821

Precision 0.625 0.588 0.645 0.552 0.556 0.600

F1 0.667 0.580 0.606 0.525 0.508 0.526

Accuracy 0.716 0.670 0.705 0.670 0.670 0.693

Table 5.  Evaluation metrics for machine learning Erigeron spp. and Solidago spp. presence-absence 
classification models (GBM, SVM, RF) fitted with remote sensing data; the highest values for each genus are in 
bold (not tested for differences).

 

Fig. 4.  Redundancy Analysis (RDA) ordination of Erigeron spp. and Solidago spp. probability of occurrence 
(gray arrows) using both Field Data (FD) and Remote Sensing data (RS); explanatory sub-datasets (FD1-2, 
RS1-4) are highlighted by different colors (see “Category/Group” in Table 2 for definitions).
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biological and ecological needs73,74 as early invaders. Land Surface Temperature was always ranked high in 
the predictor importance lists, also in the Solidago spp. models, but in the latter case there were some more 
relevant RS variables, particularly the SWIR1 Sentinel-2 (20-m resolution) band. This reflectance band is 
highly indicative of vegetation and soil water content, due to the extreme absorption by water in this part of 

Fig. 5.  Partial dependence plots in the probability fraction mode, based on Erigeron spp. or Solidago spp. 
presence-absence classifications, for four remote sensing variables: LST, SeLImin, RedEdge1 and CHMmean; 
different line colors denote different machine learning algorithms (GBM – black solid, SVM – red dashed, RF 
– blue solid).
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Fig. 6.  Site level (Site1-3) Canopy Height Models (CHMs, in meters; a.1–3) and GBM-predicted probabilities 
of Erigeron spp. occurrence (b.1–3), Solidago spp. occurrence (c.1–3) and both genera co-occurrence (Co-
invasion; d.1–3); (b.1–3) and (c.1–3) are probability gradient maps, while (d.1–3) are binarized maps for both 
the Asteraceae genera; in b-d, dark colors denote low or zero probability of occurrence and bright colors 
indicate high probability of occurrence.

 

Table 6.  Scaled variable importance, based on the GBM models trained using the full RS dataset (n = 358), 
ranked by the total importance in both Erigeron spp. and Solidago spp. models; different colors highlight 
importance in individual models: from highest (red) to lowest (blue).
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the spectrum75. Moreover, SWIR1 noticeably increased in importance after removal of the FD (field-based) 
predictors, which may suggest that relevant habitat information was overlapped by both FD predictors and 
SWIR1 (further supported by a high Variance Inflation Factor of SWIR1 in the RDA model, cf. Supplementary 
Table S3). Indeed, these local characteristics agree with the previously identified broad-scale climatic differences 
between both genera, for instance, the humid climate of the Zhenjiang (China) zone was found to be suboptimal 
for Erigeron canadensis, compared to the warm temperate continental climate of the Jinan zone76,77, while the 
climatic pattern in China was opposite in the case of Solidago canadensis19.

Spectral diversity and LiDAR-based vegetation height jointly contribute to explaining 
community-level invasibility
The major axis of the RDA ordination captured similarities between both Asteraceae genera and represented a 
community-level invasibility gradient. Our results support the concept of a spectrally-derived Rao’s Q diversity 
index54 being a surrogate of the field-based functional diversity55. Moreover, indeed high taxonomic and 
functional richness as well as the RaoQ_NDVI index were positively related to probability of both IP genera 
occurrence7. In contrast, high Specific Leaf Area, Seed Mass of native plants and community-level plant height 
(including the RS CHMmean metric) limited habitat invasibility. This supports the findings that both IP genera 

Site1 (n = 66,974)

No. Name (unit)
Site1
mean (± SD)

Erigeron
mean (± SD)

Solidago
mean (± SD)

Welch test
p-value Cohen’s d

Co-invasion
mean (± SD)

