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This investigation focuses on the phenomenon of air pollution in the metropolitan area of Delhi, with 
a particular emphasis on the stubble-burning season, during which concentrations of PM2.5 reach 
their peak, presenting significant health hazards. Utilizing a comprehensive dataset spanning a 
decade (2012–2022), this study analyzes the influence of meteorological conditions, urban emissions, 
and seasonal biomass combustion. It amalgamates historical PM2.5 concentration data, relevant 
meteorological variables, and FIRECOUNT data to capture the temporal and pollution dynamics. 
Feature selection based on CorrXGBoost was utilized to find and keep the most significant predictors, 
hence decreasing model complexity while maintaining predictive efficacy. The proposed hybrid 
TL-LSTM-MHA Long Short-Term Memory (LSTM) model, augmented with Multi-Head Attention, is 
employed, harnessing transfer learning techniques to facilitate enhanced computational efficiency 
and generalization capabilities. The model demonstrated good performance (MAE = 4.38, RMSE = 5.80, 
R2 = 0.9972) and was extensively verified using tenfold cross-validation to ensure robustness towards 
overfitting and non-stationary effects. Statistical significance tests, particularly the Wilcoxon signed-
rank test, were used to confirm the performance disparities among model variations, therefore 
substantiating the roles of essential architectural elements. Attention weight visualization and head-
wise interpretability studies demonstrated unique patterns in feature significance across heads. The 
model’s efficacy was also assessed against traditional and contemporary state-of-the-art methods 
tested on similar PM2.5 forecasting tasks, demonstrating its enhanced accuracy. This research provides 
predictive insights pertinent to regulatory decision-making about seasonal air quality management 
encountered in Delhi. The scalability of the proposed framework is demonstrated by comparing it to 
conventional and transfer learning-based models.

Keywords  Air quality prediction, PM2.5 prediction, Deep learning, Multi-head attention, Transfer learning

As academics emphasize, air pollution is a critical worldwide challenge with far-reaching effects on welfare, 
the environment, and economic growth. Cities such as Delhi in India have very elevated pollution levels, 
underscoring the severity of these issues1,2. The Air Quality Index (AQI) is determined by measuring several 
pollutants, including particulate matter (PM2.5 and PM10) and Ozone (O3), Nitrogen Dioxide (NO2), Sulphur 
Dioxide (SO2), and Carbon Monoxide (CO) emissions3,4 Absorption of pollutants such as PM2.5, PM10, 
NO2, SO2, CO, and O3 is correlated with respiratory and cardiovascular disorders, premature mortality, and 
environmental consequences, including global warming and the release of greenhouse gases. Biomass combustion 
is a sustainable source of airborne particulate matter (PM) and chemical gases, which profoundly influence 
both local and global climates. It also presents significant health hazards to people. This type of combustion 
encompasses various activities, including wildfires and post-harvest agricultural burning, commonly referred 
to as crop residue burning (CRB) or “stubble” burning5. Stubble burning in North India, a practice that has 
been conducted for more than twenty years, involves farmers in Punjab, Haryana, Uttar Pradesh, and adjacent 
states incinerating agricultural remnants after harvest to expedite soil preparation for subsequent planting3. 
This practice, particularly from September to December, deteriorates air quality as winds transport smoke and 
pollutants, such as PM2.5, PM10, NO2, SO2, CO, and O3, to the National Capital Territory and other areas, resulting 
in hazardous smog6. Air pollution in Delhi intensifies throughout the winter, attributed to the Diwali celebrations 
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and the incineration of agricultural waste, which is exacerbated by reduced temperatures and heightened heating 
requirements. Pollution is less during the monsoon; however, it remains considerable. Interest in the subject 
intensifies throughout winter, as seen by media coverage, public engagement, and political discourse7. Over the 
last decade, numerous studies have examined the temporal dynamics of air quality, emphasizing the influence 
of meteorological parameters, including wind speed (WS), relative humidity (RH), and wind direction (WD), 
on pollutant levels. The stubble-burning season presents distinct challenges due to the complex interplay of 
meteorological variables, agricultural practices, and urban pollutants. This requires the creation of sophisticated 
forecasting models, particularly designed for this timeframe. Nevertheless, most current research lacks models 
particularly designed for the stubble-burning season and frequently encounters issues with data scarcity and 
seasonality, resulting in overfitting in deep learning applications. Furthermore, these models often fail to account 
for the sudden, significant surges in PM2.5 concentrations that result from biomass burning in adjacent areas. 
They often rely on smooth seasonal patterns, overlook real-time fire activity, and fail to account for the intricate 
climatic dynamics—such as temperature inversions and low wind speeds—common during the post-monsoon 
period. Moreover, many fail to utilize the capabilities of transfer learning or sophisticated attention processes to 
elucidate intricate spatiotemporal correlations in air quality data.

To address these challenges, this research aims to develop a seasonal PM2.5 forecasting model for the stubble-
burning period (September–December) using a decade of historical air quality and meteorological data (2012–
2022). A Transfer Learning-based LSTM with Multi-Head Attention (TL-LSTM-MHA) is introduced, pre-
trained on historical (source) data and subsequently fine-tuned on recent (target) data to improve generalization. 
A hybrid feature selection approach (CorrXGBoost), integrating Pearson correlation with Gradient Boosting 
significance, determines the most pertinent predictors. This spatiotemporal paradigm allows precise forecasting 
of PM2.5 surges during stubble-burning events. This study provides policymakers with empirically derived 
forecasts, promoting innovation and sustainable practices that benefit both agricultural farmers and urban 
residents in the National Capital Region. The work efficiently addresses data shortages and improves model 
robustness in a highly seasonal situation through the application of transfer learning.

The explicit objectives consist of:

	1.	 Seasonal air quality prediction Establish a dedicated system for precisely forecasting PM2.5 levels through the 
pivotal stubble-burning season, marked by elevated pollutant levels and health hazards.

	2.	 Temporal dynamics and feature enrichment Integrated lagged PM2.5 readings, rolling statistics, as well as 
seasonal climate data, including wind speed (WS), relative humidity (RH), and wind direction (WD), to 
elucidate temporal and meteorological effects. Furthermore, using FIRECOUNT data to assess the regional 
effects of agricultural residue combustion.

	3.	 Long-term trends analysis Employ a decade (2012–2022) of seasonal data to simulate long-term trends and 
variability in PM2.5 concentration affected by meteorological conditions, agricultural residue combustion, 
and urban emissions.

	4.	 Advanced deep learning model Propose a hybrid LSTM and Multi-Head Attention model to capture pattern 
sequences. The model emphasizes significant time steps in the data, enhancing the accuracy of predictions.

	5.	 Transfer learning for efficiency Employs a two-phase strategy: initially, the model is pre-trained on historical 
source data prior to 2021 to identify temporal and pollutant-related patterns, followed by fine-tuning on 
the target data from 2021 onward. This method improves generalization, expedites training, and decreases 
computing expenses by leveraging acquired temporal representations.

	6.	 Feature selection for model simplification and interpretability A CorrXGBoost-Rank-based feature selection 
technique integrates correlation analysis with XGBoost significance scoring to ascertain the most pertinent 
predictors of PM2.5 concentrations. The chosen characteristics are subsequently utilized as inputs to the TL-
LSTM-MHA architecture, which enhances model interpretability, reduces input dimensionality, and pro-
motes learning efficiency during the stubble-burning season.

	7.	 Quantitative evaluation Assess the model’s performance using rigorous measures such as MAE, RMSE, and 
R2 to guarantee correctness and dependability.

	8.	 Policy implications Deliver accurate seasonal forecasts to policymakers and ecological authorities to enable 
prompt actions and alleviate the health and air quality repercussions of stubble burning on Delhi’s air quality.

	9.	 Comparative performance and scalability Assess the model’s scalability and robustness by evaluating its per-
formance relative to traditional and baseline models trained on the identical dataset. Furthermore, show its 
applicability to structurally analogous seasonal scenarios utilizing pre-trained weights.

The study is arranged systematically as follows: Sections “Introduction”, “Related work”, “Materials and methods”, 
“Experimental details”, “Results”."Discussion and Future Work","Conclusion"

Related work
As contaminants are dynamic, uncertain, and extremely unpredictable, predicting air quality is difficult. 
Conventional deterministic approaches are not flexible enough to adjust to changing circumstances and are 
predicated on assumptions8. Although statistical methods are more flexible, their ability to handle the non-
linear character of real-world data is limited since they frequently make linear assumptions9.Significant scholarly 
inquiry undertaken by Ameer et al. investigated the efficacy of four distinct regression methodologies: Decision 
Tree, Gradient Boosting, Multilayer Perceptron, and Artificial Neural Network, which are employed to predict 
air quality indices10,11.

Big data analysis has been greatly enhanced by deep learning (DL), a complex machine learning subfield 
in several fields, including biological informatics, speech recognition, visual analytics, and remote sensing. By 
learning in-depth via several phases, DL excels at non-linear resolving issues, and its effectiveness becomes 
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better as the dataset size grows. DL approaches have been effectively used to solve a variety of issues, such 
as voice analysis, motion modeling, picture classification, object recognition, weather forecasting, and natural 
language processing12. Given the volume of air pollution data, it makes sense. It works well to use DL models in 
conjunction with cutting-edge AI techniques to accurately depict and forecast air quality depending on weather 
and other variables13.

