Table 10 Statistical parameters and regression models for NI(G).

From: Predicting bone cancer drugs properties through topological indices and machine learning

Property

\(\text {Model}\)

\(\text {Equation}\)

R

\(R^2\)

\(S_E\)

F

\(p\text {-value}\)

BP

Quadratic

\(y=355.8127+2.4398x+0.0045x^2\)

0.908

0.825

1.861

28.214

0.000

Cubic

\(y=380.2739+1.6293x+0.0116x^2-0.0001x^3\)

0.908

0.825

8.461

17.260

0.000

EV

Quadratic

\(y=67.2233+0.1854x+0.0012x^2\)

0.905

0.819

0.275

27.240

0.000

Cubic

\(y=77.8100-0.1654x+0.0043x^2-0.0001x^3\)

0.906

0.821

1.244

16.802

0.000

FP

Quadratic

\(y=218.1404+0.2769x+0.0063x^2\)

0.845

0.714

1.482

14.964

0.001

Cubic

\(y=97.7782+4.2650x-0.0284x^2+0.0001x^3\)

0.851

0.723

6.626

9.590

0.002

MR

Quadratic

\(y=32.9614+0.6772x+0.0013x^2\)

0.981

0.963

0.221

154.388

0.000

Cubic

\(y=-23.7449+2.5561x-0.0151x^2+0.0001x^3\)

0.987

0.975

0.821

143.624

0.000

SA

Quadratic

\(y=84.5140-0.0991x+0.0039x^2\)

0.835

0.697

0.777

13.824

0.001

Cubic

\(y=162.3024-2.6765x+0.0263x^2-0.0001x^3\)

0.844

0.713

3.442

9.100

0.003

P

Quadratic

\(y=13.0414+0.2684x+0.0005x^2\)

0.981

0.963

0.088

154.014

0.000

Cubic

\(y=-9.4545+1.0137x-0.0060x^2+0.0001x^3\)

0.987

0.975

0.326

143.202

0.000

MV

Quadratic

\(y=139.6352+1.1535x+0.0053x^2\)

0.966

0.934

0.777

84.795

0.000

Cubic

\(y=-14.8241+6.2714x-0.0393x^2+0.0001x^3\)

0.973

0.947

3.158

65.801

0.000