Table 4 Evaluation metrics for machine learning Erigeron spp. and Solidago spp. presence-absence classification models (GBM, SVM, RF) fitted with fused field and remote sensing data; the highest values for each genus are in bold (not tested for differences).
Erigeron | Solidago | |||||
---|---|---|---|---|---|---|
GBM | SVM | RF | GBM | SVM | RF | |
AUC (± SD) | 0.923 (± 0.054) | 0.921 (± 0.051) | 0.920 (± 0.050) | 0.768 (± 0.083) | 0.795 (± 0.079) | 0.782 (± 0.082) |
Sensitivity | 0.829 | 0.771 | 0.857 | 0.656 | 0.594 | 0.563 |
Specificity | 0.925 | 0.906 | 0.943 | 0.857 | 0.857 | 0.839 |
Precision | 0.879 | 0.844 | 0.909 | 0.724 | 0.704 | 0.667 |
F1 | 0.853 | 0.806 | 0.882 | 0.689 | 0.644 | 0.610 |
Accuracy | 0.886 | 0.852 | 0.909 | 0.784 | 0.761 | 0.739 |