Hours to weeks are only a few of the short and long-term effects that air pollution may have on the 
ecosystem and human health. Consequently, while forecasting air quality, temporal delays must be considered. 
Nevertheless, a lot of Artificial Neural Networks (ANN)14-based techniques have trouble establishing long-term 
relationships or successfully addressing the temporal delays of air pollution. Recurrent neural (RNNs)15, long 
short-term memory (LSTM) models16–19. LSTM incorporated into fully connected neural networks (LSTM-
FC)20. Combination models, such as K-nearest neighbor with LSTM (KNN-LSTM), are sophisticated methods 
for deep learning that some researchers have used to model time series data to get around these restrictions.

Despite its severe pollutant spikes and related health hazards, air quality forecast techniques often lack 
real-time, season-specific modeling designed for high-pollution times, including stubble-burning season. 
Additionally, health hazards are rarely included in existing frameworks for thorough seasonal forecasts. In 
addition, air quality studies usually just look at whether or temporal aspects, ignoring an integrated strategy that 
uses metrics like FIRECOUNT for regional pollution evaluation, despite the progress achieved in the domain of 
feature selection, the prevailing methodologies continue to exhibit significant limitations.

Su et al.21 and Farhani22 concentrated their efforts on predicting fire risk, however, they failed to incorporate 
integrated with delayed PM2.5 measurements, rolling statistics, and seasonal climate data. Both the effect of 
climate change on seasonal PM2.5 fluctuation and the cumulative impact of burning crop residue and urban 
pollutants over long periods are still poorly understood. In collecting wider contextual linkages, the self-attention 
mechanism greatly improves series processing and gets beyond the drawbacks of conventional techniques that 
rely on brief windows for aggregating past material23. Its capacity to extract important information from input 
matrices is further improved by regularization terms. By facilitating the concurrent aggregation of many linear 
transformations, the multi-head self-attention system expands on these advantages and successfully captures 
complex trends and connections.

Utilizing this technique, air quality forecasting fills in the gaps in the computation of intricate temporal 
relationships and interactions that are frequently missed by conventional methods24. Hybrid frameworks such 
as LSTM combined with Multi-Head Attention for selecting important steps in data are still not completely 
utilized by sophisticated deep learning models. An important development in AI and deep learning is transfer 
learning (TL)25, which improves learning and forecasting effectiveness by enabling a pre-built model to transfer 
information from a source job to a similar target task26. This method enhances model accuracy and generalization 
and works especially well in situations with little training data. TL is helpful in a variety of fields, such as building 
usage, neurophysiological research, and environmental research, since it reuses existing information, unlike 
classical machine learning, which creates every prediction from the start. By being pre-trained modestly, it has 
demonstrated particular use in data-poor settings for air pollution forecasting, allowing for increased forecast 
accuracy. Prasanthrajan et al.27 illustrated that tree species exhibited considerable physiological diversity between 
polluted and unaffected areas within the same city, underscoring local and temporal disparities in environmental 
stress. This substantiates the justification for implementing transfer learning within a singular domain, wherein 
temporal variations can engender disparate learning contexts despite common geography.

The base manuscript investigates the application of Transfer Learning-oriented Hybrid Deep Learning 
methodologies for the prediction of PM2.5 concentrations, effectively addressing the challenge of data scarcity 
through the utilization of temporal attention mechanisms. This approach demonstrates superior performance 
compared to conventional models, achieving a reduction in RMSE of up to 38% on datasets from Beijing and 
Hengshui28.

This research expands upon this work by incorporating Long Short-Term Memory (LSTM) networks 
with Multi-Head Attention (MHA), CorrXGBoost based feature selection, Seasonal climate indicators and 
FIRECOUNT-derived spatial cues to enhance feature representation and forecast accuracy, to improve both 
feature representation and forecast precision. Furthermore, despite the possibility of shorter training times and 
increased flexibility, transfer learning has not yet been widely used in air quality prediction due to difficulties 
in balancing adaptation and efficiency. Furthermore, a TL-LSTM-MHA model is implemented to augment 
forecasting precision, incorporating seasonal climate data, FIRECOUNT metrics, and the effects of pollutant 
accumulation. This theoretical framework significantly advances the forecasting of long-term air quality. It 
enhances predictive accuracy in sparse data regions through the optimization of feature selection, the application 
of Multi-Head Attention (MHA) for the identification of patterns, and the amalgamation of deep learning 
techniques with transfer learning methodologies.

Materials and methods
The materials and methods aspect of this research encompasses the following components: Study Area, Data 
Exploration and Preprocessing, and methods, which delineate the techniques, including the principles of 
Transfer Learning, the Multi-Head Attention mechanism, and the combined TL-LSTM-MHA modelling 
framework. Furthermore, it provides the requisite foundational information crucial for comprehending the 
proposed paradigm.

Study area
This research uses a dataset combining air pollution metrics, economic indicators, and field fire data to predict 
air pollution levels in New Delhi, focusing on the period from September to December between 2012 and 2021. 
Air pollution data was gathered from five stationary monitoring stations—Anand Vihar, ITO, Mandir Marg, 
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Shadipur, and R.K. Puram, which include 24-h averages of PM2.5, PM10, CO, NO2, and SO229. The chosen 
stations ensure representative spatial coverage across this distribution. This distribution ensures comprehensive 
coverage of industrial, residential, and high-traffic sectors, facilitating more thorough modeling. Meteorological 
data comprises RH, WS, WD, SR, BP, and AT, with WS exhibiting a notable negative association with PM2.5. Data 
on field fires were sourced from NASA’s VIIRS 375 m Active Fire Data, concentrating on Punjab and Haryana, 
with FIRECOUNT reflecting daily fire occurrences during the stubble-burning season30. While FIRECOUNT 
does not quantify fire intensity, it consistently indicates seasonal patterns. Economic statistics, GSDP, and HDI 
values for New Delhi were incorporated as yearly constants. All data were consolidated into five station-specific 
files for regression and forecasting. Table 1. Shows the explanation of the study’s attribute feature.

The data was obtained from Agarwal, Arti (2022). Data for: The Economic Cost of Air Pollution Due to 
Stubble Burning: Evidence from Delhi Version 1. Mendeley Data, October 3, 2022. Available at: ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​
1​0​.​1​7​6​3​2​/​y​x​z​x​v​x​t​v​p​r​.​1​​​​​. 31 This comprehensive dataset provides a strong foundation for studying the relationship 
between agricultural fires and guiding air quality policy. Table 1 explains the study’s attribute features.

Data exploration and preprocessing
This section outlines the essential steps for refining the dataset to achieve effective modeling. It covers handling 
missing values, eliminating redundancies, analyzing the impacts of fire incidents, scaling with Temporal-
Enhanced Feature Engineering (TEFE), testing and correcting stationarity, normalizing the data, and selecting 
features to improve model performance. The procedures for data cleaning, preprocessing, and feature 
transformation are elaborated in Supplementary File S1 (S1_Data_Preprocessing.ipynb).

Missing values handling
Addressing missing data is essential for preparing datasets for reliable analysis and modeling. This study began 
by analyzing the dataset to evaluate the extent of missing data across all 18 aspects, including both continuous 
and categorical variables. Many meteorological and pollution-related variables—such as PM10, PM2.5, CO, NO2, 
SO2, WD, RH, WS, AT, GSVA, and HDI—showed varying levels of missing data, ranging from 3% to over 
25%. Linear interpolation was applied to continuous time-series variables (e.g., PM2.5, WS, RH, AT) to maintain 
temporal consistency in sequential data. For variables with little temporal dependence or moderate missingness 
(e.g., GSVA, HDI), mean imputation was used to minimize bias while preserving feature distribution. Categorical 
or directional variables, such as WD, were imputed using mode substitution to retain the most common value 
and preserve categorical integrity. Variables with substantial missing data—such as BP (84%), SR (86%), and 
CONST (with 243 missing entries)—were excluded due to insufficient coverage and their potential to harm 
model performance. After preprocessing, the dataset with imputed values was revalidated to confirm the 

No of feature Feature Description of dataset Datatype

1 DATE Date of observation object

2 PM2.5 Particular matter diameter of 5 float64

3 PM10 Particular matter diameter of 10 float64

4 NO2 Nitrogen dioxide float64

5 CO Carbon monoxide float64

6 SO2 Sulfur dioxide float64

7 FIRECOUNT No of fire incidents int64

8 WD Wind direction float64

9 WS Wind seed float64

10 RH Relative humidity float64

11 AT Ambient temperature float64

12 BP Atmospheric pressure float64

13 SR Solar radiation float64

14 CONST Constant variable int64

15 GSDP Gross state domestic product int64

16 GSVA Gross state value added float64

17 GSDP_CAP Gross state domestic product per capita int64

18 HDI Human development index float64

19 PM2.5_lag_1 PM2.5 value 1 steps prior float64

20 PM2.5_lag_2 PM2.5 value 2 steps prior float64

21 PM2.5_lag_3 PM2.5 value 3 steps prior float64

22 PM2.5_rolling_mean Rolling average of PM2.5 over a defined window float64

23 PM2.5_rolling_std Rolling std of PM2.5 over a defined window float64

24 Month Month of year int64

25 Day_of_week Day of the week int64

Table 1.  Explanation of the study’s attribute feature.
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absence of missing data across all remaining variables. This systematic approach ensured data integrity across 
both continuous and categorical variables, enabling the reliable use of data for rigorous temporal modeling and 
predictive analysis.

