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Predicting the co-invasion of two
Asteraceae plant genera in post-
mining landscapes using satellite
remote sensing and airborne LIDAR

Kamil Kedra®"? & Andrzej M. Jagodzinski

The Asteraceae plant family includes the most widespread weedy invaders in Europe, which may
jointly inhibit natural succession in degraded land under restoration. The complex local drivers of
co-invasions hinder remote sensing (RS) monitoring efforts, as the links between the ecological and
the spectral habitat properties are largely unknown. We proposed a comprehensive framework for
machine learning modeling of the co-invasion of two Erigeron spp. and two Solidago spp. in post-
mining landscapes of S Poland, using both field data and a combination of Sentinel-2, Landsat 7 and
airborne LiDAR RS predictors. Stochastic Gradient Boosting best captured the non-linear dependencies
(Accuracy =0.670-0.886, AUC=0.675-0.923), and generally outcompeted two other classifiers
(Random Forest and Support Vector Machines with a Radial Basis Function Kernel). The field-based
functional diversity metrics were the strongest predictors, corroborating improved resistance to
invasions by native plant functional richness. In terms of RS data, the most favorable conditions for
co-invasion were identified by a narrow range of reflectance in the red-edge interval of a Sentinel-2
image, and constrained by LiDAR-derived vegetation height (for Erigeron spp.) and by high land
surface temperatures (for Solidago spp.). The highest share of patches suitable for co-invasion was
consistently found in the low vegetation land cover class, between 36% and 64% cover. We therefore
advise considering particular management actions, such as increasing the supply of native seed, thus
improving local community resistance to invasions. The proposed methods and openly available RS
predictors may facilitate targeted monitoring and cost-effective management interventions.

Keywords Erigeron spp., Solidago spp., Invasive plants, Natural succession, Novel ecosystems, Machine
learning

The level of alien plant invasions is particularly high in human-altered, heavily disturbed areas of western
and central Europe2. On the one hand, invasive plants (IPs) benefit from high frequency of ruderal sites and
increased propagule pressure in urban and industrial landscapes’. On the other hand, high human population
densities often coincide with a warm and mild climate, at low altitudes, which are optimal conditions for most
IPs?. While such broad-scale patterns of plant invasions were addressed by several comprehensive studies!™,
there is an urgent need for a finer-scale identification of areas which are highly prone to invasions, to support the
remote monitoring efforts'>. Particularly, the phenomenon of coexistence of two or several IPs requires special
attention, while the effects of such co-invasions may exceed the effects of any single IP®-5,

The Asteraceae plant family has the largest number of alien representatives in Europe’, followed by the
Poaceae and the Rosaceae families. This is partly due to a very large number and ubiquity of the Asteraceae
plants, but also because of the common weedy habit in this plant family”!?. Several Asteraceae IPs are at the
top of the list of the most widespread alien plant species in Europe!!, including two species of the Erigeron
genus (annual or biennial herbs: Erigeron canadensis L. and Erigeron annuus (L.) Desf.) and two species of
the Solidago genus (perennial herbs: Solidago canadensis L. and Solidago gigantea Aiton). These two Asteraceae
genera contribute to the highest level of plant invasions in industrial habitats, followed by other human-made
habitats, such as arable land, gardens and parks!®!!. Moreover, Erigeron spp. and Solidago spp. may co-invade a
single vegetation patch, synergistically altering the local environment in a process called invasion meltdown!213.,

The field studies on Erigeron spp. and Solidago spp. co-invasions focused on eastern China, where it is a
common phenomenon®313. The co-invasion of the North American Asteraceae genera has been reported from
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a subtropical humid monsoon climate, Anhui Province® and from a similar location in the urban ecosystems
in Zhenjiang”®. These studies identified relatively high soil biological activity and organic matter content in co-
invaded locations®?, as well as increased overall plant species richness and functional diversity’. These findings
may sound like positive effects, especially in biologically poor, post-industrial soils; however, few studies have
investigated the co-invasion effects of IPs on the diversity of native flora alone, i.e. excluding alien plant species'.
Moreover, to our knowledge, there are no studies explicitly addressing Erigeron spp. and Solidago spp. co-
invasions in Europe. These Asteraceae representatives were reported from southern Poland, particularly from
the post-coal-mining spoil heaps in the Upper Silesia region'>16, being local heat islands with maximal summer
temperatures reaching and exceeding 50 °C". The Erigeron spp. and the Solidago spp. were among the most
frequent IPs in the degraded landscapes undergoing spontaneous (unassisted) vegetation succession!®18.

The remote sensing (RS) data, such as satellite or airborne imagery, offer a great potential for cost-effective
filling of the information gaps between the usually sparse field data collection points®. The modeling efforts for
distribution of Asteraceae IPs have often operated on a large scale (e.g. country-level), using coarse-grained
climatic data!® or a mixture of climatic, environmental, reflectance and land cover data!, based on presence-
only IPs records. Lu et al.!? assessed the potential distribution of S. canadensis in China within a 0.1-degree grid
(above 10 km resolution) and identified large areas suitable for future invasion of the species, especially north of
the current distribution. More recently, Sittaro et al.! created species distribution models (SDMs; below 10 km
resolution) identifying current and future suitable habitats for 46 IPs in Germany (including the Solidago spp.).
Still, scaling-up of the field-based ecological knowledge using landscape-wide RS proxy variables, through various
modeling approaches, may be limited and biased by the unknown, confounding variables working globally in
the models?’. Therefore, both abovementioned studies called for finer-scale assessments, due to the need for
revealing hidden constraints, i.e. not detectable using coarse grids'®, such as local variation in temperatures or
because coarse-grained habitat information may fail to explain differences between IPs distributions?, while the
local habitat properties may be crucial. However, predicting landscape-level IP distributions using fine-scale RS
imagery brings several challenges, including: handling large datasets’, outcome uncertainty?!, and probability
thresholding®?. Moreover, models based on the presence-only data may produce biased predictions, with the
false-negative (Type II) errors being more frequent than the false-positive (Type I) errors?®. These issues are
increasingly being coped with by implementing machine learning algorithms, due to their higher flexibility over
the distributional regression or Bayesian modeling®*.

In this study, we leverage a unique dataset of presence-absence records of Erigeron spp. and Solidago spp.
in post-industrial heterogeneous landscapes of southern Poland, to predict the probability of occurrence of
both IP genera alone and jointly (co-invasion). The overarching aim of this study was to propose and evaluate
a framework for predicting the co-invasion of the two Asteraceae invasive plant genera using fine-resolution
remote sensing data and machine learning methods (Fig. 1). The particular objectives were to:

(i) Compare the predictive power of field data and remote sensing data in modeling Erigeron spp. and Solidago
spp. occurrences;
(ii) Provide an ecologically meaningful interpretation of the remote sensing variables;
(iii) Identify the most favorable conditions for co-invasion of both Asteraceae plant genera, in terms of remote-
ly sensed data and Land Use Land Cover (LULC) types.

