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Effective deployment solutions are essential for maximizing the capabilities of Internet of Things (IoT) 
devices and platforms. This study proposes a technique for enhancing the management, monitoring, 
and deployment of Internet of Things (IoT) devices, focusing on Dynamic RESTful APIs and Docker 
technologies. The suggested framework emphasizes reliable interaction and real-time flexibility 
between IoT devices and deployment infrastructures via a Dynamic RESTful API, combined with the 
deployment convenience given by Docker’s lightweight containerization. The framework’s applicability 
in real-world contexts was tested using an ESP8266 NodeMCU microcontroller and Raspberry Pi, 
both coupled with DHT11 sensor used to measure temperature and humidity readings. The devices’ 
own ability to interact via built-in Wi-Fi, which enables data transfer and storage via HTTP requests, 
demonstrates the framework’s usefulness in managing and deploying IoT devices. Furthermore, the 
API’s dynamic nature, which allows for endpoint updates without requiring software modifications, 
provides an important feature for adaptive device behavior, solving key difficulties in IoT deployment, 
such as scalability and environmental condition changes. The results highlight the dynamic API’s broad 
application and adaptability across various IoT devices, demonstrating its flexibility. This work adds to 
the body of knowledge on effective IoT deployment techniques while also laying the groundwork for 
future industry developments by establishing a framework for managing and deploying IoT devices.
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Representational State Transfer (REST) has emerged as the dominant architectural strategy for developing 
interconnected applications, particularly APIs, due to its simplicity and ability to use current web standards 
and protocols1. RESTful APIs have been widely adopted because of their stateless form, which simplifies client–
server interaction and enhances application scalability by allowing them to handle large numbers of concurrent 
queries. However, as the number of IoT devices increases, the requirement for efficient, adaptable, and flexible 
communication APIs becomes increasingly essential2. The traditional RESTful APIs, which commonly 
assume static endpoints and regular request patterns, frequently fall short in dynamic and extremely variable 
environments, such as those given by IoT devices.

This study provides a Dynamic RESTful API framework that is flexible and scalable in IoT deployments, 
which has been missing in the industry. The term dynamic deployments refers to the ability to create, update, 
and delete API endpoints and their corresponding database schemas at runtime without modifying the core 
application code. Instead of injecting code into IoT devices, our solution dynamically creates RESTful endpoints 
and database tables to handle new types of devices, sensors, or data structures. IoT systems require agile interfaces 
that can easily adapt to new functionality as devices and requirements evolve.

To simplify deployment, this study uses Docker, a modern containerization technology in order to streamline 
deployment. By isolating the API framework and its dependencies behind containers, Docker’s lightweight, 
portable environments guarantee consistent deployment under a range of conditions. This encapsulation is 
perfect for managing different infrastructure configurations because it guarantees compatibility and streamlines 
deployment. Efficiency, portability, and application isolation are some of Docker’s benefits, which result in more 
streamlined and dependable software development and deployment processes3.

The study proposes a Dynamic RESTful API framework’s architecture, design, and implementation details, 
including deployment strategies and endpoint and schema generation that make dynamic RESTful API 
provisioning and administration easier. Improved scalability, reduced integration problems, and increased 
interoperability are the benefits of this strategy, which makes meeting the demands of contemporary IoT 
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deployments essential for effectively managing intricate and dynamic systems. The aforementioned method 
effectively tackles the three main issues of security, flexibility, and standardization by leveraging Docker.

This paper is divided into following number of sections. In Sect. “Related works”, related work is examined, 
providing a thorough summary of earlier research and advancements that serve as the basis for this investigation. 
The methodology is described in Sect. “Methodology”, along with the components, design, and techniques 
of the suggested framework. The results are presented and analyzed in Sect. “Experimental results”, with an 
interpretation based on the study questions. The article is concluded in Sect. “Conclusion” with a summary of 
the main findings, thoughts on their significance, and suggestions for other research avenues.

Related works
The effectiveness and dependability of dynamic API approaches are significantly impacted by the difficulties they 
offer. One of the biggest problems is the absence of uniformity across various dynamic API implementations, 
which causes inconsistency and complexity in their design and use1. Developers find it difficult to accept and 
effortlessly incorporate dynamic APIs into their systems due to absence of standardization. Scalability issues 
come up, particularly when managing a large volume of requests or dynamic changes in system load, which can 
strain resources and reduce efficiency4. Security is still a major problem, and if dynamic APIs are not provided 
and guarded correctly, there is a serious danger of vulnerabilities like injection attacks or unauthorized access5.

The use of RESTful APIs in the Internet of Things was reviewed by6. A thorough analysis of the use of RESTful 
APIs in the Internet of Things (IoT) space is presented by the author. The authors reviewed the literature in detail 
and investigated the several ways that RESTful APIs are used to help IoT devices and systems communicate and 
interact. Their flexibility, scalability, and interoperability with web technologies are highlighted as they go over 
the benefits and drawbacks of utilizing RESTful APIs in Internet of Things applications. The analysis also explores 
particular use cases and applications where RESTful APIs are crucial for facilitating smooth interoperability 
and integration inside IoT networks. Because JSON objects are lightweight and simple to understand, as 
demonstrated by the work of7, the author further explains why the JSON format is typically chosen over XML 
in requests and responses.