Removal of redundant features
Alongside addressing missing values, it was crucial to assess the significance of each characteristic for the 
predictive modeling process. At this stage, it was found that several characteristics exhibited slight variation, 
rendering them redundant and potentially detrimental to the model’s efficiency. For example, economic variables 
such as GDP, GVA, GDP_CAP, and HDI had stable or nearly stable values throughout the dataset. These variables 
showed minimal variation, indicating they provided limited information for the model to differentiate between 
data points. The consistent values in these economic factors could have led to multicollinearity, where the 
model might overemphasize certain traits, resulting in unstable training and incorrect predictions. Additionally, 
these traits were less relevant forcasting air quality measures, such as PM10 and PM2.5, which are more directly 
influenced by environmental and pollutant-related variables than by economic indicators. As a result, these 
economic factors were removed from the dataset. Removing unnecessary economic data helped focus the 
dataset on climatic and pollutant-related features, which have a more direct and dynamic relationship with air 
quality. Figure 1 shows (a) Before Removing Redundant Features and (b) After Removing Redundant Features. 
This step reduced the model’s complexity, improving its efficiency and suitability for training.

Impact of fire incidents on air pollution: A temporal analysis
The visualization in Fig.  2, titled “FIRECOUNT Trend with Time,” shows the daily total of open field fires 
based on NASA’s VIIRS (Visible Infrared Imaging Radiometer Suite) data from 2012 to 2021. This data focuses 

Fig. 2.  The FIRECOUNT trend from 2012 to 2022 indicates seasonal peaks during post-monsoon stubble 
burning in Northwest India. Gaps indicate off-season intervals or sporadic constraints on satellite detection.

 

Fig. 1.  (a) Prior removal of redundant features (b) After removal of redundant features.
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on agricultural residue burning in Punjab and Haryana, South Asia, within latitudes 28.90 N to 340 N and 
longitudes 730 E to 770 E. The information highlights the peak crop residue burning period from September to 
December. The FIRECOUNT variable, derived from satellite fire detection systems such as MODIS and VIIRS, 
serves as a region-specific measure indicating biomass combustion events. This study is particularly relevant due 
to the widespread practice of stubble burning in Punjab and Haryana during the post-monsoon season, which 
directly impacts PM2.5 levels in Delhi. Each point on the plot represents the daily fire count during these months, 
revealing an annual pattern with notable fluctuations. Fire occurrence varies from 1–2 fires per day up to a 
maximum of 8000, emphasizing the severity of stubble burning in October and November. The trend lines in the 
graph depict changes in fire counts over the years, indicating seasonal patterns and possible shifts in agricultural 
practices or regulations. Although the FIRECOUNT variable does not directly measure fire intensity or size, it 
effectively illustrates trends due to its broad range and inclusion of both small and large fires. Gaps in the data 
indicate off-season periods or limitations in satellite detection.

The scatter plot in Fig. 3 displays average patterns over time for five primary air pollutants—PM2.5, PM10, 
NO2, CO, and SO2—measured at five stationary monitoring sites in New Delhi from 2012 to 2021. The pollutants 
were measured in specific units: PM2.5 and PM10, CO, and SO2. Seasonal trends are evident, particularly the 
rise in pollution from September to December, primarily due to stubble burning in nearby areas. This seasonal 
pattern is visible in PM2.5, PM10, and CO levels. Although NO2 and SO2 show periodic changes, their impact 
appears smaller. Missing historical data suggests gaps in records; however, the graph clearly shows the impact 
of human activities, such as industrial emissions, vehicle traffic, and agricultural residue burning, on air quality. 
These data highlight the seasonal and regional differences in air pollution in New Delhi, offering crucial insights 
for air quality management and policy development.

Figure 4 shows the yearly patterns of fire counts and average PM2.5 levels from 2012 to 2022, illustrating 
their temporal correlation with a dual-axis format. It excludes 2015 due to insufficient FIRECOUNT data. The 
visualization aids the study’s objective of predicting air quality by emphasizing the temporal relationship between 

Fig. 4.  Year-wise trend displaying the link between average PM2.5 concentration throughout the post-monsoon 
period (2012–2021, omitting 2015 due to missing data) and seasonal fire activity (FIRECOUNT).

 

Fig. 3.  Average temporal trends of five major air pollutants (PM2.5, PM10, NO2, CO, SO2) across five fixed 
monitoring stations in New Delhi from 2012 to 2021.
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fire activity and PM2.5 levels throughout the post-monsoon period (September–December). The blue dashed line 
and green dots denote average PM2.5 levels, whilst the pink bars signify total annual fire counts. Significantly, 
2014 saw the lowest PM2.5 levels concurrent with reduced fire activity, whereas 2022 witnessed surges in both, 
highlighting their robust correlation. Although 2022 demonstrated a clear correlation between intense fire 
occurrences and elevated PM2.5 levels, the connection is not entirely linear. From 2016 to 2020, elevated fire 
counts did not consistently correlate with increased pollution, indicating the impact of additional variables 
like meteorological conditions, emission regulations, and urban contributions. These findings underscore the 
necessity of including meteorological and emission factors in prediction models to more accurately represent 
the intricate dynamics of PM2.5 pollution. FIRECOUNT and PM2.5 data were aggregated annually to evaluate 
their annual correlation, yielding insights into the cumulative effect of biomass combustion on Delhi’s air quality.

Temporal -enhanced feature engineering (TEFE)
The TEFE technique integrates historical pollutant data, rolling statistics, and temporal factors to elucidate 
temporal interdependence in PM2.5 dynamics. Lagged data (e.g., PM2.5_lag_1, lag_2, lag_3) enable the model to 
assimilate recent historical patterns, whereas the rolling mean and standard deviation over three-day intervals 
emphasize local variations. Calendar-based attributes, like day-of-week and month, maintain seasonality. 
An Autocorrelation Function (ACF) study was performed to confirm the incorporation of lagged features 
as shown in Fig. 5. PM2.5 demonstrates considerable autocorrelation up to lag 3, hence endorsing the use of 
short-term lag characteristics in the prediction model. Furthermore, to accurately depict cyclical atmospheric 
characteristics, Wind Direction (WD), a circular variable was transformed using sine and cosine functions: 
WD_sin = sin(radians (WD)) and WD_cos = cos(radians(WD)). This encoding maintains angular continuity 
between 0° and 360°, preventing distortion from linear representations. The original WD column was eliminated 
after transformation to save repetition. This method improves the model’s capacity to comprehend directional 
wind patterns pertinent to pollution dispersion.

Stationarity testing and treatment
Time series data on air pollution, particularly PM2.5 and related contaminants, often exhibit non-stationary 
traits due to seasonal patterns, trends, and external influences such as stubble burning. To verify this, we 
conducted Augmented Dickey-Fuller (ADF) tests on key pollutant variables, including PM2.5, PM10, NO2, 
and SO2. The results indicated that most series were non-stationary at a 95% confidence level, with p values 
exceeding the 0.05 threshold, confirming the presence of unit roots and inherent temporal drift. To address 
this non-stationarity, this study applied several temporal adjustments during the feature engineering process. 
Lag variables (PM2.5_lag_1, PM2.5_lag_2, PM2.5_lag_3) and rolling statistics (PM2.5_rolling_mean, PM2.5_
rolling_std) were added to the feature set. This helps stabilize trends and highlight small temporal patterns. 
Additionally, Minmax normalization was used to reduce scale-related differences among all time-dependent 
features. These preprocessing steps enhance the model’s ability to learn stable representations, thereby improving 
both convergence and forecasting accuracy under non-stationary conditions.

Final dataset preparation
The final dataset included 17 selected characteristics that cover key factors influencing air pollution, such as 
pollutant levels (PM2.5, PM10, NO2, CO, SO2), biomass combustion (FIRECOUNT), meteorological variables 
(Wind Speed, Relative Humidity, Air Temperature), and temporal and historical trends. To forecast short-term 
PM2.5 fluctuations, rolling statistics (mean, standard deviation) and lagged values (PM2.5_lag_1, PM2.5_lag_2, 
PM2.5_lag_3) were used. Weekly and seasonal patterns were represented by the day of the week and the month. 
Wind Direction was encoded as WD_sin and WD_cos to effectively represent its circular nature without 
discontinuity.

Fig. 5.  The autocorrelation of PM2.5 across 30 lags demonstrates significant initial correlations, validating the 
use of lag characteristics (e.g., lag_1 to lag_3) in the model. The shaded bands represent the 95% confidence 
interval.
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Figure 6 shows the distributions of these features, highlighting different patterns: pollutant-related variables 
and FIRECOUNT have right-skewed distributions with occasional extremes, lagged and rolling PM2.5 reveal 
temporal dependencies, while meteorological and temporal features display expected periodic or unimodal 
patterns. The dataset was cleaned, normalized using Min–Max scaling, and split into training (80%) and testing 
(20%) sets, providing a solid foundation for accurate PM2.5 prediction.