The first objective is reached by estimating the relative importance of variables in the IPs presence-absence
classification problem, using three different machine learning algorithms. The second objective is addressed by
ordinating the IP genera occurrence information using both field data and remote sensing data. Finally, the third
objective is achieved by pixel-based predictions of the probability of occurrence for both IP genera over three
ecologically distinct sites, and by characterizing the conditions in the overlap areas. We expect that the remotely
sensed data may reflect the differences in ecological niches of both IP genera, with Erigeron spp. invading under
harsher and more initial environmental conditions than Solidago spp. Additionally, we hypothesized that the
community level invasion of both plant genera is limited by a large number and a high functional richness of
native plant species.

Materials and methods

Study area and field sampling

The study region is the Upper Silesia in southern Poland, where the coal-mining activities have been transforming
the landscape for centuries?. The climate is temperate oceanic to continental (from west to east of the region,
respectively) with a mean annual temperature ranging from 7 to 9 °C and mean annual precipitation between 700
and 900 mm. The study focuses on the characteristic landscape features of the region: post-mining spoil heaps,
which are artificial hills made of mineral (waste) material, containing particles of coal and offering poor biological
potential?®. We selected 28 such heaps, to account for size and successional variation (see Supplementary Fig.
S1 for a map). From this number, three sites were further selected as representative of different dominant land
cover types (Fig. 2; Table 1), for detailed pixel-based predictions of the IP genera distributions. The field data
came from a set of 358 circular plots (28.3 m? each) distributed over the 28 spoil heaps (total area of 1,758.8 ha).
At the field plots, all plant species were recorded and vegetation cover by species was estimated in summer
2021'%%7, The raw field data are available in a public repository (https://doi.org/10.6084/m9.figshare.25289401).
The Erigeron spp. were recorded in 143 plots (40%), the Solidago spp. were recorded in 144 plots (40%) and both
genera were present in 75 plots (21%).
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Fig. 1. Framework of the two-part modeling procedure, using: (I) combined field data (FD) variables and
remote sensing (RS) variables — to uncover the relatedness between the FD and the RS variables using
Redundancy Analysis (RDA); (II) RS variables alone - to predict the probability of occurrence of both Erigeron
spp. and Solidago spp. at the pixel- and site-levels; in both (I) and (II), three machine learning techniques are
employed and compared: Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and Random

Forest (RF).
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Fig. 2. Land cover classes in the three ecologically distinct sites: high share of tree cover (high vegetation) in
Sitel; high share of bare ground in Site2; high share of low vegetation (jointly: grassland, cropland, shrubland)
in Site3; reclassified from the Dynamic World land cover maps?, for the year 2022.

Predictor variables datasets

The predictors were grouped under two broad categories: Field Data (FD) and Remote Sensing (RS) data. These
categories were further divided into two FD datasets and four RS datasets (Table 2), separating different data
sources and types of information: habitat properties, propagule pressure, local climate? or spatial resolution for
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Area (ha) | Tree cover (%) | Vegetation cover (%) | Bare ground (%) | Built area (%) | Water cover (%)
Sitel | 167.44 734 78.1 0.1 20.5 1.2
Site2 | 114.39 31.6 41.8 53.0 44 0.9
Site3 | 119.11 415 90.8 3.8 0.2 52

Table 1. Characteristics of the three sites selected for pixel-based predictions of Erigeron spp., Solidago spp.
and co-invasion; class cover percentages were derived from the Dynamic World land cover maps?, for the year
2022.

Category Source/ Habitat Propagule | Local
/Group | No. | Acronym resolution | Description Unit | properties | pressure | climate
nbsp.all . . .
1,2 Number plant species of all (.all) and number of native plant species (.nat) - X X
nbsp.nat
FRic.all . . . .
34 | ERicnat Functional Richness for all plant species (.all) and only for the native plants (.nat) | - X
Field SLA.all Community Weighted Mean Specific Leaf Area for all plant species (.all) and only | cm?
Data 5,6 . 1 X X
ED1 SLA.nat for the native plants (.nat) g
78 SM.all Community Weighted Mean Seed Mass for all plant species (.all) and only for the
g na ; g X
SM.nat native plants (.nat)
H.all Community Weighted Mean Maximal Height for all plant species (.all) and only
9,10 . m X
H.nat for the native plants (.nat)
ED2 11 | succession Major axis of the nonmze7tric multidimensional scaling (NMDS) of all plant species | _ N » »
presence-absence data
Remote 1 | CHMmean ll\k/lvecrlaige value in a 5 x5 cell window of a 1-m resolution LiDAR Canopy Height m « %
Sensing LiDAR ode
data 5m Standard deviation value in a 5x 5 cell window of a 1-m resolution LiDAR Cano
Py
RS1 2 | CHMsd Height Model m x %
RS2 3 | NDVI Landsat 7 | Normalized Difference Vegetation Index - X X
4 | LST 30m Land Surface Temperature °C X
5 | Aerosols Sentinel-2 Aerosols band (442 nm) r* x X
60 m
Blue band (492 nm): soil and vegetation discrimination; chlorophyll and "
6 | Blue . : r X
carotenoids absorption
7 | Green ?(e)nr;lnel-Z Green band (559 nm): strongly reflected by green foliage r* X
Red band (665 nm): strongly reflected by stressed and dead foliage; chlorophyll "
8 | Red . r X
RS3 absorption
9 | RedEdgel ggrﬁnel-z Red Edge band (704 nm): differentiates between vegetation types r* X
10 | NIR ?(e)nr;inel-Z Near InfraRed band (833 nm): biomass content r* X
11 | SWIR1 ggnrgnel-z Short-Wave Infrared (1610 nm): moisture content of soil and vegetation r* X
12 | TCDImean F(?cal average value of the Tasseled Cap Disturbance Index in a 5x 5 cell moving . N »
window
13 | TCDIsd . Foca'l stanfiard deviation value of the Tasseled Cap Disturbance Index ina 5x5 cell | - < o
RS4 Sentinel-2 | moving window
14 | SeLImin 10m Focal minimal value of the Sentinel-2 leaf area Index in a 5x 5 cell moving window | - X X X
15 | RaoQ_NDVI Rao’s quadratic entropy index in a NDVI layer 5 x5 cell moving window - X
16 | RaoQ_NIRv Rao’s quadratic entropy index in a NIRv layer 5% 5 cell moving window - X

Table 2. Summary of the variables used in this study: field data (FD1-2) and remote sensing (RS1-4) datasets;
the last three columns indicate the assumed environmental significance of the data (see text for the rationale
and references); r* = reflectance factor.

the RS datasets. Throughout the study we used a projected coordinate reference system with units in meters, for
Poland (EPSG 2180).