1 LST (°C) 33.07 (± 4.19) 37.78 (± 3.09) 33.19 (± 3.65) < 0.001 1.3 37.28 (± 2.9)

2 SeLImin (-) 0.4 (± 0.21) 0.19 (± 0.14) 0.39 (± 0.19) < 0.001 -1.17 0.21 (± 0.13)

3 RedEdge1 (-) 0.08 (± 0.03) 0.1 (± 0.02) 0.08 (± 0.02) < 0.001 0.82 0.1 (± 0.02)

4 CHMmean (m) 6.25 (± 6.75) 0.56 (± 1.4) 5.05 (± 5.61) < 0.001 -0.89 0.65 (± 1.5)

5 Aerosols (-) 0.03 (± 0.02) 0.04 (± 0.02) 0.03 (± 0.01) < 0.001 0.75 0.04 (± 0.02)

6 RaoQ_NDVI (-) 0.08 (± 0.07) 0.14 (± 0.07) 0.09 (± 0.07) < 0.001 0.61 0.14 (± 0.07)

Site2 (n = 45,754)

No. Name (unit)
Site2
mean (± SD)

Erigeron
mean (± SD)

Solidago
mean (± SD)

Welch test
p-value Cohen’s d

Co-invasion
mean (± SD)

1 LST (°C) 43.27 (± 5.25) 45.34 (± 3.06) 40.6 (± 4.06) < 0.001 1.35 43.08 
(± 3.24)

2 SeLImin (-) 0.18 (± 0.2) 0.1 (± 0.09) 0.26 (± 0.15) < 0.001 -1.37 0.17 (± 0.1)

3 RedEdge1 (-) 0.06 (± 0.02) 0.07 (± 0.01) 0.07 (± 0.02) 0.033 -0.02 0.08 (± 0.01)

4 CHMmean (m) 2.16 (± 3.82) 0.18 (± 0.41) 2.92 (± 3.76) < 0.001 -1.1 0.3 (± 0.67)

5 Aerosols (-) 0.03 (± 0.01) 0.04 (± 0.01) 0.03 (± 0.01) < 0.001 1.01 0.04 (± 0.01)

6 RaoQ_NDVI (-) 0.07 (± 0.06) 0.09 (± 0.06) 0.1 (± 0.06) < 0.001 -0.27 0.11 (± 0.06)

Site3 (n = 47,646)

No. Name (unit)
Site3
mean (± SD)

Erigeron
mean (± SD)

Solidago
mean (± SD)

Welch test
p-value Cohen’s d

Co-invasion
mean (± SD)

1 LST (°C) 34.12 (± 4.33) 37.5 (± 3.46) 35.48 (± 3.69) < 0.001 0.56 37.15 
(± 2.96)

2 SeLImin (-) 0.45 (± 0.17) 0.39 (± 0.11) 0.43 (± 0.11) < 0.001 -0.34 0.4 (± 0.09)

3 RedEdge1 (-) 0.08 (± 0.02) 0.1 (± 0.01) 0.09 (± 0.02) < 0.001 0.7 0.1 (± 0.01)

4 CHMmean (m) 3.33 (± 4.94) 0.12 (± 0.51) 1.74 (± 3.59) < 0.001 -0.57 0.12 (± 0.47)

5 Aerosols (-) 0.02 (± 0.01) 0.02 (± 0) 0.02 (± 0) < 0.001 0.49 0.02 (± 0)

6 RaoQ_NDVI (-) 0.04 (± 0.04) 0.04 (± 0.04) 0.04 (± 0.04) < 0.001 -0.1 0.04 (± 0.03)

Table 8.  Summary statistics of site-level remote sensing data pixel values (Site1-3) and subsets identified by the 
GBM predictions for Erigeron spp. occurrence (Erigeron), Solidago spp. (Solidago) occurrence or both genera 
co-occurrence (Co-invasion); Welch test p-values denote non-zero differences between Erigeron and Solidago 
and Cohen’s d indicates both the effect size and direction of the difference (positive values for larger erigeron 
mean and negative values for larger Solidago mean).