Scaling and normalization
The dataset was scaled and normalized after removing unnecessary features to prepare it for predictive models. 
Because of different characteristics on various scales (e.g., PM10 and PM2.5), the five stages might range from 
0 to over a hundred, while Wind Speed (WS) might range from 0 to 20. Therefore, scaling was necessary to 
prevent any single feature from dominating the learning process due to its size. Min–max scaling was applied 
to the entire dataset, normalizing each feature to a range between 0 and 1. This normalization ensured that all 
features contributed equally to the model, allowing the predictive algorithm to process them efficiently. After 
scaling, the data was validated to confirm there were no abnormalities, and the scaled dataset was saved for 
further modeling tasks.

Feature selection
A hybrid technique integrating Pearson correlation and XGBoost-based significance was employed to guarantee 
strong and pertinent input characteristics. The Pearson correlation finds variables with robust linear correlations 
to PM2.5, whereas XGBoost captures nonlinear dependencies and the cumulative influence of features. This 
complementary technique guarantees the retention of both directly correlated and significantly important 
nonlinearly contributing characteristics.

Correlation between the features
The Pearson correlation coefficient quantifies the strength and direction of linear associations between variables32. 
This study identifies characteristics that are significantly linked with PM2.5 concentrations for prospective 
model inclusion. The Pearson correlation study indicates that PM25_rolling_mean (0.93) exhibits the most 
robust positive association with PM2.5, highlighting its predictive efficacy. Lagged values PM2.5_lag_1 (0.87), 
lag_2 (0.75), and lag_3 (0.71) demonstrate robust temporal correlations, affirming the significance of historical 
patterns. The month (0.70) and PM10 (0.67) further substantiate seasonal and source-related impacts. Moderate 
to weak associations are noted for NO2 (0.52), PM2.5_rolling_std (0.49), and SO2 (0.48). Meteorological variables 
such as air temperature (0.64) and wind speed (0.54) have a negative correlation, underscoring their influence 
on pollution dispersion. Attributes like FIRECOUNT (0.37), WD_sin (–0.40), and WD_cos (0.27) demonstrate 
restricted linear impact, whereas RH (–0.15), CO (0.11), and day_of_week (0.06) reveal negligible correlation. 

Fig. 6.  Distribution of features.
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Figure 7 depicts the correlation matrix of features with PM2.5; however, some variables may influence outcomes 
through intricate non-linear interactions, necessitating their assessment using tree-based models like XGBoost.

Given a feature set F = {f1,f2,…,fn), the correlation of each feature fi with the target variable y is defined as:

	

Corr(fi, y) =
∑

(fi − fi) ( y − y)√∑ (
fi − fi

)2√∑
( y − y)2 � (1)

XGBoost regressor for feature relevance scoring
Feature selection is essential in air quality prediction as it diminishes the computational cost and improves 
model accuracy. This study employed the XGBoost Regressor to assess and rank feature significance in 
predicting PM2.5 concentrations33. The model was developed on an extensive dataset comprising pollutants, 
meteorological variables, FIRECOUNT, and lagged values. XGBoost assesses feature importance by evaluating 
their contributions to data splits in decision trees through metrics including gain, frequency, and weight. Table 2 
presents the hyperparameter setting of the XGBoost Regressor, and as depicted in Fig. 8, less informative features 
were systematically removed. The PM25_rolling_mean was identified as the most significant feature, possessing 
an essential score of 0.867, followed by PM25_rolling_std, PM25_lag_2, and PM10. Conversely, variables such as 
month, NO2, and CO exhibited minimal scores and were omitted from the final model. This ranking enabled the 
development of a streamlined, efficient predictive model, enhancing both learning efficiency and generalization. 
The results were depicted using xgb.plot_importance(), with features ranked according to their contribution 
scores34.

Sequentially, XGBoost constructs decision trees, each of which improves predictions by reducing residual 
errors. Features fi are chosen at each spill to maximize the loss function and ensure better model performance35,36. 
The gain for a specific split is described as

	

[
Gsplit = 1

2 · (GL+GR )2

HL + HR + λ
− G2L

HL + λ
− G2R

HR + λ

]
− γ� (2)

where: GL,GR are the gradient total for the child nodes on the left and right. HL,HR are the sums of Hessians 
for the left and right child nodes. λ is the phrase for regularization that governs complexity. γ is the pruning 

Hyperparameter Value Description

Objective reg: Squared error Regression loss function

Colsample_bytree 0.3 Proportion of attributes allocated to each decision tree

Learning_rate 0.1 Step size to weight updates

Max_depth 5 Maximum tree depth

alpha 10 L1 regularization (Lasso)

n_estimators 100 Number of rounds of boosting

Table 2.  Hyperparameter setting of the XGBoost regressor.

 

Fig. 7.  Correlation matrix of features with PM2.5.

 

Scientific Reports |        (2025) 15:31787 9| https://doi.org/10.1038/s41598-025-16664-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


parameter that makes more splits less acceptable. The tree structure is optimized utilizing gain-based feature 
significance,

	
I(fi) =

T∑
t=1

G(fi, t)� (3)

where G(fi,t) is the gain rate of feature fi in tree t.

CorrXGBoost-rank: a fusion-based feature selection algorithm integrating correlation analysis and XGBoost 
feature importance
This study proposed CorrXG-Rank, a hybrid feature selection approach that combines Pearson correlation 
analysis with XGBoost-based importance ranking to improve the reliability and efficiency of air quality 
forecasting. The objective is to preserve features that demonstrate either significant linear correlations with 
the target variable or have substantial nonlinear effects on predictive efficacy. Figure 9 and Table 3 show the 
Flowchart and pseudocode for significant feature selection using CorrXGBoost-Rank.

Features were selected based on a correlation threshold of |r|≥ 0.30 or an XGBoost importance score 
of ≥ 0.015. This dual-criteria methodology guarantees the incorporation of variables that are both statistically 
significant and influential within a tree-based learning framework. The thresholds (τ = 0.30 for correlation and 
γ = 0.015 for XGBoost importance) were not chosen arbitrarily. Still, they were empirically optimized via grid 
search across τ ∈ [0.1, 0.5] and γ ∈ [0.005, 0.03], to minimize MAE and RMSE while maximizing R2 on the 
validation set. This hybrid selection strategy guarantees the incorporation of both statistically significant and 
model-influential features. Table 4 displays the chosen features alongside their correlation coefficients, XGBoost 
importance scores, and the criteria they fulfilled.

For example, PM2.5_rolling_mean, PM10, and PM2.5_rolling_std satisfied both criteria, whereas features 
like PM2.5_lag_1 and AT were preserved due to their strong correlation despite inferior XGBoost scores. In 
contrast, certain variables exhibiting modest correlation yet significant relevance in tree-based models (e.g., 
PM2.5_lag_2, WS) were also chosen. Thirteen features were retained from a total of seventeen, resulting in a 
concise yet informative input space. This fusion methodology offers a balanced compromise between statistical 
interpretability and predictive efficacy, enhancing the model’s accuracy and generalization ability.

This study integrates the CorrXGBoost-Rank feature selection method with the TL-LSTM-MHA deep 
learning model. CorrXGBoost-Rank effectively filters and ranks features according to statistical correlation and 
model-driven significance. The chosen features are subsequently utilized by the transfer learning-based LSTM 
with Multi-Head Attention, facilitating superior temporal pattern recognition while minimizing computational 
complexity and enhancing generalization during periods of elevated pollution.

Methods
The fundamental principles serve to construct the theoretical framework for this investigation and guide the 
formulation of the suggested methodology within this segment.

Definition of transfer learning
An approach to machine learning known as transfer learning (TL) uses information from a source domain or 
activity to improve efficiency in an associated target domain or activity. It speeds up model training, lowers 
computing costs, and tackles issues like a lack of labeled data.TL is especially helpful for sequential data, like air 
pollution time series, because patterns from one context may be transferred to another. It entails prior training 
with a large dataset and fine-tuning over a smaller, task-specific dataset. TL is useful for managing intricate 

Fig. 8.  Feature relevance scoring based on XGBoost regressor.
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univariate time series data in air quality prediction, reducing the requirement for large, labeled datasets and 
processing resources. It makes it possible to customize models pre-trained on large datasets to pollutants or 
geographical areas, providing shorter training times, better generalization, efficient management of data scarcity, 
and higher accuracy for prediction in applications such as PM2.5 forecasting9.