Field data

The first group of the FD variables are plot-level estimates of the following five functional traits: number of
species (nbsp), Functional Richness (FRic), Specific Leaf Area (SLA), Seed Mass (SM) and plant Maximal Height
(H); all calculated in two variants: for all plant species (“all” suffix) and for the native plants only (“nat” suffix).
We used the R v.4.4.1% function FD::dbFD() in the package “FD” v.1.0.12.3%° to derive the plot-level metrics.
The input data were plant cover by species measured in the field”’, and functional traits compiled from several
external databases: LEDA3!, BIEN?2, BiolFlor??, and Pladias®. For a small fraction of observations (3% in FRic.
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all and 9% in FRic.nat) the function FD::dbFD() did not reach a convergence and we imputed the missing FRic
data using the Random Forest* method (R-squared =0.72 and 0.73 for FRic.all and FRic.nat, respectively) in
the “caret” v.6.0.94 R package®, based on the remaining FD1 variables plus leaf dry matter content (the latter
not used further in this study). The second FD group includes a single structural trait (Succession), which is
the major axis of the nonmetric multidimensional scaling (NMDS) of all plant species (herbs, shrubs and trees)
presence-absence data?’.

Remote sensing data

RS1 - two 5-m resolution raster layers recalculated from 1 x 1 m Canopy Height Models (CHMs), representing
local average height (CHMmean) and local standard deviation of height (CHMsd). These layers were derived
using the raster::focal() function in the R package “raster” v.3.6.26%”. The CHMs are based on an airborne LiDAR
(Light Detection and Ranging) scanning campaign, held within the study area in August 2022, using the Riegl
VQ780i scanner mounted on an ultralight (KR 030-Topaz) aircraft. The spatial resolution of the LiDAR point
clouds was around 20 points m~2,

RS2 - two 30-m resolution raster layers: Normalized Difference Vegetation Index (NDVI) and Land Surface
Temperature (LST, in °C), derived from the Landsat 7 ETM + sensor products (atmospherically corrected surface
reflectance bands and a thermal band; available at https://developers.google.com/earth-engine/datasets/catalo
g/LANDSAT_LE07_C02_T1_L2), acquired and processed via the Google Earth Engine web-based facility*.
NDVT is indicative of habitat properties (greenness, level of physiological stress) and LST is a leading RS variable
for local thermal climate determination®. Landsat 7 is known for its high radiometric and geometric accuracy,
although cloud cover and data gaps are issues that need handling?’. For NDVI we used the ten highest quality
(Tier 1) Landsat 7 images available over the period between the beginning of June and the end of August 2021.
The Red band (630-690 nm) and the near infrared (NIR; 770-900 nm) band were pixel-wise merged across the
ten images into single bands by the minimal value, thus minimizing the effects of cloud cover and filling any
existing data gaps. Subsequently, NDVI was calculated using the formula:

NDVI = (NIR - Red) / (NIR + Red) 1)

following*!. Similarly, for LST the Landsat 7 thermal bands (10400-12500 nm) across the ten 2021 images were
pixel-wise merged, but this time by the maximal value (yearly extreme heat), then scaled to Kelvin by using
specific constants provided by the data producer??, and recalculated to degrees Celsius by subtracting 273.15.
We inspected the resulting NDVI and LST images visually (cropped to each spoil heap with a 100-m buffer) for
spatial consistency, and while the NDVT layers were of a satisfactory quality, some of the LST images still showed
astriped pattern. We therefore extended the range of included Landsat 7 images for this variable by including the
two adjacent years (June to August of 2020 and 2022), this resulted in spatially contignous LST images without
any data gaps.

RS3 - seven reflectance bands from a Sentinel-2B MSI (MultiSpectral Imager) Level-2A image, covering a
wide range of reflectance spectra (between 442 and 1610 nm). The raw, cloud-free Sentinel-2 image (for the 9th
of September 2021) was downloaded using the Copernicus Browser** and processed in EnMAP-Box 3 v.3.15% to
surface reflectance values. The selected reflectance bands emphasize different habitat properties, such as biomass
density (NIR) and moisture content (SWIR1: Short-Wave Infrared)*.

RS4 - a group of five spectral diversity indices based on the Sentinel-2 multispectral data. Spectral diversity
(local variation in reflectance bands) is thought to explain plant taxonomic and functional diversity?, i.e. the
spectral variation hypothesis*’. Such variables are important in the view of the biotic resistance hypothesis*, i.e.
that species-rich and diverse communities are more resistant to invasions*>*°. The first two indices (TCDImean
and TCDIsd) were calculated using the Tasseled Cap Disturbance Index (TCDI) 10-m resolution maps®"2,
and inform about the level and variation of local disturbance (within the neighboring and the target pixel),
respectively. This information may be indicative of local habitat properties and the magnitude of propagule
pressure?. The third index is the local minimal value of the Sentinel-2 Leaf area Index (SeLImin). Low SeLImin
values (around zero) indicate presence of bare ground or sparsely vegetated patches (higher invasibility), and
high SeLImin values (above 0.5) identify more homogeneous vegetation with high leaf area (lower invasibility).
Finally, we included the Rao’s Q (RaoQ) index>, which is designed as the remote sensing counterpart of the
field-measured Rao’s quadratic entropy®>. The RaoQ was calculated two-fold, using the standard NDVI map as
input, and using the NIR reflectance of terrestrial vegetation:

NIRv = NDVI x NIR 2
which may better represent the radiation absorbed by a canopy, especially for low leaf areas™.

Statistical analyses

Workflow overview

The modeling framework was divided into two parts (Fig. 1): in the first part we used a fused dataset of the
field (FD1-2) and the remote sensing (RS1-4) datasets as predictors of Erigeron spp. and Solidago spp. presence-
absence, to compare the predictive power of both FD and RS datasets, and to establish relatedness between them
(our first two objectives). In the second part we used solely the RS variables as predictors; although these data are
available for every pixel of all the included sites, the spatial resolution differed (between 5 and 60 m, see Table 2
for a detailed list). The goal of the second part is to create site-level maps of the IPs genera and co-invasion and
to evaluate and compare the most favorable conditions in all cases (the third objective of the study). We expect
that the finest resolution data (LIDAR CHM-derivatives) will play a major role in the models and thus the final
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resolution of both the Asteraceae genera distribution maps and the co-invasion map will vary considerably at
the 5-m resolution. In both modeling parts we largely relied on the “caret” v.6.0.94 R package®®>’, providing
functions for training and evaluating different classification machine learning algorithms. The application or
combination of several such statistical techniques is often recommended to improve the prediction quality!
and we chose three such methods: Stochastic Gradient Boosting (GBM), Support Vector Machines (SVM) and
Random Forest (RF). These algorithms are described below in more detail, in a separate Section.