 

Erigeron
ha (%)

Solidago
ha (%)

Co-invasion
ha (%)

Site1 33.9 (20.2%) 128.6 (76.8%) 28.2 (16.8%)

Site2 47.5 (41.5%) 35.6 (31.2%) 14.3 (12.5%)

Site3 44.6 (37.5%) 71.3 (59.8%) 39.5 (33.2%)

Table 7.  Site-level GBM-predicted cover (in hectares and as site area percentage) of Erigeron spp., Solidago 
spp. and both genera co-occurrence (Co-invasion).
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are important invaders in communities that can be outcompeted by a rapid height growth and tall stature of the 
IPs78. In fact, it appears that plant height of the IPs is more relevant for the overall advantage over native plants 
than leaf size and photosynthetic capabilities78. Moreover, the rhizomatous Solidago spp. may inhibit natural 
succession of taller woody species for decades, thus degrading the potentially much higher ecosystem services79.

Fig. 7.  Site-level distributions of selected remote sensing variables pixel values (Site1-3, gray fill) and subsets 
identified by the GBM predictions for Erigeron spp. occurrence (Erigeron, red fill), Solidago spp. (Solidago, 
yellow fill) occurrence or both genera co-occurrence (Co-invasion, orange fill with black outline); vertical lines 
indicate group means.
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Sentinel-2 RedEdge1 band best identified co-invaded areas
We found a limited niche overlap and potential co-invasion area of the two Asteraceae genera in the studied 
landscapes, in contrast to the commonly reported co-invasion of the genera representatives in warmer regions 
of Eurasia6–8,13. Still, there was a considerable overlap of the suitable habitat patches for both genera, at least 
in the low vegetation site (Site3), primarily due to limited competition of native plants2,3. Accordingly, the low 
vegetation LULC type was most likely to be co-invaded across the three test sites, with the most equal cover of 
both genera (slightly dominated by the Solidago spp.). Interestingly, the built area LULC type was the second 
most co-invaded (also dominated by the Solidago spp.), primarily due to a high propagule pressure2,3. In terms 
of the RS predictors, this was reflected by a high importance of the local disturbance metrics (such as TCDIsd) 
in the Solidago spp. models. Overall, RedEdge1 was the most relevant RS predictor, identifying potential co-
invasion of both Asteraceae genera, in a narrow spectral range across the three sites. This important result 
supports the findings of another study80, which also identified the Sentinel-2 red-edge spectral range as the 
most relevant for capturing specific properties of vegetation. That study aimed at machine learning modeling 
of a xeric (semi-arid, Caatinga) ecosystem in northeast Brazil, using a very similar set of RS predictors to our 
study (Sentinel-2 multispectral and LiDAR height information). These results further confirm that the steep 
change from chlorophyll absorption to foliage internal structure reflectance in the red-edge interval maximizes 
the differences between vegetation characteristics81,82. We only focused on the two Asteraceae genera, but it is 
well known that the native expansive grass Calamagrostis epigejos dominates in many early successional parts of 
the landscape15. Future studies may aim at elucidating if the red-edge spectral range is also useful for identifying 
differences within vegetation functional groups.

High FRic of native plants may limit invasiveness of the two Asteraceae genera
Following our expectation, the plot-level Functional Richness calculated for all plant species (FRic.all) and the 
version calculated for native plants only (FRic.nat) worked differently in all types of models and also differed 
between the two Asteraceae genera classifiers. While FRic.all was generally the strongest predictor across this 

Fig. 8.  Combined percentage predicted presence across the three selected sites, for Erigeron spp., Solidago 
spp. and both genera co-occurrence (co-invasion) in four broad land cover classes (reclassified from Dynamic 
World LULC28: high vegetation (High.veg.), low vegetation (Low.veg.), bare ground (Bare) and built area 
(Built); see Table 9 for exact values.