The concepts and best practices necessary for creating interfaces that developers find appealing are described 
by the author in the work8 on web API design. The author highlights how important it is to design APIs that 
are simple to use and comprehend in order to promote broad integration and adoption. He goes into detail 
on important ideas including using consistent and understandable URLs, choosing suitable HTTP methods, 
putting in place efficient error handling, and abiding by RESTful principles. The author intends to ensure that 
APIs meet technical requirements while also significantly enhancing the developer experience, which eventually 
aids in the success and maintainability of software projects, by offering practical advice. In keeping with the 
broader discussions on API design, this study builds on the work done by9 and emphasizes developer happiness 
and usability as essential elements in the creation of successful online services.

The use of Python and FastAPI to build dynamic RESTful APIs is growing because of their dependability, 
effectiveness, and user-friendliness. As demonstrated by the work of10, Python’s vast ecosystem, which is full 
of libraries and frameworks, offers strong tools for the quick development and integration of a wide range of 
functionality. Famous for its remarkable speed and automatic interactive API documentation produced with 
OpenAPI and JSON Schema, FastAPI is a contemporary, high-performance web framework for creating 
APIs with Python 3.6 +11. The asynchronous features of FastAPI make use of Python’s asyncio package, which 
enables effective management of several concurrent requests and enhances performance under high demand. 
The development, creation, and operation of the FastAPI application, including file structure, deployment, 
and error handling, are covered in12. The dependency injection mechanism of FastAPI encourages component 
modularity and reusability, which is essential for sustaining large-scale applications. FastAPI guarantees reliable, 
self-documenting APIs by conforming to the OpenAPI standard, which improves maintainability and facilitates 
client integration1. All things considered, Python and FastAPI are excellent resources for creating dynamic 
RESTful APIs because they are scalable, performant, and simple to maintain.

Deployment complexity is also a major barrier, especially when managing dependencies across several 
environments or integrating dynamic APIs with current systems, as13 discusses. Since dynamic APIs must be 
updated or altered frequently to meet growing requirements, maintaining them presents additional difficulties 
that may result in versioning and compatibility problems14. Dynamic configuration and processing performance 
overhead may impact system performance and reaction times, requiring optimization. Since dynamic APIs 
should be able to accommodate interface changes without interfering with already-existing functionality, the 
ability to adjust to changes in interface structure is also crucial15.

Several strategies are used to address these issues. These consist of API composition, middleware and 
interceptors, dynamic data filtering and transformation, standard dynamic routing, and API gateway and proxy 
solutions4,13. The application management and deployment problems can be solved by using the application 
development and deployment strategies described by12. These techniques aim to improve dynamic APIs’ 
performance, scalability, security, deployment, and maintenance over a range of application. In order to 
guarantee the efficiency and dependability of dynamic API implementations, thorough documentation and 
testing protocols are also necessary. Coordinated efforts in standardization, security, scalability, deployment 
techniques, maintenance plans, performance optimization, and documentation are required to guarantee the 
dependability and efficacy of dynamic API implementations in a range of application scenarios.

There are a number of dynamic API management solutions available, however each has drawbacks in contrast 
to our framework:
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•	 API gateways Gateways like Kong or AWS API Gateway offer authentication, rate limiting, and load balanc-
ing16,17. However, they introduce latency from additional processing layers and require complex configura-
tions for dynamic endpoints, unlike our lightweight FastAPI-based approach, which achieves low latency.

•	 GraphQL GraphQL’s flexible querying reduces over-fetching in IoT systems18–20, but its complex schema defi-
nitions and resolver overhead are impractical for resource-constrained devices. Our framework’s RESTful, 
schema-less design ensures simplicity and efficiency.

•	 gRPC Built on HTTP/2, gRPC offers low-latency communication for IoT21, but its reliance on protocol buffers 
limits compatibility with web-based IoT ecosystems using HTTP/1.1 and JSON22. Our RESTful framework 
ensures broader compatibility and ease of integration23. Niswar et al.24 note gRPC’s faster response times but 
higher CPU usage compared to REST, aligning with our focus on resource efficiency.

•	 Traditional REST frameworks Frameworks like Django, FastAPI, and Flask support dynamic routing at the 
URL level25–27, but their static data models and ORM reliance limit schema adaptability. Manual updates 
increase operational overhead, whereas our schema-less, database-driven endpoint generation eliminates this 
need.

This study advances the state-of-the-art by introducing a framework that dynamically generates RESTful API 
endpoints and database schemas at runtime, suitable for IoT environments. Unlike prior work, which often 
assumes static endpoints or manual configuration, this approach automates endpoint creation and integrates it 
with Docker containerization for smooth deployment. This addresses critical gaps in scalability, adaptability, and 
ease of integration, making it particularly suited for dynamic IoT ecosystems.

Methodology
This section describes how to create and deploy a dynamic RESTful API framework. It focuses on the framework 
architecture, RESTful API architecture, data storage, deployment, and usage. The process of development follows 
best practices to attain scalability, flexibility, and maintainability for the framework, which is critical in ensuring 
efficient deployment and utilization of IoT systems. Figure 1 illustrates the framework architecture.

Framework design
The proposed framework consists of two main containers: the webserver and the Dynamic RESTful API container, 
which houses the core API application and database. The development of the framework and configuration of 
the containers are detailed in the following sections.

Docker containers
Microservices and containerization are the cornerstones of the design. As described in28, Docker containers offer 
a lightweight and portable method for bundling application components, consistency and repeatability across 

Fig. 1.  Architectural design.
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environments. In adaptive IoT contexts, this kind of containerization is essential to obtaining the necessary 
flexibility and efficiency. The following primary container components are used by the framework:

Webserver container
Nginx, which serves as the gateway and manages routing and rate limitation, is a component of the web server 
instance that the architecture depends on. This configuration makes use of a pre-built container that is based on 
the Docker Hub Nginx image, but it has been customized to enable rate limitations and particular routing for 
this deployment. As a reverse proxy, Nginx routes inbound requests from external users and Internet of Things 
devices to the appropriate backend services. Rate-limiting restrictions are applied to prevent abuse and improve 
system performance. Nginx is utilized in this framework since a study in29 demonstrates that it performs better 
than Apache and other modern web servers.