In both modeling parts, we first created a data partition into training and testing datasets (75% and 25%
of observations, respectively) using the function caret::createDataPartition(), to balance the class distributions
within the splits. The models were trained using the function caret::train(), implementing a ten-fold cross-
validation, repeated ten times. The criterium for tuning hyperparameters was the Area Under the receiver
operating characteristic Curve (AUC). We identified and compared individual variable importance in each
modeling approach using the caret::varImp() function, and we evaluated the partial effects of the most important
predictors using the pdp::partial() function in the R package v.0.8.2 “pdp”>%. Finally, the testing data were used
to compare model performance between the different machine learning techniques. We used the following
classification performance metrics:

Sensitivity = TP/ (TP + FN) 3)

Specificity = TN/ (TN + FP) (4)

Precision = TP/ (TP + FP) (5)

F1= 2x (Precision x Sensitivity) /(Precision + Sensitivity) (6)
Accuracy = (TP + TN)/(TP + FP + TN + FN) (7)

where TP, FP, TN, FN are the numbers of: true positive, false positive, true negative and false negative cases,
respectively. We also accounted for model uncertainty by including standard deviation (SD) of AUC from the
internal cross-validation?!.

Machine learning algorithms

In this study we implemented and compared three machine learning algorithms (Table 3): RF**, GBM* and
SVM®, that have been used in similar modeling tasks. Stochastic Gradient Boosting and Random Forest are
both based on ensembles of decision trees*>*’; however, RF and GBM differ in the model training procedures.
Random Forest uses the bagging technique (independent learning of individual trees) and GBM implements
the boosting technique (sequential learning of decision trees)*>*. These result in differences between model
performances: RF is often reported as more robust to outliers and overfitting, while GBM may be more accurate,
but somewhat prone to noise in the data and requires more parameters for tuning than RF (Table 3)°.. In the
case of RE only a single hyperparameter was tuned: mtry (number of variables randomly sampled as candidates
at each split); in GBM there were four hyperparameters: n.trees (total number of trees to fit), interaction.depth
(the maximum depth of each tree, e.g. defining an additive model or a model with up to n-way interactions),
shrinkage (the learning rate or step-size reduction parameter), n.minobsinnode (the minimum number of
observations in the terminal nodes of the trees); shrinkage and n.minobsinnode were kept constant (at 0.1 and
20, respectively). In contrast to RF and GBM, Support Vector Machines is a kernel-based machine learning
method, which maps the input data into a high dimensional feature space and maximizes the width of the
margin between classes®’. We used the SVM with Radial Basis Function Kernel, to allow a nonlinear class
boundary. SVM had an intermediate number of hyperparameters to tune: C (Cost) and sigma (Radial Basis
Function sigma).

Multivariate ordination

Redundancy Analysis (RDA) is an appropriate direct canonical analysis for ordination of species field data (Y
matrix), such as species cover, composition etc., under the constraints of a set of environmental variables (X
matrix)®. It is also valid for presence-absence data, but requires a transformation of the Y matrix to reduce the
number of zeros and to avoid the double zeros problem®’. In this work we propose another workaround for this
problem, i.e. we used the testing dataset (rn=88) to predict the probability of occurrence (continuous output) of
the two Asteraceae IP genera, using the best performing model described in the previous Section. Consequently,
we used a corresponding dataset of the FD and RS explanatory data. Next, using such prepared X and Y matrices
we constructed the RDA model using the function vegan::rda() in the R package “vegan” v.2.6.6.1%. To assess

Libraries
Model Acronym | (citation) Tuning Parameters
. . . gbm v.2.2.2 ¢, - . . S
1. Stochastic Gradient Boosting GBM plyr v.1.8.9 &4 n.trees, interaction.depth, shrinkage, n.minobsinnode
2. Support Vector Machines with Radial Basis Function Kernel | SVM kernlab v.0.9.32 © sigma, C
3. Random Forest RF randomForest v.4.7.1.1 | mtry

Table 3. Overview of the three machine learning algorithms used in this study, including the implementation
in R programing (Libraries) and a list of model hyperparameters (Tuning Parameters).
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the relatedness between the different components of the X matrix (FD and RS) we applied a standard ordination
plot method (type 2 scaling: the effects of explanatory variables). We also analyzed the Variance Inflation Factors
(VIF), which may identify redundant explanatory variables (VIF > 10), and compared the extracted RDA scores
(biplot coordinates of the arrows representing variables).

Pixel-based site-level predictions

Following the procedure of model evaluation and selection of the best-performing machine learning method
(Fig. 1) we fitted the model of the selected type using a full set of observations (n=358). This model was again
trained using the caret::train() function®” with a ten-fold cross-validation, repeated 10 times. We extracted the
cross-validated Sensitivity, Specificity and AUC of the final tuned models (for Erigeron spp. and for Solidago
spp.). For the next step, we extracted the central coordinates (landmarks) for each pixel of the finest-resolution
RS dataset (LiDAR CHM, 5-m resolution), for each of the three model sites (Fig. 2, Table 1). We kept all raster
layers in their original resolutions, but the images were projected to a common coordinate reference system (CRS
EPSG 2180), we then extracted the landmark values of all coarser-resolution layers using the raster::extract()
function in the “raster”®” R package. Subsequently, the predicted probabilities of occurrence of both Asteraceae
genera were obtained using the stats::predict(type="prob”) function. The outcomes were analyzed in the form
of probability gradients (from 0 to 1) and in a binarized form. While it is known that such binarization is not
straightforward and probability threshold depends on target prevalence and model performance®, we applied
the method that minimizes the difference between Sensitivity and Specificity?. To do this, we extracted the
cross-validation predictions for each genus and binarized them using a sequence of 100 candidate threshold
values (between 0.01 and 1). We then calculated the differences between Sensitivity and Specificity (assuming
co-invaded plots as TP) and identified the threshold associated with the lowest difference for each cross-
validation data set. The mean threshold values (0.457 for Erigeron spp. and 0.387 for Solidago spp.) were used to
create the binary co-invasion layers, with positive class indicating a plausible probability of occurrence of both
Asteraceae genera in the three selected sites. The statistical analysis included comparison of the absolute (in
hectares) and relative (percentage) predicted cover of Erigeron spp., Solidago spp. and of the co-invaded patches;
as well as in the reclassified land use land cover classes?®, available at a 10-m resolution. We applied four broad
land cover classes: high vegetation (high probability of mature trees, but also dense high shrubs), low vegetation
(grasslands, croplands and shrublands), bare ground (low probability of any vegetation) and built area (high
proportion of roads and impervious surfaces). The site-specific averages of the most important RS predictors
were compared using the Welch two-sample t-test (0.05 significance level) and Cohen’s d, to identify the effect
size”’. We used standard R histogram plotting to visualize the differences in remotely sensed niches for Erigeron
spp.» Solidago spp. and co-invasion.