 

Predicted High vegetation (%) Low vegetation (%) Bare ground (%) Built area (%)

Erigeron 7.0 (7.4, 10.7, 3.2) 67.8 (48.7, 61.8, 71.5) 49.8 58.4

Solidago 64.6 (77.9, 52.1, 41.3) 81.2 (93.7, 70.0, 81.7) 11.3 70.6

Co-invasion 6.0 (7.0, 7.0, 3.0) 57.5 (45.2, 36.1, 63.5) 8.5 45.4

Table 9.  Combined percentage predicted presence across the three selected sites, for Erigeron spp., Solidago 
spp. and both genera co-occurrence (Co-invasion) in four broad land cover classes (reclassified from dynamic 
world LULC28; for the two classes well represented across the three sites (high and low vegetation) site-specific 
predictions are given in parentheses (from Site1 to Site3, respectively).

 

Scientific Reports |        (2025) 15:34877 15| https://doi.org/10.1038/s41598-025-16441-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


study, increasing the probability of the IP genera presence, the Fric.nat appeared to either counteract invasiveness 
(as in the GBM and SVM models) or pose no considerable influence (as in the RF models). On the one hand, 
these results agree with the biotic resistance hypothesis48,49 and the theoretical rationale behind a high Functional 
Richness50, which should increase the community resistance to invasions when the functional niche is already 
filled by native plants. On the other hand, these findings call for more frequent and careful analyses of native 
versus total plant compositions in similar analyses7,14, to avoid drawing overly broad conclusions about the 
effects of IPs on plant communities. Further studies may directly target these differences, probably by including 
narrow-band hyperspectral data46, while none of our RS predictors seemed to explicitly capture the different 
effects of FRic.all and FRic.nat. This may be attributed to the well-known inconsistency problem when scaling 
from plot-level experimental data to landscape level RS data20.

Conclusion
This research proposed a comprehensive framework for machine learning modeling of post-industrial habitats 
prone to the co-invasion of two Asteraceae invasive plant genera (Erigeron spp. and Solidago spp.), using moderate 
to fine-resolution remote sensing data, based on presence-absence records. Stochastic Gradient Boosting (GBM) 
best captured the often non-linear effects of predictors and generally outcompeted the two other machine 
learning methods (Random Forest and Support Vector Machines with a Radial Basis Function Kernel). The 
predictive power of field-based variables (such as Functional Richness of all plant species and the successional 
gradient) was larger than that of the remote sensing predictors alone. Certain links between the former and the 
latter datasets were identified using a canonical ordination method. Functional Richness and RS-based spectral 
diversity indices (such the Rao’s Q entropy) worked similarly in the models, positively influencing habitat 
invasibility. The community weighted mean functional traits (such as Seed Mass and Specific Leaf Area) were 
positively related with the LiDAR-derived local vegetation height metrics, and all counteracted invasiveness by 
the two Asteraceae IP genera. The most favorable conditions for co-invasion, in terms of remotely sensed data, 
were identified by a narrow range of reflectance in the first red-edge band of a Sentinel-2 image. Importantly, we 
found that the share of patches suitable for co-invasion was consistently highest in the low vegetation land cover 
class, between 36% and 64% cover. Presence of these IPs may inhibit natural succession, we therefore advise 
considering particular management actions, such as increasing the supply of native seed, thus improving local 
community resistance to invasions. The proposed methods and RS predictors may facilitate targeted monitoring 
and cost-optimized management interventions.

Data availability
The field data are available from a public repository (https://doi.org/10.6084/m9.figshare.25289401). Sentinel-2 
data were downloaded and are available from the Copernicus Browser ​(​h​t​t​p​s​:​/​/​b​r​o​w​s​e​r​.​d​a​t​a​s​p​a​c​e​.​c​o​p​e​r​n​i​c​u​s​.​e​
u​)​, Landsat 7 data are available via the Google Earth Engine web-based facility, other data are available from the 
corresponding author upon a reasonable request.
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