Dynamic RESTful API (interface) container
In a containerized environment, the Python FastAPI application and PostgreSQL database are deployed using a 
Docker image created in accordance with standard procedures. Using Ubuntu 22.04’s compatibility and stability, 
it was chosen as the basis image in accordance with reference30’s recommendations. Non-interactive package 
installations are carried out to reduce interruptions and expedite the build process. Installing iproute 2 and 
other essential components guarantees efficient container management. Setting up environment variables for 
PostgreSQL guarantees safe database management inside the container. The application files are copied and the 
/app directory is formed in accordance with containerized application best practices. Standard containerization 
techniques are used to adapt SQL scripts, expose ports, and install Python dependencies. In order to ensure 
effective container management and deployment procedures, PostgreSQL is finally activated, and the FastAPI 
application is started in compliance with container deployment protocols. By incorporating industry best 
practices and insights from31 the framework architecture ensures resilience and dependability in the deployment 
and operation of IoT systems while permitting flexibility, adaptability, and scalability.

RESTful API application
Framework and language choice
Python was chosen to create the RESTful API because of its robust performance, broad library and framework 
ecosystem, and track record of dependability. It is especially well-suited for API development because to its 
versatility and simple connection with external systems. FastAPI was selected as the framework since it is a 
cutting-edge, high-performance choice made especially for creating APIs using Python 3.6 and higher. The 
automatic creation of interactive API documentation with OpenAPI and JSON Schema is one of its most notable 
advantages; it streamlines the development and debugging processes. As said in11, by giving developers an easier 
method to explore and comprehend various API endpoints, such auto-generated documentation increases 
transparency and promotes clearer communication between clients and servers.

Support for Python’s asyncio library by FastAPI also makes it able to serve several concurrent requests with 
effectiveness, improving performance under load, as indicated by12. This asynchronous ability is especially 
important in systems such as IoT, where systems respond to concurrent data exchanges from several connected 
systems.

RESTful best practices
A consistent and effective method of client–server communication is achieved by the Restful API application’s 
strict adherence to RESTful best practices. In addition to authentication for Sign Up and Login, it facilitates 
Create, Read, Update, and Delete (CRUD) actions using six APIs. To guarantee that the API functions dependably 
and suitably in a range of situations, each endpoint is made to provide succinct answers while adhering to the 
HTTP status codes listed in the official HTTP specification32. The architecture of the API is built on strategies 
providing high reliability, flexibility, and maintainability, with special attention to file organization management, 
deployment strategy, and error handling. While effectively processing multiple requests simultaneously, this 
framework uses FastAPI’s features to enhance the adaptability of the application to dynamic conditions. This 
design approach is critical for maintaining the reliability and efficiency of the API as it scales to handle more 
users and devices33,34.

Dynamic endpoint implementation
Runtime creation, updating, and deletion of API endpoints without changing the main application code is 
made possible by the dynamic RESTful API framework. New database tables and API endpoints are created 
via this procedure, known as dynamic deployments, using user-defined JSON payloads that include endpoint 
URLs, descriptions, table names, and field schemas (such as field names, types, and constraints). For instance, a 
user can specify a new endpoint for a temperature sensor by sending a JSON payload, which causes a RESTful 
endpoint and matching database table to be created.

This implementation does not entail giving IoT devices executable code, such as Python scripts or CPU/
mem commands. IoT devices use HTTP requests to provide data to either specified or dynamically constructed 
endpoints. The incoming data is stored in the PostgreSQL database, validated against the defined schema, and 
made available through CRUD operations by the FastAPI application. IoT devices will simply need to implement 
HTTP client capability thanks to this method, which is lightweight and widely supported (for example, using 
libraries like HTTPClient for ESP8266 or requests in Python for Raspberry Pi).
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Error management and user experience
In order to guarantee that clients receive responses that are both clear and helpful, effective error management is 
important for the application. By providing clients immediate feedback on whether endpoint creation and other 
actions were successful or unsuccessful, this improves the user experience. By employing efficient methods, the 
program minimizes latency and continues to function reliably even while handling unforeseen problems33.

Flexibility and maintainability
The proposed framework provides a flexible and manageable method for administering dynamic APIs. The 
API framework combines the asynchronous characteristics of FastAPI with Python’s vast ecosystem to address 
typical issues like flexibility, frequent endpoint updates, and performance optimization. As the API develops 
to accommodate new requests and add new capabilities, this procedure guarantees that it will remain robust, 
effective, and easy to maintain. The process of developing a dynamic interface is shown in Fig. 2, which also 
shows how the application creates new endpoints on the fly and incorporates them into the current system. This 
dynamic capability is a key component of the proposed architecture, offering the flexibility required to support 
a diverse range of IoT applications and dynamic situations.

The dynamic endpoint creation process can be summarized as follows:

•	 User request A user sends a POST request to the /dynamic endpoint with a JSON payload specifying the end-
point details (e.g., URL, fields).

•	 Schema validation The FastAPI application validates the payload against predefined rules (e.g., valid field 
types, unique table names).

•	 Table creation A new PostgreSQL table is created with columns corresponding to the specified fields, plus an 
auto-generated id and epoch_time for tracking.

•	 Endpoint registration The new endpoint is registered in the API, allowing subsequent CRUD operations (e.g., 
POST to /dynamic/ < URL > for data submission).