In machine learning, along with deep learning, transfer learning is the process of applying information 
from one problem’s solution to another that is similar but distinct37. Because the pre-trained model may use 
characteristics learned in the source domain, this method works especially well when the destination domain 
has less data. Let DS = XS, P (XS) indicate the source domain, where XS represents the feature space and 
P(XS) denotes the marginal probability distribution. Similarly, the source task is defined as TS = {YS, fS (XS)}, 
where YS is the label space and fS is the predictive function. In transfer learning, the objective is to transfer 
knowledge from (DS, TS) to the target domain (DT, TT), where DT = {XT,P(XT)} and TT = {YT, FT(XT)}, under the 
condition that DS ̸= DT or TS = TT

28,38. This work employs transfer learning through the pre-training of a deep 
LSTM-MHA model, thereafter, fine-tuning it on the Delhi-specific PM2.5 dataset, as detailed in Sect. 3.4.

LSTM based architecture
Establishing long-term links between states in deep Recurrent Neural Networks (RNNs) is empirically 
challenging due to the gradient vanishing issue. A set of gates is incorporated into the LSTM network, which is 
a modified RNN design, to control information flow. This method effectively identifies the gradient vanishing 
issue in RNNs39. By replacing traditionally hidden neurons with memory units that can store and retrieve 
information, the LSTM design enables the system to accurately reliance. The input gate, forget gate and output 
gate are the three kinds of gates that make up the memory block. The gates manage the flow of information into 
and out of the cell40,41,42. The following describes the main LSTM calculating equation. The input is denoted 
by Xt. Ct−1 and ht−1 are the parameters that the previous LSTM supplied. The input gate, forget gate and output 
gate are indicated by the parameters it, ft, and ot respectively. The internal construction of the LSTM is shown 
in Fig. 10.

Fig. 9.  Flowchart for significant feature selection using CorrXGBoost-rank.
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In this research, initially, the source domain is used to train a pre-trained LSTM model that incorporates 
Multi-Head Attention (MHA). The LSTM layer processes sequences that identify temporal dependencies, and 
the results are computed as follows,

	 it = σ(W i
xxt + W i

h ht−1 + W i
c o Ct−1 + bi)� (4)

	 ft = σ(W f
x xt + W f

h ht−1 + W f
c o Ct−1 + bf )� (5)

	 Ct = ftoCt−1 + it o tanh W c
xxt + W c

h ht−1 + bc)� (6)

	 Ot = σ(W o
x xt + W o

h ht−1 + W o
c o Ct−1 + bo)� (7)

	 ht = Oto tanh(Ct) or ht = σ(Whht−1 + Wxxt + bh)� (8)

No of feature Selected features Correlation (|r|) XGB importance score Pass corr >  = 0.30 Pass XGB >  = 0.015 Selected

1 PM25_rolling_mean 0.93 0.867 True True True

2 PM25_lag_1 0.87 0.003 True False True

3 PM25_lag_2 0.75 0.024 True True True

4 PM25_lag_3 0.71 0 True False True

5 Month 0.7 0 True False True

6 PM10 0.67 0.02 True True True

7 AT 0.64 0.007 True False True

8 WS 0.54 0.018 True True True

9 NO2 0.52 0 True False True

10 PM25_rolling_std 0.49 0.036 True True True

11 SO2 0.48 0.007 True False True

12 WD_sin 0.4 0.004 True False True

13 FIRECOUNT 0.37 0.004 True False True

Table 4.  Feature selection utilizing Pearson correlation (|r|≥ 0.30) and XGBoost importance (≥ 0.015). Features 
that met either criterion were chosen for model training.
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Table. 3.  Pseudocode for CorrXGBoost-Rank: a hybrid feature selection approach integrating correlation and 
XGBoost importance.
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Multi-head attention mechanism
The multi-head attention mechanism is a sophisticated method for scaling dot-product attention. It allows the 
model to learn numerous connections by using several description subspaces24,43. This is the way it works. Linear 
transformations are performed on the input variables Quary(Q), Key (K), and Value (V) for each model44. The 
modified parts are evaluated in parallel across attention heads, generating outcomes of dimensionality dv. The 
result is generated by concatenating the output from all h heads via the Concat function and applying an extra 
linear modification. This method enables the model to record more varied associations across multiple subspaces, 
boosting its capacity to handle data. Despite the use of several heads, the total computational complexity is 
comparable to a single-head attention layer whilst each head acts on a decreased dimensionality45,46. The 
calculations are outlined below:

Construct the scaled dot product score:

	
Si (Q , Ki) = KT

i Q√
dk

� (9)

Employ the softmax function to normalize the scores:

	
αs

i = exp (Si)∑n

i=1 exp(score (Si,)
� (10)

	
Attention (Q, Ki,Vi) = Softmax( KT

i Q√
dk

) · Vi� (11)

	 Multihead (Q, K, V) = Concat (head1,headn) · Wo� (12)

where headi = Attention (Q Wi
Q, KWi

K,V Wi
V) are trainable parameters.

This work uses 4 simultaneous attention heads (h = 4), each operating on an optimized dimensionality 
(dk = dv = dmodel

h  = 64). This split enhances the model’s capacity to obtain broad and varied information while 
maintaining computational effectiveness, enabling multi-head attention47 that is cost-comparable to single-head 
attention. Figure 11 displays the structural design of the Multi-Head Attention Mechanism.

Integrated TL-LSTM-MHA modelling framework
The preceding sections outline the essential components Transfer Learning (TL), Long Short-Term Memory 
(LSTM), and Multi-Head Attention (MHA)—included in this study to develop a cohesive air quality prediction 
model. The suggested TL-LSTM-MHA structure integrates these components in a progressive manner. An 
initial LSTM-MHA model is trained on historical air quality data augmented with temporal and environmental 
variables. The LSTM layer captures sequential relationships in pollutant levels by processing data in temporal 
order, thereby preserving time-step alignment. As a result, the MHA layer enhances the model’s ability to focus 
on important temporal steps and feature interactions by distributing attention across multiple heads.

The function of LSTM before the MHA is crucial: it encodes the input sequence into a temporally consistent 
representation, enabling MHA to work efficiently without needing explicit positional encoding. This naturally 
preserves the sequence order. While positional encoding is usually used in transformer systems, it was deemed 
unnecessary here because the LSTM already captured the sequential context. The number of attention heads 
in the MHA was set at four, balancing model complexity and performance. The choice of four was based on 
previous studies showing effective results in similar time-series tasks and computational efficiency. However, 

Fig. 10.  Internal Structure of LSTM
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a thorough search for the optimal number of heads was not performed. Future work may include a detailed 
evaluation to further improve this design. Transfer learning uses pre-trained weights from a base model to 
initialize a new model. The early layers are frozen to retain previously learned representations, while the later 
layers are fine-tuned with domain-specific data. This combined approach allows the model to leverage existing 
patterns, adapt to the unique characteristics of Delhi’s air quality, and deliver reliable, generalizable predictions. 
Figure 12 in Section “Model development and evaluation” illustrates the whole pipeline.

Experimental details
The experimental specifics encompass the data splitting methodology, assessment measures, and model-building 
protocols. Performance was evaluated using key measures including MAE, RMSE, and R2. The TL-LSTM-MHA 
model was executed with established training techniques and refined by tenfold cross-validation to guarantee 
robustness and generalizability.

Experimental setting
The research was conducted using a Windows 10 operating system with an Intel i5-8400 processor running 
at 2.80  GHz, along with an NVIDIA GeForce GTX1060 graphics card with 5  GB of memory and 24  GB of 
RAM. Data manipulation, prototype development, and operational setup were carried out using the Python 
3.6 environment, which utilized numerous open-source libraries and frameworks, including Pandas, NumPy, 
and PyTorch25,42. Our study focuses on a large dataset comprising 4270 entries with 25 distinct attributes. The 
training set includes 3416 instances (80%), while the validation set contains 854 instances (20%).

Fig. 12.  Architecture diagram of proposed system.

 

Fig. 11.  The structural design of the Multi-Head Attention Mechanism.
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Performance metric
The efficacy of the optimal designs is evaluated using three different criteria: Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), and the Coefficient of Determination (R2)48.

	
MAE = 1

n

n∑
i=1

(yi−yi′)� (13)

	

RMSE =

√√√√ 1
n

n∑
i=1

(yi−yi′)2� (14)

	
R2 = 1 −

∑n

i=1(yi−yi′)2
∑n

i=1(yi−yi′)2 � (15)

The symbol indicates the estimated rate of the element while showing the actual rate for a specific sample. 
The variable n refers to the total number of elements. Lower MAE, and RMSE values suggest better prediction 
accuracy. Conversely, higher R2 values indicate a better fit of the model. The R2 value ranges from 0 to 1, with 
values closer to 1 indicating more accurate predictions.

Model development and evaluation
Training and evaluation in the field of deep learning are vital steps for developing and refining models that 
perform tasks effectively. The training dataset, which accounts for 80% of the total data, is used to train the 
model, while the remaining 20% is reserved for testing. Key features were identified through domain expertise 
and mutual information scores. After assessing the relevance of each feature, those deemed irrelevant or with 
minimal impact were removed from the dataset.