Results

Combined field and remote sensing data

Classifier performance differed by the target genus (Table 4). It was generally better for the Erigeron spp., with
RF (F1=0.88, Accuracy=0.91) slightly outcompeting GBM (F1=0.85, Accuracy=0.87) and considerably
outcompeting SVM (F1=0.81, Accuracy=0.85). All three machine learning techniques attained poorer
predictions of Solidago spp. occurrence, with GBM (F1=0.69, Accuracy=0.78) performing better than SVM
(F1=0.64, Accuracy=0.76) and RF (F1=0.61, Accuracy=0.74). Similarly, model uncertainties were higher
for Solidago spp. (SD of AUC between 0.079 and 0.083) than for Erigeron spp. (between 0.050 and 0.054). In
terms of the FD predictor variables importance, there was a good agreement across the modeling methods
and target genera (Supplementary Tables S1, S2). The overall Functional Richness (FRic.all) and number of
species (nbsp.all), as well as the successional gradient (Succession) were the most relevant variables. Functional
Richness for native species only (FRic.nat) was close behind the aforementioned predictors, in models for both
genera. Importantly for our first objective, the RS data variables had generally lower importance than those top
FD variables, and the most relevant RS predictors differed by the target genus. For the Erigeron spp. models,
LST (representing local thermal climate) was the most important RS variable, followed by TCDImean (local
disturbance) and CHMmean (fine-scale vegetation height). For the Solidago spp. models, Aerosols (Sentinel-2
first band) was the most relevant, followed by SeLImean and NDVI (both representing habitat properties and
vegetation greenness), but LST was also high in the ranking. The partial dependence plots for the most influential

Erigeron Solidago

GBM SVM RF GBM SVM RF
AUC (+SD) | 0.923 (£0.054) | 0.921 (+0.051) | 0.920 (+0.050) | 0.768 (+0.083) | 0.795 (+0.079) | 0.782 (+0.082)
Sensitivity 0.829 0.771 0.857 0.656 0.594 0.563
Specificity 0.925 0.906 0.943 0.857 0.857 0.839
Precision 0.879 0.844 0.909 0.724 0.704 0.667
F1 0.853 0.806 0.882 0.689 0.644 0.610
Accuracy 0.886 0.852 0.909 0.784 0.761 0.739

Table 4. Evaluation metrics for machine learning Erigeron spp. and Solidago spp. presence-absence
classification models (GBM, SVM, REF) fitted with fused field and remote sensing data; the highest values for
each genus are in bold (not tested for differences).
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FD variables revealed increasing probability of both Asteraceae genera occurrence with increasing FRic.all and
nbsp.all, but the probabilities decreased with increasing FRic.nat in the GBM and SVM models (Fig. 3). The
optimal values of Succession were low for Erigeron spp. and intermediate for Solidago spp.

Relatedness between field and remote sensing data

Most of the FD and RS variables contributed to the major RDA axis, while the differences between the Erigeron
spp. and the Solidago spp. were better represented by the second RDA axis (Fig. 4 and Supplementary Table
S3). In the first RDA axis, the field-based taxonomic and functional diversity metrics and the RS Rao’s entropy
(RaoQ_NDVI) were opposed to the community weighted functional traits and RS LiDAR-based height metrics
(CHMmean, CHMsd). This result is relevant for our second objective on establishing the linkages between the
traditional field-based ecological measures and the RS metrics. The second RDA axis was dominated by the RS
variables, with LST, most of the Sentinel-2 bands and local disturbance metrics (TCDImean, TCDIsd) being
opposed to NDVI, NIR, SeLImin and field-based Succession. The former subset was positively related to the
Erigeron spp. probability of occurrence and the latter subset was positively related to the Solidago spp. probability
of occurrence. The Variance Inflation Factors were generally lower in the FD datasets (Supplementary Table
S3a). The lowest VIF values (indicating distinct variables, with little collinearities) in FD were in the cases of Seed
Mass and Specific Leaf Area (between 1.55 and 5.21). The highest VIF values were for the three optical Sentinel-2
bands (Red, Green and Blue; up to 513.94) and for TCDImean (296.11). There were only two RS variables with
low VIF (below 10): TCDIsd and CHMsd, both representing local variation in habitat properties.

Effects of remote sensing variables

Removing the FD variables from all models decreased all model performances (Table 5). The largest drop was
for the Erigeron spp. RE. Generally, the Erigeron spp. models suffered more from neglecting the FD data than
the Solidago spp. models, which resulted in more similar model performances across the target genera. Still, the
Erigeron spp. classifiers performed better, with the GBM (F1=0.67, Accuracy=0.72) outcompeting both RF
(F1=0.61, Accuracy=0.70) and SVM (F1=0.58, Accuracy=0.67). In the case of Solidago spp., RF (F1=0.53,
Accuracy=0.69) performed slightly better than GBM (F1=0.52, Accuracy=0.67) and SVM (F1=0.51,
Accuracy=0.67). Model uncertainties were slightly higher for Solidago spp. (SD of AUC between 0.089 and
0.096) than for Erigeron spp. (between 0.076 and 0.084). Importantly, for the Solidago spp. the GBM was the
only classification model where none of the performance metrics dropped below 0.5 (which was the GBM
Sensitivity score or true positive rate). In all cases, Specificity (true negative rate; here between 0.72 and 0.82)
was higher than Sensitivity, and considering both metrics GBM was the best performing modeling approach.
Land Surface Temperature, TCDImean and CHMmean attained high importance in the Erigeron spp. classifiers
(Supplementary Table S4) after removal of the FD predictors; additionally, SeLImin and RedEdgel advanced in
importance (two variables related to habitat properties and succession). Similarly, in the case of Solidago spp.
classifiers, Aerosols, SeLImin and NDVI maintained high importance (Supplementary Table S5) compared to the
full-data models. Moreover, SWIR1 increased in importance, particularly in the GBM. The partial dependence
analysis for the most influential RS predictors revealed some clear differences between Erigeron spp. and Solidago
spp. (Fig. 5). In Erigeron spp. models, increasing LST was related to a sharp increase in the probability of
occurrence, particularly in the LST range between 30 and 35 °C. In contrast, the highest probability of Solidago
spp. occurrence was under low or intermediate LST (depending on the modeling approach). The GBM and RF
classifiers identified a narrow optimum in RedEdgel for the Erigeron spp. (around 0.1), while in Solidago spp.
the probability of occurrence increased with increasing RedEdgel, up to around 0.15, and then plateaued. The
effects of fine-scale vegetation height (CHMmean) were also distinctly different in the two Asteraceae genera: the
Erigeron spp. probability of occurrence decreased steeply within the height range up to 5 m, and the probability
of Solidago spp. occurrence decreased much slower, plateauing at CHMmean between 10 and 25 m (depending
on the machine learning method).