•	 Storage and validation The endpoint schema is stored in a separate metadata table for future validation during 
updates or data submissions.

This process ensures flexibility, as new endpoints can be added or modified without redeploying the application, 
and maintainability, as the schema storage enables consistent data validation.

Fig. 2.  Add interface flow.
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Database and storage
The selection of a database to use was motivated by factors including performance, scalability and ease of 
integration/usage with the technology stack. Based on the in-depth research provided in35, PostgreSQL was 
the database management system of choice as it was very feature-rich, durable, and enjoyed excellent support 
in the Python environment. PostgreSQL support for JSONB data type was part of the reason it was selected for 
this framework. This feature allows flexible schema design and make it well suited for managing different and 
changing data structures that may be experienced in this context.

Data storage has been structured to align with the specific application needs which include support for 
CRUD operations on all endpoints and secure authentication workflow. The schema for the endpoints and 
user records have been designed to uphold data integrity and allow efficient, reliable data querying. The setup 
follows relational database principles and takes advantage of PostgreSQL’s capabilities for handling complex data 
querying and multiple transactions. Atomicity, Consistency, Isolation, Durability (ACID) compliance, which 
ensures that data consistency and reliability during high-risk operations is one of the features that stood out as 
detailed by36. PostgreSQL’s ease of integration with FastAPI via asynchronous database access to make it perform 
concurrent query handling strengthen the decision to use it in this context. This asynchronous approach adds to 
the framework’s ability to scale, maintain stability and respond to queries even under demanding loads.

Deployment
Docker Compose was used in the deployment process to automate container initialization. Docker Compose 
facilitates the development and deployment of multi-container Docker applications, as illustrated in37–39. The 
docker compose file, which specifies the required services and configurations, is shown in summary form in 
Fig. 3.

The docker-compose.yml file in Fig. 3 defines two primary services:

Webserver container

•	 Creates the Web server The webserver container image is created using the Dockerfile found in the ./webserver 
folder.

•	 Exposes Ports For HTTP traffic, it maps port 80 on the host to port 80 on the container; for HTTPS traffic, it 
maps port 443 on the host to port 443 on the container.

1 version: '3'
2   networks: 
3   interface_network: 
4   services: 
5     webserver: 
6       build: ./webserver 
7       ports: 
8         - "80:80" 
9         - "443:443" 
10       networks: 
11         - interface_network 
12     interface: 
13       build: ./interface 
14       ports: 
15         - "5432:5432" 
16         - "8888:8888" 
17       environment: 
18         - POSTGRES_PASSWORD=$POSTGRES_PASSWORD # Set 

your desired password here
19       networks: 
20         - interface_network 

Fig. 3.  Docker-compose file.
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•	 Networks Establishes a connection with the interface_network, allowing the webserver to communicate with 
other services.

Dynamic RESTful API container

•	 This service utilizes the Dockerfile found in the ./interface folder to create the interface container service.
•	 Exposes ports: It maps host port 5432 to host port 5432 on the container for PostgreSQL database access and 

host port 8888 to container port 8888 for the FastAPI application.
•	 Environment variables: Sets environment variables, namely POSTGRES_PASSWORD, to configure the pass-

word for the PostgreSQL database.
•	 Networks: Establishes a connection with the interface_network, allowing the webserver to communicate with 

other service.

Data collection
Data was obtained using an ESP8266 NodeMCU microcontroller and Raspberry Pi 4. These devices were fitted 
with a humidity and temperature sensor. The Raspberry Pi was used to monitor the system metrics which include 
the Disk, CPU and Memory. These devices have Wi-Fi capabilities and enable them to make HTTP requests to 
the RESTful API to send the data. This setup enabled data collection and guaranteed that different data types and 
information from different IoT devices could be collected.

Performance evaluation
The process of evaluating the performance of the dynamic RESTful API followed a structured approach to ensure 
comprehensive testing of functionality, security, and scalability, tailored for IoT environments. Authentication 
testing verified secure access by simulating user registration and login processes. Upon login at the /login 
endpoint, a unique api_key is generated, required in request headers for subsequent API calls. Security was 
validated by testing unauthorized access attempts with invalid or expired api_keys, ensuring appropriate error 
responses and access denial.

Status code validation ensured endpoints returned correct HTTP status codes for various scenarios, 
including successful operations, unauthorized access, and validation failures. Test cases used valid and invalid 
inputs for POST, GET, PUT, and DELETE requests to verify behavior, such as data creation, retrieval, updates, 
and deletions, confirming adherence to REST standards for reliable client–server communication. Functional 
testing, conducted with Postman, validated endpoint operations (POST, GET, PUT, DELETE) for creating, 
retrieving, updating, and deleting dynamic interfaces. Responses were validated by comparing them to the 
expected status codes and payload content, ignoring Nginx rate limits to focus on functionality. Error-handling 
was tested with incorrect inputs to ensure robust exception management and relevant error messages.

Load testing was performed on the RESTful API framework to evaluate its performance when under high 
traffic volumes. Although the server was setup with a rate limiting rule (10 requests per second per IP), the 
setting was intentionally bypassed during testing to evaluate the API’s true capacity beyond enforced constraints. 
The bypass permitted an initial high of 67.1 req/sec, which allowed stress testing to proceed above the specified 
threshold. Traffic was produced using JMeter at the intended rate of 600 requests per minute. During the 141-s 
test, which included continuous queries, metrics like error rates, throughput, and response times were recorded 
in a CSV file. This method gave important information on the scalability, resilience, and possible performance 
bottlenecks of the API in situations where typical operating boundaries are exceeded.