The model’s evolution begins with establishing the Base Model, which combines Long Short-Term Memory 
(LSTM) with Multi-Head Attention (MHA). Figure 12 shows the architecture diagram of the proposed system. 
The correlation criterion τ = 0.30 and the XGBoost importance threshold γ = 0.015 were experimentally 
determined to eliminate weak and less relevant features. Grid search studies including combinations of (τ, γ) 
(e.g., τ ∈ [0.1, 0.5], γ ∈ [0.005, 0.03]) validated that these thresholds attained near-optimal MAE, RMSE, and 
R2 on the target test set (refer to Fig. 16). A grid search method was used with fivefold cross-validation to find 
the best configuration of the TL-LSTM-MHA model. The hyperparameter search space was based on existing 
research and established techniques in time-series deep learning. The following parameters were tested: LSTM 
units [64, 100, 128], dropout rates [0.3, 0.4, 0.5], attention heads2,4,8, key dimensions for multi-head attention 
[32, 64], learning rates [1e−3, 5e−4, 1e−4], and batch sizes [16, 32, 64]. The input layer was optimally set up to 
receive reshaped data, making it ready for the LSTM layer, which analyzes temporal relationships using 100 
units with ReLU activation. A Dropout layer with a rate of 0.4 is included to reduce overfitting. The MHA 
layer, consisting of 4 heads and a key dimension of 64, extracts essential features by focusing on different 
segments of the input sequence. The outputs from the LSTM and MHA layers are combined and then passed 
through a Dense layer with 64 units that refine the learned features, culminating in a final output layer using 
linear activation for regression. The model uses Mean Squared Error as the loss function; Table 5 delineates 
the conclusive model architecture, compilation parameters, training configuration, and evaluation metrics, all 
chosen according to the optimal hyperparameters determined via grid search, and Fig. 13 shows the comparison 
of training and validation losses over epochs. Figure 14 depicts the training and validation loss curves throughout 
pretraining. The foundational model was trained on the source domain (historical data), reaching convergence 
in approximately 30 to 40 epochs without overfitting. The fine-tuning phase, performed on the target domain 
(post-2021 data), used pretrained weights and achieved convergence in about 10 epochs with consistently low 
training and validation losses (Fig. 14). Early stopping (patience = 10) and learning rate reduction (factor = 0.5, 
patience = 5) were applied to prevent overfitting and speed up convergence.

Figure  15 displays the training vs validation loss with different optimizers. The NADAM optimizer was 
chosen for optimization because of its exceptional performance regarding RMSE and R2 scores. NADAM 
integrates the advantages of ADAM with Nesterov’s momentum, offering superior convergence and stability 
in training relative to other optimizers such as AdamW and RMSprop. This led to a more precise model for 
forecasting PM2.5 concentrations, establishing NADAM as the preferred optimizer.

The suggested transfer learning methodology was pre-trained on the source domain (data before 2021) and 
subsequently fine-tuned and assessed on the target domain (data from 2021 onwards) using the experimental 
framework (source_df =  < 2021, target_df =  >  = 2021). A model with the same architecture was created and 
initialized using weights acquired from the source domain.

The initial three layers were frozen during fine-tuning to maintain the overarching temporal patterns 
acquired from the source. The residual layers were trained on the target data to acclimatize to its seasonal 
and contemporary attributes. This method, employing the same loss function (MSE) and optimizer (Nadam), 
expedited convergence, reduced the required target domain data, and enhanced generalization by utilizing past 
information for resilient PM2.5 prediction during the target time.

The combination of LSTM with Multi-Head Attention enables the model to understand both temporal 
dependencies and complex long-range connections, thereby improving its accuracy in PM2.5 forecasting.

This work incorporates Multi-Head Attention (MHA) in parallel with LSTM to maintain temporal alignment 
while preserving the sequential structure of the input data. The outputs of both layers are concatenated, allowing 
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the model to capture long-range contextual relationships while preserving precise time-step accuracy. In contrast 
to conventional transformers that depend on explicit positional encoding, the LSTM layer inherently preserves 
temporal order, enabling attention to improve interpretability without compromising sequence alignment.

The model’s performance was evaluated using MAE, RMSE, and R2. Lower MAE and RMSE indicate better 
accuracy, while an R2 close to 1 indicates strong agreement between predictions and actual data. These metrics 
together assess the model’s effectiveness in predicting PM2.5 levels. To ensure thorough assessment and prevent 
overfitting to specific temporal intervals, tenfold cross-validation was employed. This method partitions the 
dataset into 10 equal segments, enabling the model to be sequentially trained on nine subsets while validating 
on the one remaining subset. By traversing all partitions, the model encounters varied temporal patterns, hence 
mitigating the likelihood of bias towards any specific time segment. This method enhances the generalizability 
of the results and ensures that the model’s performance accurately reflects its genuine predictive ability across 
different time intervals. Table 5 outlines the model architecture, training, and evaluation results, while Fig. 16 
shows the actual versus predicted PM2.5 time series on the test set, highlighting the model’s ability to capture 
temporal patterns.

Fig. 13.  Comparison of training and validation losses over epochs.

 

Hyperparameter Setting

Model type LSTM + Multi-head attention

LSTM units 100

LSTM activation function ReLU

Dropout rate 0.4

Input shape (1, num_features)

Multi-head attention 4 heads, key dimension = 64

Concatenation [LSTM_output, MHA_output]

Dense layer units 64

Optimizer Nadam

Learning rate 0.0005

Loss function MSE

Early stopping patience 10 epochs

Learning rate reduction patience 5 epochs

Learning rate reduction factor 0.5

Minimum learning rate 1e-6

Batch size 32

Epochs 100

Validation split 0.2

Pretraining domain Source (data before 2021)

Fine-tuning domain Target (data from 2021 onward)

Transfer learning layer freezing First 3 layers

Transfer learning optimizer Nadam

Table 5.  Model’s architecture, compilation, training, and evaluation metrics.
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Results
This section offers a comprehensive evaluation of the proposed TL-LSTM-MHA framework, highlighting its 
predictive accuracy, interpretability, and comparative performance against both transfer learning-based and 
traditional models for PM2.5 forecasting. The model’s interpretability is demonstrated through the visualization 
of the multi-head attention mechanism, which highlights the importance of different input components by 
consolidating attention weights. Additionally, an analysis of the error distribution confirms that the TL-LSTM-
MHA outperforms baseline models, achieving higher accuracy and more reliable predictions across various 
scenarios.

Performance of the proposed TL-LSTM-MHA model
The efficacy of the suggested TL-LSTM-MHA model was thoroughly assessed on the designated test set, utilizing 
several evaluation metrics and diagnostic visualizations. The model achieved MAE of 4.38, RMSE of 5.80, and 
a high R2 of 0.9974, indicating exceptional predictive accuracy and robust concordance between observed and 
predicted PM2.5 concentrations. The entire framework for implementation, encompassing architecture, training, 
and assessment methodologies, is included in Supplementary File S2 (S2_Air_quality_prediction1.ipynb).

Figure  16(a) illustrates the temporal comparison of real and anticipated PM2.5 concentrations, indicating 
that the model accurately aligns with the observed values, even amidst significant fluctuation. Figure  16(c) 
illustrates a scatter plot that corroborates this agreement, with predictions closely aligned along the optimal 1:1 
line, indicating slight bias. The residuals displayed over time (Fig. 16(b)) and their distribution (Fig. 16(d)) show 
no identifiable temporal trends and resemble a normal distribution centered at zero, signifying homoscedasticity 
and unbiased errors.

These results underscore the model’s durability and its capacity to adeptly acquire temporal and meteorological 
trends in air pollution dynamics, while ensuring trustworthy generalization to novel data. The integration of 
transfer learning and attention processes certainly enhanced its capacity to identify intricate relationships, 
surpassing conventional baselines and preserving forecast accuracy even under pollution surges.

Fig. 15.  Training vs validation loss with different optimizers.

 

Fig. 14.  Depicts the training and validation loss curves throughout pretraining.
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Robustness via ten-fold cross-validation
Due to the intrinsically non-stationary characteristics of air pollution data, especially during the stubble 
burning season shown in Fig. 3, the model’s prediction accuracy was additionally confirmed using tenfold cross-
validation. This method guarantees that the model did not overfit to a particular temporal slice or succumb to 
potential data leaks. The TL-LSTM-MHA model, as detailed in Fig. 17, attained an average R2 of 0.9932, MAE 

Fig. 16.  (a) Depicts the temporal comparison of actual and predicted PM2.5 concentrations.  (b) Scatter plot 
of predicted versus actual PM2.5 values for the target test set, demonstrating a robust linear correlation that 
signifies high model accuracy. (c) Residuals of predicted PM2.5 values for the target test set, demonstrating 
temporal prediction errors from September to December 2021. (d) The histogram of PM2.5 residuals exhibits a 
nearly normal distribution centered at zero.

 

Scientific Reports |        (2025) 15:31787 18| https://doi.org/10.1038/s41598-025-16664-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of 6.29, and RMSE of 8.31 across folds. Despite the model’s strong R2, it indicates that the model generalizes 
effectively across periods and maintains robustness during seasonal fluctuations and sporadic pollution 
occurrences. These data confirm that the observed performance is not exceptionally flawless, but rather the 
outcome of stringent validation and meticulously designed temporal characteristics (e.g., delayed PM2.5, rolling 
means, and FIRECOUNT integration).