Predicted co-invasion

Stochastic Gradient Boosting was chosen for site-level predictions (Tables 4 and 5; see Supplementary Table S6
for tuned hyperparameter values). The final GBM models (fitted with all available observations, n=358) again
attained mostly higher performance statistics for the Erigeron spp. classifier (Sensitivity = 0.68, Specificity=0.75,
AUC=0.81) than for the Solidago spp. classifier (Sensitivity=0.51, Specificity=0.75, AUC=0.70), as identified
by the internal ten-fold cross-validation procedures. Local thermal conditions (represented by LST) were the
most important in the Erigeron spp. model (Table 6), while SWIRI and Aerosols were relevant for Solidago
spp. occurrence. Four RS variables were relevant in both Asteraceae genera classifiers: RedEdgel, CHMmean,
SeLImin and RaoQ_NDVI. The predicted occurrence of both genera separately and the co-invasion maps
(Fig. 6) revealed different proportions of these three presence categories across the three ecologically distinct
sites (Table 7). In Sitel (with a large proportion of high vegetation) the Solidago spp. (77% predicted cover of
suitable vegetation patches) dominated over the Erigeron spp. (20%); in Site2 (large proportion of bare ground)
predicted cover was intermediate for both the IP genera (42% for the Erigeron spp., 31% for the Solidago spp.);
in Site3 (mostly covered by low vegetation) the Solidago spp. predicted cover (60%) was considerably higher
than the Erigeron spp. cover (38%). The proportion of the co-invaded areas was highest in Site3 (33%), then
in Sitel (17%) and the smallest in Site2 (13%). The mean pixel values for the most important RS predictors,
across the three sites, were always significantly different between the two Asteraceae genera (Table 8), but
Cohen’s d revealed that the actual effect sizes were sometimes small (Fig. S2). Relevant to our third objective, the
distributions of RedEdgel were most similar between the two IP genera and were also most consistent across
the three sites (RedEdgel reflectance around 0.1), precisely identifying the co-invaded pixels (Fig. 7; Table 8).
In contrast, the mismatch between both genera niches was best captured by LST (averaging between 37.5 and
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Erigeron Solidago

GBM SVM RF GBM SVM RF
AUC (£SD) | 0.803 (+0.084) | 0.807 (+0.079) | 0.805 (+0.076) | 0.675 (£0.096) | 0.680 (+0.094) | 0.690 (+0.089)
Sensitivity 0.714 0.571 0.571 0.500 0.469 0.469
Specificity 0.717 0.736 0.792 0.768 0.786 0.821
Precision 0.625 0.588 0.645 0.552 0.556 0.600
F1 0.667 0.580 0.606 0.525 0.508 0.526
Accuracy 0.716 0.670 0.705 0.670 0.670 0.693

Table 5. Evaluation metrics for machine learning Erigeron spp. and Solidago spp. presence-absence
classification models (GBM, SVM, RF) fitted with remote sensing data; the highest values for each genus are in
bold (not tested for differences).

45.3 °C for the Erigeron spp. and between 33.2 and 40.6 °C for the Solidago spp.) and by the LiDAR-derived
CHMmean (averaging between 0.12 and 0.56 m for the Erigeron spp. and between 1.7 and 5.1 m for the Solidago
spp.). Overall, the habitats suitable for the Erigeron spp. were more frequent in the initial successional stage
(50% of the bare ground LULC) and the habitats suitable for the Solidago spp. dominated in the late successional
stage (65% of the high vegetation LULC), both genera attained high potential coverages (well above 50%) in the
intermediate stage (Table 9; Fig. 8). The proportions of co-invaded areas in the LULC classes were as follows:
low vegetation (58%) > built area (45%) > bare ground (9%) > high vegetation (6%). The site-specific percentages
in the two well represented classes (high and low vegetation) agreed well with the overall predictions (Table 9).

Discussion

Local thermal conditions drive Erigeron spp. distribution, but local moisture was more
important for Solidago spp.

Our study revealed promising avenues for predicting IP genera co-occurrence on local and regional scales using
a combination of fine to moderate resolution RS data (5-60 m), which integrates multispectral and LiDAR
information. Following other studies comparing machine learning techniques, the ensemble-based methods
performed better than the kernel-based method (SVM), and the flexibility of the stochastic GBM proved most
advantageous’”2. Our analyses identified that LST (maximal summer surface temperature, 30-m resolution)
carried the most relevant information for the Erigeron spp. habitat suitability, which agrees very well with their
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- blue solid).

biological and ecological needs’>”* as early invaders. Land Surface Temperature was always ranked high in

the predictor importance lists, also in the Solidago spp. models, but in the latter case there were some more
relevant RS variables, particularly the SWIR1 Sentinel-2 (20-m resolution) band. This reflectance band is
highly indicative of vegetation and soil water content, due to the extreme absorption by water in this part of

Scientific Reports |

(2025) 15:34877 | https://doi.org/10.1038/s41598-025-16441-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Rank Name Total
1 RedEdgel 138.00
2 LST 132.35
3 SWIRI 100.00 108.10
4 CHMmean 59.13 42.39 101.51
5 SeLImin 22.97 68.21 91.18
6 RaoQ_NDVI 33.08 50.86 83.94
7 TCDIsd 11.07 4791 58.98
8 Aerosols  [INOI00ONN  55.59 55.59
9 RaoQ_NIRv 12.00 38.59 50.59
10 CHMsd 8.23 35.34 43.57
11 NDVI 9.51 28.18 37.69
12 TCDImean | 32.28 33.53
13 Red 11.83 16.35 28.18