Experimental results
The following section demonstrates the outputs of the created system, highlighting the functionality of the 
framework, database functions and IoT data collection.

Dynamic RESTful API
The RESTful API application developed with FastAPI has demonstrated efficacy and functionality in dynamic 
environments. FastAPI is a very effective tool that provides automatic API documentation based on OpenAPI 
and JSON Schema. The API maximizes efficiency even during periods of high traffic by efficiently handling 
numerous requests at once by leveraging its asynchronous features. The API conforms to RESTful principles, 
providing CRUD operations through several endpoints, including Sign Up and Login authentication features. 
By efficiently responding and following HTTP status code guidelines, all endpoints guarantee seamless client–
server communications. All of the endpoints for the dynamic API are listed in Table 1, and the sections that 
follow go into detail on the relevant functionality and methods for each endpoint.

Each endpoint’s unique requests and responses are broken down in the tables below, which also offer details 
regarding the API’s interaction methods:

Adding an interface
Adding a new interface/endpoint follows precise steps as shown in Fig. 2. Table 2 and Table 3 details the request 
and response information for this method.

Request  See Table 2.

Response  See Table 3.
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Retrieve interface
The GET method can be used to retrieve the user’s dynamic interfaces. When the application receives a request, 
it retrieves every interface from the database for the authenticated user. If something goes wrong during this 
process, an error message is returned. The request and response data for this method are shown in Table 4 and 
Table 5.

Request  See Table 4.

Response  See Table 5.

Field Value Type

URL ‘/dynamic’

Method GET

Content-Type application/json

Payload json

interface_id integer

Table 4.  Request format for retrieving endpoints.

 

Field Value Type

URL ‘/dynamic’

Status code 200

Content-type application/json

Payload json

interface_id integer

interface_url text

Table 3.  Response after creating a dynamic endpoint.

 

Field Value Type

URL ‘/dynamic’

Method POST

Content-Type application/json

Payload json

interface_url text

interface_description text

table_name text

fields list

Inside ‘fields’ array

field_name text

field_type text

trendable bool

required bool

Table 2.  Request format for creating a dynamic endpoint.

 

Endpoint Method Description

/dynamic POST Register a new dynamic endpoint

/dynamic GET List all available dynamic endpoints

/dynamic PUT Edit settings or structure of an endpoint

/dynamic DELETE Remove an endpoint from the system

/dynamic/ < URL >  POST Submit new data to an endpoint

/dynamic/interface/ < URL >  GET Fetch stored data from an endpoint

Table 1.  API endpoints for managing dynamic IoT interfaces.
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Edit interface
Like the POST method, the PUT method of the “/dynamic” route adds new fields to the table or deletes the ones 
that aren’t in the new body/payload, but it does not create a new endpoint. The modified payload will be saved 
in the database to be utilized for validation. An example of the edit request and response are shown in Tables 6 
and 7.

Request  See Table 6.

Response  See Table 7.

Delete interface
The specific interface will be deleted using the DELETE function of the “/dynamic” route. After receiving 
a request, the endpoint authenticates the user using an API key. If authentication fails, an appropriate error 
message is returned. The application then retrieves the endpoint’s identity from the request payload to verify that 

Field Value Type

URL ‘/dynamic’

Status code 200

Content-type application/json

Payload json

success text

Table 7.  Response after editing an endpoint.

 

Field Value Type

URL ‘/dynamic’

Method PUT

Content-type application/json

Payload json

interface_id integer

interface_description text

fields list

Inside ‘fields’ array

field_name text

field_type text

trendable bool

required bool

Table 6.  Request format for editing an endpoint.

 

Field Value Type

URL ‘/dynamic’

Status code 200

Content-type application/json

Payload json

interface_url text

interface_id integer

interface_description text

table_name text

fields list

Inside ‘fields’ array

field_name text

field_type text

trendable bool

required bool

Table 5.  Response fields when retrieving endpoints.
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the interface is present. The matching interface data is then retrieved by accessing the database. The related table 
is then taken out of the database and the interface entry is removed. Details of the delete procedure are shown 
in Table 8 and Table 9.

Request  See Table 8.

Response  See Table 9.

Add endpoint data
The history or device records can be added using this method. Any additional information or entries can be sent 
using the URL string supplied when the endpoint was created. The “/dynamic/ < URL > ” route can be reached 
by submitting a POST request. The application confirms the user’s information before returning a response. 
Details of the request and response are shown in Tables 10 and 11.

Request  See Table 10.

Response  See Table 11.

Field Value Type

URL ‘/dynamic’

Status Code 200

Content-Type application/json

Payload json

success text

Table 11.  Response after adding data to an endpoint.

 

Field Value Type

URL ‘/dynamic/ < URL > ’

Method POST

Content-Type application/json

Payload json

 < dynamic_param_1 >  integer

 < dynamic_param_2 >  text

 < dynamic_param_3 >  bool

… …

Table 10.  Request format for adding data to an endpoint.

 

Field Value Type

URL ‘/dynamic’

Status Code 200

Content-Type application/json

Payload json

success text

Table 9.  Response after deleting an endpoint.

 

Field Value Type

URL ‘/dynamic’

Method DELETE

Content-Type application/json

Payload json

interface_id integer

Table 8.  Request format for deleting an endpoint.
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Get endpoint history
A GET request to the “/dynamic/interface/” route will retrieve the interface information and history. The 
application checks the user’s information before returning a response. The information about the request and 
response is shown in Tables 12 and 13.

Request   See Table 12.

Response   See Table 13.