Attention weights distribution: aggregated and head-wise analysis
To comprehend how the TL-LSTM-MHA model delineates feature dependencies in PM2.5 prediction, in this study 
initially examined the consolidated attention weights across all heads inside the Multi-Head Attention (MHA) 
mechanism. Figure  18a illustrates a heatmap that depicts the cumulative attention allocated to each feature, 
with temporal variables such as PM2.5_lag_1, PM2.5_rolling_mean, and PM10 receiving predominant focus. 
Figure 18b displays a bar chart that ranks the characteristics according to their overall attention contribution, 
underscoring the significance of historical emissions and rolling statistical indicators. This validates the model’s 
inclination to emphasize temporally and chemically pertinent factors in air quality forecasting. This aggregated 
perspective is informative, although it conceals the internal variability among individual attention heads. To 
deal with this, researchers performed a head-wise study to examine the distribution of attention across the input 
characteristics by each head. The findings, depicted in Fig. 21, demonstrate that various attention heads develop 
specialization in certain feature groups.

For example, Head 1 assigns most of its weight to PM2.5_lag_1 and PM2.5_lag_2, signifying an emphasis on 
recent temporal correlations. Conversely, Head 2 prioritizes PM10 and SO2, focusing on pollutant dynamics, 
and Head 3 emphasizes NO2 and WS, demonstrating responsiveness to climatic factors. Head 4 shows a more 
even distribution, engaging somewhat with all principal aspects. Figure 19 depicts the attention distribution per 
head across input characteristics, emphasizing unique concentration patterns among the attention heads.

Global feature ranking based on aggregated attention
To enhance the head-wise attention interpretation, we provide a comprehensive ranking of features derived from 
their cumulative attention ratings across all heads and timesteps. This research identifies the most significant 
characteristics leading to PM2.5 predictions. The chart with bars depicts the aggregated attention weights 
obtained from the proposed model, which combines LSTM with multi-head attention and employs transfer 
learning approaches. This visualization highlights the importance of several key inputs in forecasting PM2.5 
concentrations. Figure 20 demonstrates the feature-wise aggregated attention weights. PM10 and PM2.5 rolling 
means are identified as the most significant characteristics owing to their elevated positive attention weights, 
indicating a robust association with PM2.5 as a particle pollutant. FIRECOUNT has a modest positive influence, 
underscoring its significance in air quality fluctuations, especially during episodes of heightened fire activity.

Transfer learning enhances the model’s ability to recognize essential traits across domains by leveraging 
the significance of historical and temporal data. Attributes such as PM2.5_lag_3 and PM2.5_rolling_std _std 
demonstrate the model’s proficiency in leveraging temporal dependencies. Meteorological variables, including 
wind speed WS and AT, have negative weights, signifying a diminished or inverse effect. The research highlights 
the need to include fire activity, climatic variables, and temporal dependencies to enhance prediction precision 
and resilience. This visualization was used to identify the significant contributors to PM2.5 concentration levels 
and was utilized for air quality modeling and forecasting.

Comparative analysis of transfer learning with multi-head attention for PM2.5 prediction
Models MHA—such as TL-LSTM-MHA, TL-BILSTM-MHA, TL-GRU-MHA, and TL-LSTM-CNN-MHA—
exhibit robust performance, underscoring the efficacy of attention mechanisms in capturing long-range 
dependencies in PM2.5 forecasting. Among these, TL-LSTM-MHA attains the most favorable outcomes (MAE: 
4.80, RMSE: 5.38, R2: 0.9974), substantiating its efficacy in integrating LSTM and MHA within a transfer learning 
paradigm. In contrast, TL-BILSTM-MHA and TL-GRU-MHA exhibit somewhat diminished performance, 
presumably due to overfitting or their limited capacity to represent complex patterns. TL-LSTM-CNN-MHA 

Fig. 17.  Performance of the fold-wise TL-LSTM-MHA model during tenfold cross-validation. The findings 
demonstrate reliable accuracy and robust generalization, even in non-stationary environments.
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exhibits the worst performance, suggesting that convolutional layers offer diminished advantages compared 
to attention mechanisms for this task. The comparison of predictions displayed in Table 9 corroborates these 
findings, indicating that TL-LSTM-MHA forecasts are most closely aligned with real PM2.5 levels. The findings 
underscore the benefits of including attention processes and transfer learning, positioning Table 6 TL-LSTM-
MHA as the most precise and resilient model for PM2.5 forecasting.

Comparison of proposed model efficiency versus conventional models
To thoroughly assess the efficacy of the proposed TL-LSTM-MHA model, we performed a comparison analysis 
against conventional statistical and machine learning models, including ARIMA, Support Vector Regression 
(SVR), Random Forest (RF), and Multi-Layer Perceptron (MLP). All models were trained and evaluated on the 
identical target dataset and partition, guaranteeing an equitable and consistent comparison. Figure 21 and Table 7 
delineates the predictive efficacy of all models, quantified by MAE, RMSE, and R2 on the test set. The findings 
unequivocally indicate that the proposed TL-LSTM-MHA model significantly outperforms all baseline models. 
The proposed TL-LSTM-MHA achieved the minimal MAE (4.25) and RMSE (5.60), with the maximum R2 
(0.998), indicating outstanding prediction precision and generalization proficiency. Conversely, the traditional 
machine learning models (RF, SVR, MLP) produced many more errors and even negative R2 values, indicating 
inadequate fit and even overfitting. While ARIMA outperformed the machine learning models, it significantly 
lagged the suggested deep learning architecture..

The results underscore the efficacy of combining transfer learning, LSTM-based temporal modelling, and 
multi-head attention processes in accurately capturing the intricate temporal dynamics of PM2.5 concentrations. 
The exceptional efficacy of the TL-LSTM-MHA highlights its promise as a dependable and resilient forecasting 
instrument for air quality control.

Ablation study: contribution of architectural components
An ablation study was conducted to assess the contribution of each architectural component of the proposed 
TL-LSTM-MHA model by methodically eliminating critical modules and analysing their effect on prediction 
performance. This study assessed four model variants: (i) LSTM alone, (ii) LSTM-MHA, (iii) TL-LSTM (without 

Fig. 18.  (a) Attention weight distribution from a singular test instance. Color intensity denotes the strength 
of attention across temporal steps and features. (b) Interpreting aggregated attention weights from all heads, 
reflecting the cumulative feature impact on PM2.5 prediction.
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Models

Prediction of PM2.5

MAE RMSE R2

TL-LSTM-MHA 4.38 5.80 0.9972

TL-BILSTM-MHA 6.53 7.15 0.9963

TL-GRU-MHA 5.76 6.93 0.9903

TL-LSTM-CNN-MHA 9.43 11.23 0.9802

Table 6.  Performance evaluation of transfer learning-driven models for PM2.5 forecasting.

 

Fig. 20.  Aggregate attention weights indicate the relative significance of each input information across all 
attention heads.

 

Fig. 19.  Attention distribution per head across input characteristics, emphasizing unique concentration 
patterns among the attention heads.
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MHA), and (iv) TL-LSTM-MHA (the suggested comprehensive model). This ablation research was conducted 
without feature selection, utilizing the entire set of input characteristics to isolate and measure the impact of 
each architectural component individually. The figure illustrates the comparison of these variations for MAE, 
RMSE, and R2on the target test set. The results unequivocally indicate that each element, encompassing transfer 
learning, LSTM-based temporal modelling, and multihead attention, substantially enhances model performance. 
The suggested comprehensive model incorporating Transfer Learning, LSTM, and MHA (TL-LSTM-MHA) 
achieved optimal results, as evidenced by a markedly decreased MAE of 4.1, RMSE of 5.2, and an R2 of 0.997, as 
shown in Table 8 and Fig. 22, illustrating its enhanced predictive efficacy. These findings highlight the combined 
advantages of incorporating transfer learning, LSTM-based temporal modelling, and multi-head attention. The 
suggested model exhibited enhanced prediction accuracy without feature selection, demonstrating its resilience 
and capacity to identify pertinent patterns from all accessible input characteristics.

Statistical evaluation of TL-LSTM-MHA component-wise performance using the Wilcoxon 
Signed-Rank test
To analyse the contributions of different components, this research performed an ablation study on the TL-LSTM 
architecture, as presented in Table 9. Model A embodies the comprehensive suggested framework incorporating 
both MHA and CorrXGBoost-based feature selection. Model B eliminates the attention mechanism but 
preserves feature selection, whereas Model C discards feature selection while maintaining multi-head attention.

The findings unequivocally indicate that the omission of MHA (Model B) leads to a significant decline in 
performance, as seen by an increase in MAE to 12.77 and RMSE to 18.23. This underscores the essential function 
of the attention system in modelling temporal relationships in the input sequence. Conversely, the elimination 
of feature selection (Model C) results in a decline in performance, albeit less pronounced, suggesting that feature 

Model Variant MAE RMSE R2

LSTM 20.1 30.9 0.926

LSTM + MHA 16.4 25.3 0.950

TL-LSTM 24.2 37.0 0.894

Proposed(TL-LSTM- MHA) 4.38 5.80 0.9974

Table 8.  Comparison of model variants based on MAE, RMSE, and R2. The proposed TL-LSTM-MHA 
performs best.

