Table 9 Statistical parameters and regression models for NH(G).

From: Predicting bone cancer drugs properties through topological indices and machine learning

Property

\(\text {Model}\)

\(\text {Equation}\)

R

\(R^2\)

\(S_E\)

F

\(p\text {-value}\)

BP

Quadratic

\(y=386.2460+25.9214x+2.0810x^2\)

0.871

0.759

41.999

18.886

0.000

Cubic

\(y=1120.3201-344.0972x+53.6588x^2-1.9232x^3\)

0.889

0.790

291.420

13.816

0.000

EV

Quadratic

\(y=74.9076+0.3131x+0.4790x^2\)

0.873

0.761

6.077

19.133

0.000

Cubic

\(y=191.8350-58.6256x+8.6946x^2-0.3063x^3\)

0.894

0.799

41.496

14.566

0.000

FP

Quadratic

\(y=261.7664-9.6184x+2.4890x^2\)

0.828

0.685

29.933

13.034

0.001

Cubic

\(y=398.8229-78.7033x+12.1189x^2-0.3591x^3\)

0.829

0.688

221.690

8.070

0.004

MR

Quadratic

\(y=6.6778+16.3706x+0.1551x^2\)

0.995

0.990

2.172

610.537

0.000

Cubic

\(y=-53.9700+46.9408x-4.1061x^2+0.1589x^3\)

0.997

0.993

13.206

560.339

0.000

SA

Quadratic

\(y=119.1097-11.5839x+1.5634x^2\)

0.803

0.645

16.198

10.892

0.002

Cubic

\(y=418.6505-162.5709x+22.6099x^2-0.7848x^3\)

0.835

0.697

111.390

8.415

0.003

P

Quadratic

\(y=2.6200+6.4889x+0.0616x^2\)

0.995

0.990

0.864

606.386

0.000

Cubic

\(y=-21.4871+18.6404x-1.6323x^2+0.0632x^3\)

0.997

0.993

5.255

556.116

0.000

MV

Quadratic

\(y=63.3543+35.3380x+0.8079x^2\)

0.988

0.976

9.006

244.300

0.000

Cubic

\(y=-170.9294+153.4315x-15.6535x^2+0.6138x^3\)

0.991

0.983

56.533

211.194

0.000