Performance evaluation results
The framework’s ability to dynamically generate and manage API endpoints at runtime addresses the need 
for adaptable deployments in IoT systems, where device types and data structures evolve rapidly. Unlike static 
RESTful APIs, our approach eliminates manual code updates, enabling seamless integration of new devices 
or sensors, as validated by the performance metrics below. These results highlight the framework’s novelty 
in achieving low latency, high reliability, and minimal resource usage, critical for resource-constrained IoT 
ecosystems.

The framework was tested for functionality across dynamic endpoints supporting CRUD operations and 
authentication (Sign Up, Login). Functional testing ensured consistent responses and HTTP status codes, 
validating reliability for IoT applications. The results, shown in Table 14, confirm a 100% success rate across all 
endpoints, demonstrating robustness and correctness.

The /login endpoint averaged 127 ms across 908 samples, reflecting reliable but optimizable authentication 
processing. The /dynamic endpoints achieved exceptional efficiency, with GET requests averaging 19 ms (3872 
samples), POST and DELETE at 53 ms (100 samples each), and PUT at 36 ms (2605 samples). The /dynamic/
interface/ < URL > endpoints averaged 33  ms for POST (3212 samples) and 119  ms for GET (923 samples), 
demonstrating fast data handling. These low response times, particularly for dynamic endpoints, highlight the 
framework’s suitability for real-time IoT applications.

Response time testing measured average latency across endpoints, providing insights into performance 
under typical IoT workloads. Results are summarized in Table 15.

Endpoint Method # Samples Success rate (%)

/login POST 908 100

/dynamic POST 100 100

/dynamic GET 3872 100

/dynamic PUT 2605 100

/dynamic DELETE 100 100

/dynamic/interface/ < URL >  POST 3212 100

/dynamic/interface/ < URL >  GET 923 100

Table 14.  Functional test results for all API endpoints.

 

Field Value Type

URL ‘/dynamic//interface/ < URL > ’

Status code 200

Content-type application/json

Payload json

 < dynamic_param_1 >  integer

 < dynamic_param_2 >  text

 < dynamic_param_3 >  bool

… …

Table 13.  Response structure for endpoint history.

 

Field Value Type

URL ‘/dynamic/interface/ < URL > ’

Method GET

Content-Type application/json

Payload None

Table 12.  Request format for retrieving endpoint history.
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A single thread with API key authentication was used to generate 4732 requests over 141 s of load testing. To 
test the API’s performance under heavy load, the Nginx rate limit of 10 requests/sec was circumvented. Table 16 
displays the results.

Container implementation
The two primary containers utilized in the architecture are the Webserver and the Interface. The Webserver 
manages the requests, while the Interface serves as the main container that permits API interactions, as detailed 
in the methodology section. Regardless of the common API client, the Interface container provides efficiency 
and versatility. Below are the results of the containers made following the method:

Webserver container
The official Nginx image from Docker Hub was used to build the webserver container; however, the default 
configuration was changed to a customized version that includes rate limitations and routing tailored to this 
application. An example of the custom Nginx configuration is illustration in Fig. 4.

Interface container
To show the Interface container’s potential in Internet of Things projects, the application was deployed and 
assessed. Reliability, security, and flexibility were emphasized in the results.

The following significant findings were reached after the framework was used to develop dynamic interfaces 
for Raspberry Pi and ESP8266 devices:

	i	 User authentication and security

•	 Authentication Users were successfully authenticated using the Sign-up and Login endpoints.
•	 Rate limiting To guard against misuse and guarantee equitable use, the Nginx webserver implemented 

rate-limiting regulations.

	ii	 Constructing the dynamic endpoints

•	 Endpoint creation process New dynamic interfaces were created using fields that were supplied, including 
“field_name” “field_type” “trendable” and “mandatory” for data validation. To facilitate future validation 
during modifications, the application saved endpoint details, created new database tables, and validated 
user credentials.

•	 Error management The dynamic endpoint creation feature’s dependability and user experience were im-
proved with explicit error notifications.

Framework application: Raspberry Pi and ESP8266 interfaces
In order to illustrate the usefulness of the Dynamic RESTful API architecture, two dynamic endpoints/interface 
were added for Raspberry Pi and ESP8266 devices.

Metric Value

Total requests 4732

Successful requests 4585

Failed requests 147 (3.11% error rate)

Average response time 88.69 ms

Max response time 760 ms

Min response time 5 ms

Throughput 9.83 requests/sec

Table 16.  Load testing results of the RESTful API framework.

 

Endpoint Method # Samples Average response time (ms)

/login POST 908 127

/dynamic POST 100 53

/dynamic GET 3872 19

/dynamic PUT 2605 36

/dynamic DELETE 100 53

/dynamic/interface/ < URL >  POST 3212 33

/dynamic/interface/ < URL >  GET 923 119

Table 15.  Average response times for API endpoints.
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Raspberry Pi interface
This endpoint was created to monitor the Raspberry Pi’s system metrics, including DISK, RAM and CPU usage. 
The endpoint will later be modified. Figure 5 illustrates the JSON payload used to create the dynamic endpoint.

ESP8266 interface
This endpoint was created to measure temperature and humidity data from ESP8266 sensor. Figure 5 illustrates 
the JSON payload used to create the dynamic endpoint.

Figure  6 illustrates the ESP8266 endpoint payload. The raw interface information is stored in a separate 
table. This information is used to verify the request responses and return appropriate errors when necessary. For 
example, if a user tries to update the interface or add a new record, the application will use this information to 
validate each parameter and its type. Table 17 displays the raw dynamic table information from the database.