 

Models

Prediction of PM2.5

MAE RMSE R2

Random forest 119.11 151.44 − 0.78

SVR 116.02 146.52 − 0.67

MLP 116.27 145.97 − 0.65

ARIMA 70.83 90.56 0.36

TL-LSTM-MHA (proposed model) 4.38 5.80 0.9972

Table 7.  Comparison of proposed model efficiency Vs conventional models.

 

Fig. 21.  Comparison of predictive performance of different models on the target test set. MAE and RMSE are 
shown as bars. R2 values for each model are reported in Table  8.

 

Scientific Reports |        (2025) 15:31787 22| https://doi.org/10.1038/s41598-025-16664-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


selection mitigates noise and enhances learning efficiency. Model A consistently produces the optimal results, 
confirming that both MHA and feature selection are synergistic elements that improve the model’s efficacy.

To verify the significance of the noticed performance differences49 A Wilcoxon signed-rank test was 
performed on the tenfold MAE results for the TL-LSTM variants, as shown in Fig. 23. Model A, which integrates 
both MHA and feature selection, was evaluated against Model B (lacking MHA) and Model C (devoid of feature 
selection). The test produced W = 0.0 W = 0.0 and p = 0.0625 p = 0.0625 for each comparison. Although these 
results may not satisfy the traditional 0.05 criterion for statistical significance, they demonstrate a persistent 
trend favouring Model A, underscoring the synergistic advantages of incorporating Multi-Head Attention with 
CorrXGBoost-based feature selection. The test findings validate the architectural decisions in the suggested 
model.

Comparative performance evaluation of models trained on similar datasets
The following table displays station-specific R2 values between 0.882 and 0.97 for the Ordinary Least Squares 
(OLS) regression model, which predicts a dependent variable, such as PM2.5 levels, according to independent 
variables. In contrast, our TL-LSTM-MHA model attains a markedly superior combined R2 of 0.9972. This 
underscores the model’s remarkable capacity to minimize errors and effectively forecast PM2.5 levels at all stations. 

Fig. 23.  Box plot showing MAE derived from tenfold cross-validation for three variations of TL-LSTM. Model 
A incorporates both MHA and feature selection, Model B omits MHA, and Model C omits feature selection. 
Each dot represents MAE for an individual fold. Results illustrate that Model A achieves the lowest error 
variability and mean.

 

Model Architecture Feature selection MAE RMSE R2 Purpose

A TL-LSTM-MHA Yes 4.38 5.80 0.9974 Full proposed model

B TL-LSTM (No-MHA) Yes 12.77 18.23 0.9742 Ablation: no attention

C TL-LSTM—MHA No 5.16 6.94 0.9963 Ablation: no FS

Table 9.  Performance comparison of TL-LSTM variants to evaluate the effects of Multi-Head Attention 
(MHA) and feature selection.

 

Fig. 22.  The comparison using MAE, RMSE, and R2 shows that the proposed TL-LSTM-MHA model 
consistently outperforms other versions, demonstrating the best overall performance.

 

Scientific Reports |        (2025) 15:31787 23| https://doi.org/10.1038/s41598-025-16664-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Moreover, both models were trained and assessed utilizing an identical dataset, guaranteeing an equitable 
and direct comparison50. Table  10 presents the contrastive efficiency analysis of models on similar datasets. 
Furthermore, the low MAE (4.38) and RMSE (5.80) values further illustrate the robustness and exceptional 
predicted accuracy of our TL-LSTM-MHA model, highlighting its capacity to minimize errors effectively.

Contextual benchmarking against state-of-the-art models
To contextualize the efficacy of the proposed TL-LSTM-MHA model, an evaluation of benchmarks at the 
literature level is provided in Table 11. The cited state-of-the-art models, CNN-, GRU-, LSTM, HISTCP, and 
EEMD-LSTM, were assessed on various datasets from locations including China and Malaysia, providing 
essential baselines for comparison. This study developed and evaluated using a decade of winter-season PM2.5 
data from Delhi (2012–2022), attained an MAE of 4.38, an RMSE of 5.80, and a remarkably high R2 of 0.9974. 
In comparison to HISTCP (mean R2 = 0.9605 among five Chinese cities) and CNN-GRU-LSTM (R ≈ 0.9686 
in Dezhou), the suggested model exhibits remarkable accuracy in one of the most extreme pollution scenarios. 
Despite variations in datasets and regional conditions, all cited models focus on the same objective of predicting 
PM2.5 using machine learning and hybrid methodologies. Consequently, these studies provide pertinent 
methodological and performance standards that assist in contextualizing the outcomes of the proposed TL-
LSTM-MHA model.

Discussion and future work
The suggested model trained and evaluated using a decade of winter-season PM2.5 data from Delhi (2012–2022), 
the TL-LSTM-MHA model demonstrated exceptional performance in predicting PM2.5 concentrations during 
Delhi’s winter season, achieving MAE of 4.38, an RMSE of 5.80, and R2 of 0.9972. Ten-fold cross-validation 
validated the model’s resilience and applicability despite seasonal fluctuations. The use of Multi-Head Attention 
(MHA) allowed the model to concentrate on temporally meaningful patterns. At the same time, CorrXGBoost-
based feature selection guaranteed the utilization of just the most pertinent predictors, therefore minimizing 
noise and enhancing learning efficiency. The weight analysis confirmed the model’s capacity to prioritize 
significant historical and event-driven signals, including those associated with stubble-burning times. Ablation 
research has shown that the elimination of either MHA or feature selection markedly impaired performance. The 
Wilcoxon signed-rank test statistically supported these findings, affirming the significance of both components 
in the model design. The suggested model demonstrated superior accuracy when compared to benchmarked 
model HISTCP (R2 = 0.9605), CNN-GRU-LSTM (R ≈ 0.9686), and EEMD-LSTM (R2 ≈ 0.965), even in the 
presence of more severe pollution circumstances. Future endeavors will concentrate on enhancing the model 
for multi-step forecasting, facilitating early warning systems for extended pollution occurrences. Furthermore, 
automated hyperparameter optimization will be investigated to minimize manual tuning efforts. Cross-regional 
evaluation in other Indian cities and the use of model-agnostic interpretability strategies like SHAP and LIME 
would further augment the model’s scalability and transparency.53

Conclusion
In summary, this study clarifies the effectiveness of a Long Short-Term Memory (LSTM) based deep learning 
framework enhanced by Multi-Head Attention (MHA) and transfer learning techniques for forecasting PM2.5 
concentrations. The synthesized attention weights yielded significant insights into the influence of both 
environmental and meteorological factors. Furthermore, in this study adeptly integrated fire count data, which 
markedly improved the accuracy of PM2.5 pollution level forecasts, as thoroughly analyzed and corroborated in 
our investigation. In this study, the transfer learning strategy further refined predictive capabilities, attaining 
superior outcomes compared to conventional modeling approaches. The TL-LSTM-MHA model has excellent 
accuracy, achieved by cross-validated, lag-aware modelling of seasonal data with a repetitive structure. Ten-fold 
validation affirmed the model’s generalizability and mitigated overfitting, guaranteeing that the results are robust 
and reproducible. The findings underscore the model’s proficiency in capturing intricate temporal dependencies 

Model Region Period Performance Highlights

TL-LSTM-MH (proposed) Delhi 2012–2022 MAE = 4.38, RMSE = 5.80, R2 = 0.9974 TL-MHA-CorrXGBoost feature selection

CNN-GRU-LSTM (2024)13 Dezhou, China 2014–2023 R2 = 0.9686 Multi-model ensemble for monthly forecasts

HISTCP (Hybrid STL tailored models)51 China 2018–2021 R2 ≈ 0.987 STL decomposition + model per component

EEMD-LSTM-Malaysia study52 Malaysia 2019–2022 R2 ≈ 0.965 Empirical mode decomposition + LSTM

Table 11.  Literature-level benchmarking of State-of-the-Art PM2.5 prediction models.

 

Metric OLS (average/range)50 TL-LSTM-MHA

R2 (station-wise) 0.8994 (0.865–0.972) 0.9972

MAE – 4.38

RMSE – 5.80

Table 10.  Contrastive efficiency analysis of models on a similar dataset.

 

Scientific Reports |        (2025) 15:31787 24| https://doi.org/10.1038/s41598-025-16664-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


inherent in PM2.5 concentration fluctuations. The successful mitigation of air pollution necessitates the 
implementation of clean energy solutions and the enhancement of public transportation systems. Sophisticated 
predictive models are instrumental in examining pollution trends, informing policymaking, and facilitating 
safer travel decisions. While this study demonstrates excellent performance in forecasting PM2.5 concentration 
in Delhi, this study exhibits superior predictive performance for Delhi; nevertheless, future endeavors should 
aim to expand this research across various geographies and timelines to assess the model’s applicability in 
different pollution contexts.289

Data availability
The data was obtained from Agarwal, Arti (2022). Data for: The Economic Cost of Air Pollution Due to Stubble 
Burning: Evidence from Delhi. Version 1. Mendeley Data, October 3, 2022. Available at: ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​7​6​
3​2​/​y​x​z​x​v​x​t​v​p​r​.​1​​​​​.​​
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