14 Blue 19.21 19.21
15 NIR 15.74 17.89
16 Green 5.68 @}.(5@ 12.37

Table 6. Scaled variable importance, based on the GBM models trained using the full RS dataset (n=358),
ranked by the total importance in both Erigeron spp. and Solidago spp. models; different colors highlight
importance in individual models: from highest (red) to lowest (blue).
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Fig. 6. Site level (Sitel-3) Canopy Height Models (CHMs, in meters; a.1-3) and GBM-predicted probabilities
of Erigeron spp. occurrence (b.1-3), Solidago spp. occurrence (c.1-3) and both genera co-occurrence (Co-
invasion; d.1-3); (b.1-3) and (c.1-3) are probability gradient maps, while (d.1-3) are binarized maps for both
the Asteraceae genera; in b-d, dark colors denote low or zero probability of occurrence and bright colors
indicate high probability of occurrence.
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Erigeron Solidago Co-invasion
ha (%) ha (%) ha (%)

Sitel | 33.9 (20.2%) | 128.6 (76.8%) | 28.2 (16.8%)
Site2 | 47.5 (41.5%) | 35.6 (31.2%) | 14.3 (12.5%)
Site3 | 44.6 (37.5%) | 71.3 (59.8%) | 39.5 (33.2%)

Table 7. Site-level GBM-predicted cover (in hectares and as site area percentage) of Erigeron spp., Solidago
spp. and both genera co-occurrence (Co-invasion).

Sitel (n=66,974)

Sitel Erigeron Solidago Welch test Co-invasion
No. | Name (unit) mean (+SD) | mean (+SD) | mean (+SD) | p-value Cohen’sd | mean (+SD)
1 LST (°C) 33.07 (£4.19) | 37.78 (£3.09) | 33.19 (£3.65) | <0.001 1.3 37.28 (+2.9)
2 SeLImin (-) 0.4 (£0.21) 0.19 (£0.14) | 0.39 (£0.19) | <0.001 -1.17 0.21 (£0.13)
3 | RedEdgel (-) 0.08 (£0.03) |0.1(£0.02) |0.08(£0.02) |<0.001 0.82 0.1 (£0.02)
4 CHMmean (m) | 6.25(£6.75) | 0.56 (+1.4) 5.05 (+5.61) | <0.001 -0.89 0.65 (£1.5)
5 Aerosols (-) 0.03 (£0.02) |0.04 (+0.02) |0.03(+£0.01) |<0.001 0.75 0.04 (£0.02)
6 | RaoQ_NDVI(-) | 0.08 (£0.07) |0.14(+0.07) |0.09(+0.07) |<0.001 0.61 0.14 (+£0.07)
Site2 (n=45,754)

Site2 Erigeron Solidago Welch test Co-invasion
No. | Name (unit) mean (+SD) | mean (+SD) | mean (+SD) | p-value Cohen’sd | mean (+SD)
1 |LST(C) 4327 (£5.25) | 45.34 (+3.06) | 40.6 (+4.06) | <0.001 | 1.3 ‘g;’g "
2 SeLImin (-) 0.18 (£0.2) 0.1 (£0.09) 0.26 (£0.15) | <0.001 -1.37 0.17 (£0.1)
3 | RedEdgel (-) 0.06 (£0.02) | 0.07 (£0.01) |0.07 (+0.02) |0.033 -0.02 0.08 (+0.01)
4 CHMmean (m) |2.16 (£3.82) |[0.18 (+0.41) |2.92(£3.76) |<0.001 -1.1 0.3 (£0.67)
5 Aerosols (-) 0.03 (£0.01) |0.04 (+0.01) |{0.03(+£0.01) |<0.001 1.01 0.04 (£0.01)
6 | RaoQ_NDVI(-) | 0.07 (£0.06) |0.09 (+0.06) |0.1(+0.06) |<0.001 -0.27 0.11 (+0.06)
Site3 (n=47,646)

Site3 Erigeron Solidago Welch test Co-invasion
No. | Name (unit) mean (+SD) | mean (+SD) | mean (+SD) | p-value Cohen’sd | mean (+SD)
1 |LST (C) 34.12 (+433) | 37.5 (£3.46) | 35.48 (£3.69) | <0.001 | 056 ?17-.21.596)
2 | SeLImin (-) 045 (£0.17) |0.39 (£0.11) |0.43(£0.11) | <0.001 -0.34 0.4 (£0.09)
3 RedEdgel (-) 0.08 (£0.02) | 0.1 (+0.01) 0.09 (£0.02) | <0.001 0.7 0.1 (£0.01)
4 CHMmean (m) |3.33(£4.94) |0.12(+0.51) 1.74 (£3.59) | <0.001 -0.57 0.12 (£0.47)
5 Aerosols (-) 0.02 (£0.01) |0.02 (+0) 0.02 (£0) <0.001 0.49 0.02 (£0)
6 RaoQ_NDVI (-) | 0.04 (£0.04) |0.04 (+0.04) | 0.04(+£0.04) |<0.001 -0.1 0.04 (£0.03)

Table 8. Summary statistics of site-level remote sensing data pixel values (Sitel-3) and subsets identified by the
GBM predictions for Erigeron spp. occurrence (Erigeron), Solidago spp. (Solidago) occurrence or both genera
co-occurrence (Co-invasion); Welch test p-values denote non-zero differences between Erigeron and Solidago
and Cohen’s d indicates both the effect size and direction of the difference (positive values for larger erigeron
mean and negative values for larger Solidago mean).

the spectrum’>. Moreover, SWIRI noticeably increased in importance after removal of the FD (field-based)
predictors, which may suggest that relevant habitat information was overlapped by both FD predictors and
SWIR1 (further supported by a high Variance Inflation Factor of SWIRI in the RDA model, cf. Supplementary
Table S3). Indeed, these local characteristics agree with the previously identified broad-scale climatic differences
between both genera, for instance, the humid climate of the Zhenjiang (China) zone was found to be suboptimal
for Erigeron canadensis, compared to the warm temperate continental climate of the Jinan zone’®”’, while the
climatic pattern in China was opposite in the case of Solidago canadensis'®.