Hardware setup
The DHT11 sensor’s temperature and humidity readings were fed into the Esp8266 in order to evaluate the 
framework. Temperature readings were specifically recorded using pin D5 of the ESP8266 microcontroller, 
which was linked to ground and 3.3 V VCC. Following data collection, the HTTP protocol was used to send the 
data to the designated endpoint, “/dynamic/esp”.

The Raspberry Pi was configured to run Python 3.6 and Ubuntu 22.04. A Python script was created to make 
collecting system information, temperature, and humidity data easier. The DHT11 sensor data was read by the 
script using pin 7 (GPIO 4), while pin 1 (3.3 V) supplied power and pin 6 supplied ground (GND). After that, the 
specified API endpoint received the gathered data. To make data retrieval easier, the cronjob scheduling system 
was used to call the Python script.

1 limit_req_zone $binary_remote_addr zone=mylimit:10m rate=10r/s;
2 server { 
3   listen       80; 
4    listen  [::]:80; 
5    server_name  localhost; 
6
7   # Preserve client information in variables 
8   proxy_set_header Host $host; 
9   proxy_set_header X-Real-IP $remote_addr; 
10   proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; 
11   proxy_set_header X-Forwarded-Proto $scheme; 
12   proxy_set_header User-Agent $http_user_agent; 
13   proxy_set_header Referer $http_referer; 
14   proxy_set_header Authorization $http_authorization; 
15   proxy_set_header Cookie $http_cookie; 
16   location / { 
17         root   /usr/share/nginx/html; 
18         index  index.html index.htm; 
19    } 
20    location /interface/ { 
21          limit_req zone=mylimit; 
22          proxy_pass http://interface:8888/; 
23    } 
24   # added error page 
25   error_page 404 = @notfound; 
26   location @notfound { 
27          root   /usr/share/nginx/html; 
28          index  index.html; 
29
30          try_files $uri $uri/ /index.html?$args; 
31    } 
32
33   error_page   500 502 503 504  /50x.html; 
34   location = /50x.html { 
35          root   /usr/share/nginx/html; 
36   } 
37 }

Fig. 4.  Nginx configuration.
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1 {
2     "interface_url": "/esp", 
3     "interface_description": "Endpoint for the esp8266 

weather station", 
4     "table_name": "t_esp", 
5     "fields":[ 
6         { 
7             "field_name": "temperature", 
8             "field_type": "Integer", 
9             "trendable": "true", 
10             "required": "true" 
11         }, 
12         { 
13             "field_name": "humidity", 
14             "field_type": "Integer", 
15             "trendable": "true", 
16             "required": "true" 
17         } 
18
19     ] 
20 }

Fig. 6.  ESP8266 endpoint payload.

 

1 {
2     "interface_url": "/raspberrypi", 
3     "interface_description": "Endpoint for the Pi ", 
4     "table_name": "t_pi", 
5     "fields":[ 
6         { 
7             "field_name": "cpu", 
8             "field_type": "Integer", 
9             "trendable": "true", 
10             "required": "true" 
11         }, 
12         { 
13             "field_name": "disk", 
14             "field_type": "Integer", 
15             "trendable": "true", 
16             "required": "true" 
17         }, 
18         { 
19             "field_name": "ram", 
20             "field_type": "Integer", 
21             "trendable": "true", 
22             "required": "true" 
23         } 
24
25     ] 
26 }

Fig. 5.  Raspberry Pi’s endpoint payload.
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Trend data
For both the Raspberry Pi and the ESP8266, JSON data was obtained via the dynamic RESTful API in order 
to examine the outcomes. The data was then visualized by creating plots with Matplotlib. Tables 18 and 19, 
respectively, show the database’s dynamically generated tables for the Raspberry Pi and ESP8266. These tables 
include a selection of the information that is kept in the database.

Raspberry Pi data  The dynamically generate table for the Raspberry Pi with sample data is shown in Table 18. 
The collected system metrics from the device are visualized in Fig. 7, Figs. 8 and 9. These representations provide 
clear insights into the information that were being monitored by the devices.

ESP8266 data  The dynamically generate table for the ESP8266 with sample data is illustrated in Table 19. Fig-
ures 10 and 11 below show the temperature and humidity data from the ESP. Clear insights into the information 
being monitored by the device were provided by these visual representations.

The Raspberry Pi was fitted with a temperature and humidity sensor in order to evaluate the RESTful API’s 
adaptability. The temperature and humidity parameters were added to the Raspberry Pi interface in order to 
achieve this. Figure 12 shows the JSON payload that was used to update the interface.

The features of the Raspberry Pi interface were extended with the incorporation of a temperature and 
humidity sensor. Temperature and humidity readings were added to the interface, allowing additional analysis 
of data and providing useful information. The ability to easily extend support for new devices and sensors or 
additional parameters highlights the API framework’s versatility and adaptability. The major advantage is that 
such features can be added without changing the existing system architecture, demonstrating that the API is 
sufficiently robust and flexible to accommodate a variety of changing requirements. Figures 13 and 14 present the 
updated statistics for the Raspberry Pi, including the temperature, and Table 20 presents the updated database 
table and sample records.

Conclusion
This study’s major goal was to create and assess a dynamic RESTful API framework for the flexible, scalable, 
and maintainable deployment and management of IoT systems. We employed a microservices architecture and 
Docker’s containerization techniques to accomplish these goals. In order to provide seamless integration and 
expansion of system capabilities while preserving the fundamental application structure, the framework was 
designed to provide dynamic endpoints.

id temperature humidity epoch_time

13332 24 32 1716039303

13331 24 32 1716039007

13330 24 33 1716038713

13329 24 32 1716038403

Table 19.  Esp8266 database table.

 

id ram cpu disk epoch_time

38710 31 0 51 1716038767

38708 31 0 51 1716038526

38706 31 0 51 1716038286

38703 31 0 51 1716037926

Table 18.  Raspberry Pi dynamically generated database table.

 

id interface_id interface_url interface_description table_name fields interface_owner

4 1709138487598 /raspberrypi Endpoint for the Pi t_pi

{“{“field_name”: “ram”, “field_type”: “Integer”, “trendable”: 
true, “required”: true}”,”{“field_name”: “cpu”, “field_type”: 
“Integer”, “trendable”: true, “required”: true}”,”{“field_name”: 
“disk”, “field_type”: “Integer”, “trendable”: true, “required”: 
true}”,”{“field_name”: “epoch_time”, “field_type”: “Integer”, 
“trendable”: false, “required”: false}”}

2

39 1709830425232 /esp Endpoint for the esp8266 
weather station t_esp

{“{“field_name”: “temperature”, “field_type”: “Integer”, 
“trendable”: true, “required”: true}”,”{“field_name”: “humidity”, 
“field_type”: “Integer”, “trendable”: true, “required”: 
false}”,”{“field_name”: “epoch_time”, “field_type”: “Integer”, 
“trendable”: false, “required”: false}”}

2

Table 17.  Database metadata for dynamic endpoints.
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Python and FastAPI were selected for the RESTful API application because of its simplicity and broad library 
ecosystem. The asynchronous features of FastAPI and the Python asyncio module allowed for the simultaneous 
processing of many requests, which enhanced the API’s performance under high load. The application extensively 
followed RESTful best practices to support CRUD operations across many endpoints and dynamic interface 
development. The ability to design new interfaces with specific parameters showed how flexible the framework 
was.

PostgreSQL was selected as the database management system because of its solid integration within the 
Python ecosystem and wide range of features, which ensured that the application would quickly satisfy its 
operational requirements. PostgreSQL’s dedication to FastAPI enables asynchronous database access, improving 
scalability and performance while ensuring responsiveness and reliability for a range of applications.

To assess the framework’s versatility, a temperature and humidity sensor was added to the Raspberry Pi 
interface. This improved both the Raspberry Pi measurements and the system matrices. This integration 
demonstrates how easy additional functionality may be implemented in the system. The update required minor 
changes to the Raspberry Pi’s Python code but did not alter the framework’s code. This smooth transition 
demonstrates the API’s capacity to manage changing requirements without causing significant interruptions, 
achieving the study’s main goals.

The performance evaluation results revealed that the API had an efficient average response time of 88.69 ms 
when handling 4732 requests over 141 s, with a throughput of 9.83 requests per second, despite an initial surge 
to 67.1 requests per second after bypassing the rate limit to assess its core performance. However, a 3.11% 
error rate and response time peaks of up to 760 ms showed potential server-side bottlenecks, such as resource 

Fig. 8.  Raspberry Pi DISK graph.

 

Fig. 7.  Raspberry Pi CPU usage graph.
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constraints, highlighting opportunities for improvement to increase reliability under high load. Response time 
testing further validated the API’s efficiency, with endpoints maintaining a reasonable average response time 
across various samples under typical load conditions, affirming its effectiveness for user authentication tasks in 
IoT environments.

In this regard, the study succeeded in developing a dynamic RESTful API architecture that can be used in IoT 
systems, demonstrating flexibility, adaptability, and maintainability. These findings demonstrate the potential of 
the proposed framework for effectively managing and deploying IoT systems while fulfilling the dynamic and 
developing needs of present applications.

The future scope of this study includes expanding the framework by integrating a pub/sub protocol such as 
MQTT to fully adhere and accommodate other communication protocols. Additionally, the framework requires 
a method of adding and processing alerts and sending notifications. A container can be added to the framework 
to solely address this problem without interfering with the existing implementation. By incorporating these 
aspects, the framework can potentially evolve into a comprehensive and advanced solution for the deployment 
of dynamic infrastructure. This will also make it more useful for various applications and industries.

Fig. 10.  ESP8266 temperature graph.

 

Fig. 9.  Raspberry Pi RAM graph.
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Fig. 11.  ESP8266 humidity graph.
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1 {
2     "interface_id": 1709138487598, 
3     "fields":[ 
4         { 
5             "field_name": "ram", 
6             "field_type": "Integer", 
7             "trendable": true, 
8             "required": true 
9         }, 
10         { 
11             "field_name": "cpu", 
12             "field_type": "Integer", 
13             "trendable": true, 
14             "required": true 
15         }, 
16         { 
17             "field_name": "disk", 
18             "field_type": "Integer", 
19             "trendable": true, 
20             "required": true 
21         }, 
22         { 
23             "field_name": "temperature", 
24             "field_type": "Integer", 
25             "trendable": "true", 
26             "required": "true" 
27        }, 
28         { 
29             "field_name": "humidity", 
30             "field_type": "Integer", 
31             "trendable": "true", 
32             "required": "true" 
33         } 
34     ] 
35 } 

Fig. 12.  Raspberry Pi update payload.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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id ram cpu Disk epoch_time temperature humidity

38710 31 0 51 1716038767 24 33

38708 31 0 51 1716038526 24 33

38706 31 0 51 1716038286 24 33

38703 31 0 51 1716037926 24 33

Table 20.  Raspberry Pi updated database table.

 

Fig. 14.  Raspberry Pi humidity graph.

 

Fig. 13.  Raspberry Pi temperature graph.
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