Spectral diversity and LiDAR-based vegetation height jointly contribute to explaining
community-level invasibility

The major axis of the RDA ordination captured similarities between both Asteraceae genera and represented a
community-level invasibility gradient. Our results support the concept of a spectrally-derived Raos Q diversity
index™* being a surrogate of the field-based functional diversity®™. Moreover, indeed high taxonomic and
functional richness as well as the RaoQ_NDVT index were positively related to probability of both IP genera
occurrence’. In contrast, high Specific Leaf Area, Seed Mass of native plants and community-level plant height
(including the RS CHMmean metric) limited habitat invasibility. This supports the findings that both IP genera
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Fig. 7. Site-level distributions of selected remote sensing variables pixel values (Sitel-3, gray fill) and subsets
identified by the GBM predictions for Erigeron spp. occurrence (Erigeron, red fill), Solidago spp. (Solidago,
yellow fill) occurrence or both genera co-occurrence (Co-invasion, orange fill with black outline); vertical lines
indicate group means.

are important invaders in communities that can be outcompeted by a rapid height growth and tall stature of the
IPs’8. In fact, it appears that plant height of the IPs is more relevant for the overall advantage over native plants
than leaf size and photosynthetic capabilities’®. Moreover, the rhizomatous Solidago spp. may inhibit natural

succession of taller woody species for decades, thus degrading the potentially much higher ecosystem services”.
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Predicted High vegetation (%) | Low vegetation (%) | Bare ground (%) | Built area (%)
Erigeron 7.0 (7.4,10.7,3.2) 67.8 (48.7,61.8,71.5) | 49.8 58.4
Solidago 64.6 (77.9,52.1,41.3) | 81.2(93.7,70.0, 81.7) | 11.3 70.6
Co-invasion | 6.0 (7.0,7.0, 3.0) 57.5(45.2,36.1,63.5) | 8.5 45.4

Table 9. Combined percentage predicted presence across the three selected sites, for Erigeron spp., Solidago
spp. and both genera co-occurrence (Co-invasion) in four broad land cover classes (reclassified from dynamic
world LULC?8; for the two classes well represented across the three sites (high and low vegetation) site-specific
predictions are given in parentheses (from Sitel to Site3, respectively).
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Fig. 8. Combined percentage predicted presence across the three selected sites, for Erigeron spp., Solidago
spp. and both genera co-occurrence (co-invasion) in four broad land cover classes (reclassified from Dynamic
World LULC?: high vegetation (High.veg.), low vegetation (Low.veg.), bare ground (Bare) and built area
(Built); see Table 9 for exact values.

Sentinel-2 RedEdgel band best identified co-invaded areas

We found a limited niche overlap and potential co-invasion area of the two Asteraceae genera in the studied
landscapes, in contrast to the commonly reported co-invasion of the genera representatives in warmer regions
of Eurasia®®13. Still, there was a considerable overlap of the suitable habitat patches for both genera, at least
in the low vegetation site (Site3), primarily due to limited competition of native plants*>. Accordingly, the low
vegetation LULC type was most likely to be co-invaded across the three test sites, with the most equal cover of
both genera (slightly dominated by the Solidago spp.). Interestingly, the built area LULC type was the second
most co-invaded (also dominated by the Solidago spp.), primarily due to a high propagule pressure®>. In terms
of the RS predictors, this was reflected by a high importance of the local disturbance metrics (such as TCDIsd)
in the Solidago spp. models. Overall, RedEdgel was the most relevant RS predictor, identifying potential co-
invasion of both Asteraceae genera, in a narrow spectral range across the three sites. This important result
supports the findings of another study®, which also identified the Sentinel-2 red-edge spectral range as the
most relevant for capturing specific properties of vegetation. That study aimed at machine learning modeling
of a xeric (semi-arid, Caatinga) ecosystem in northeast Brazil, using a very similar set of RS predictors to our
study (Sentinel-2 multispectral and LiDAR height information). These results further confirm that the steep
change from chlorophyll absorption to foliage internal structure reflectance in the red-edge interval maximizes
the differences between vegetation characteristics®:%2. We only focused on the two Asteraceae genera, but it is
well known that the native expansive grass Calamagrostis epigejos dominates in many early successional parts of
the landscape!®. Future studies may aim at elucidating if the red-edge spectral range is also useful for identifying
differences within vegetation functional groups.

High FRic of native plants may limit invasiveness of the two Asteraceae genera

Following our expectation, the plot-level Functional Richness calculated for all plant species (FRic.all) and the
version calculated for native plants only (FRic.nat) worked differently in all types of models and also differed
between the two Asteraceae genera classifiers. While FRic.all was generally the strongest predictor across this
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study, increasing the probability of the IP genera presence, the Fric.nat appeared to either counteract invasiveness
(as in the GBM and SVM models) or pose no considerable influence (as in the RF models). On the one hand,
these results agree with the biotic resistance hypothesis***° and the theoretical rationale behind a high Functional
Richness®, which should increase the community resistance to invasions when the functional niche is already
filled by native plants. On the other hand, these findings call for more frequent and careful analyses of native
versus total plant compositions in similar analyses”', to avoid drawing overly broad conclusions about the
effects of IPs on plant communities. Further studies may directly target these differences, probably by including
narrow-band hyperspectral data’®, while none of our RS predictors seemed to explicitly capture the different
effects of FRic.all and FRic.nat. This may be attributed to the well-known inconsistency problem when scaling
from plot-level experimental data to landscape level RS data®’.

Conclusion

This research proposed a comprehensive framework for machine learning modeling of post-industrial habitats
prone to the co-invasion of two Asteraceae invasive plant genera (Erigeron spp. and Solidago spp.), using moderate
to fine-resolution remote sensing data, based on presence-absence records. Stochastic Gradient Boosting (GBM)
best captured the often non-linear effects of predictors and generally outcompeted the two other machine
learning methods (Random Forest and Support Vector Machines with a Radial Basis Function Kernel). The
predictive power of field-based variables (such as Functional Richness of all plant species and the successional
gradient) was larger than that of the remote sensing predictors alone. Certain links between the former and the
latter datasets were identified using a canonical ordination method. Functional Richness and RS-based spectral
diversity indices (such the Rao’s Q entropy) worked similarly in the models, positively influencing habitat
invasibility. The community weighted mean functional traits (such as Seed Mass and Specific Leaf Area) were
positively related with the LiDAR-derived local vegetation height metrics, and all counteracted invasiveness by
the two Asteraceae IP genera. The most favorable conditions for co-invasion, in terms of remotely sensed data,
were identified by a narrow range of reflectance in the first red-edge band of a Sentinel-2 image. Importantly, we
found that the share of patches suitable for co-invasion was consistently highest in the low vegetation land cover
class, between 36% and 64% cover. Presence of these IPs may inhibit natural succession, we therefore advise
considering particular management actions, such as increasing the supply of native seed, thus improving local
community resistance to invasions. The proposed methods and RS predictors may facilitate targeted monitoring
and cost-optimized management interventions.

Data availability

The field data are available from a public repository (https://doi.org/10.6084/m9.figshare.25289401). Sentinel-2
data were downloaded and are available from the Copernicus Browser (https://browser.dataspace.copernicus.e
u), Landsat 7 data are available via the Google Earth Engine web-based facility, other data are available from the
corresponding author upon a reasonable request.
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