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The present work aims to optimize the process parameters of friction stir welding (FSW) to improve 
the mechanical behavior of AISI 1018 carbon steel joints. The study explores the influence of welding 
speed, tool rotational speed, and shoulder diameter on ultimate tensile strength (UTS), percentage 
elongation (PE), percentage reduction in area (RA), and impact energy (IE). To achieve this, both single-
response and multi-response optimization methods were applied. For multi-response optimization, 
an integrated approach combining Grey Relational Analysis (GRA) and Principal Component Analysis 
(PCA) was used to objectively determine response weights and identify the optimal parameter 
settings. The optimized settings led to enhancements in mechanical performance: 3.73% in UTS, 
7.30% in PE, 23.13% in RA, and 2.35% in IE for multi response optimization. Single-response 
optimization showed 3.73%, 1.95%, 36.46%, and 2.35% improvements, respectively. Microstructural 
analysis revealed finer grain structures that contributed directly to these improvements. Confirmation 
tests aligned with the predicted outcomes, which demonstrates the effectiveness of the optimized 
parameters. The findings provide a structured framework to optimize FSW parameters and offer 
valuable insights for industrial applications in the automotive and structural manufacturing sectors.
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Greek symbols
σ	� Standard deviation
γi	� Grey relational grade of all responses at the ith experiment
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ω(k)	� Weighting factor of the kth response
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i	� Experiment number
u	� Order of trials

 Steels and their alloys are the primary materials that are extensively used in infrastructure development, 
fabrication of machine components, building of commercial vehicles, and the production of countless consumer 
goods1. The role of steel and its alloys is significant in these sectors and necessitates the continuous exploration 
of innovative welding technologies to enhance the correlation between structure and properties. In this 
context, FSW has emerged as a transformative technique, offering distinct advantages that address some of the 
longstanding challenges associated with traditional fusion welding processes.

Steel’s strength, machinability, and versatility make it ideal for industrial applications. However, traditional 
welding approaches that utilize material fusion through extreme temperatures tend to have a multitude of 
problems, particularly when working with thick regions of steel. The collection of problems, such as heat-affected 
zone, residual stresses, and the potential to have defects within the welded joints, has driven the exploration of 
alternative approaches to welding2.

FSW has advanced infrastructure development by offering improved mechanical performance, environmental 
safety, and operational reliability over conventional welding3. FSW is a solid-state process that uses a rotating 
tool to generate heat and join materials without melting. This different approach leads to welds with finer 
microstructures, improved mechanical attributes, minimal distortion, and reduced alterations in shape compared 
to traditional methods, addressing some of the key limitations of older processes. Input parameter optimization 
of FSW is the driving force toward achieving the best structure-property correlations and mechanical strength. 
It must be optimized for welding AISI 1018 steel since these parameters sensitize very strongly to heat generation 
and distribution. This steel grade offers a good equilibrium between strength and machinability, thus making it a 
suitable choice for investigating FSW parameter optimization intricacies. Key parameters include welding speed, 
tool rotational speed, and shoulder diameter. The output responses, such as microstructures and mechanical 
properties, are greatly influenced by their interconnected dynamics.

Extensive research has been conducted on FSW of aluminum alloys, particularly AA6xxx and AA2xxx series 
alloys and lightweight materials4–7. In contrast to aluminum, which achieves UTS in the range of 250–320 MPa 
post-FSW, carbon steels like AISI 1018 demand optimized thermal and mechanical conditions to preserve higher 
UTS levels (435 MPa) and achieve improved ductility. Recent studies indicate the investigation of the effect of 
process parameters on microstructure and mechanical properties, but the effect of welding speed, tool rotational 
speed, and shoulder diameter on weld integrity is not fully explored8–10. Moreover, while multi-response 
optimization techniques like GRA and PCA have been used in other materials11–13, their use in optimizing the 
FSW process for carbon steel is still underdeveloped.

Recent studies have demonstrated the influence of reinforcement and parameter optimization in FSW of 
aluminum alloys. Sabry14 incorporated Al-SiC matrix reinforcement in dissimilar FSW of AA6061 and AA6082 
and reported a significant increment in strength, ductility, and corrosion resistance. Extensive studies by the 
same author demonstrated that TiB₂ and Al₂O₃ reinforcements in Al6061–Al6082 alloy joints led to superior 
structural integrity and improved tribological performance15. The effect of tool parameters on the strength of 
AA2024 and A356-T6 was also studied extensively, showing notable sensitivity of tensile and impact strengths 
to tool rotation and traverse speed16. Additionally, GRA-based Taguchi methods have been used for multi-
weld quality optimization in aluminum flange joints17,18 and for evaluating friction stir welded 6061-T6 
flanges19. Comparative analysis of FSW and TIG welding techniques in AA6082 also indicated differences in 
joint performance and microhardness profiles20. Other statistical studies have examined how clamping torque, 
pitch, and rotation speed influence weld quality and defect minimization21. These studies provide important 
benchmarks for mechanical properties in aluminum FSW, where UTS values typically range between 250 and 
320 MPa and elongation from 10 to 18%, depending on alloy and processing conditions.

While several studies have reported microstructural evolution in different FSW zones, limited work has 
focused on correlating these structural changes with optimized mechanical performance in AISI 1018 carbon 
steel using integrated multi-response decision-making techniques. In addition, tensile strength, ductility, and 
impact resistance trade-offs have not been addressed systematically, which complicates finding universally ideal 
welding conditions.

This research addresses these gaps by systematically investigating the effects of key FSW parameters through 
an orthogonal array design, experimental evaluation, and both single and multi-response optimization. The 
novelty of this study lies in the integrated use of GRA and PCA for multi-objective optimization, enabling a 
comprehensive correlation between mechanical properties and microstructural evolution. This approach is 
largely unexplored in the context of AISI 1018 carbon steel, where most previous studies focus on aluminum 
alloys or single-response methods.
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Experimentation
Selection of machine tool for experimentation
A custom-built Friction Stir Welding (FSW) machine was employed for the present study. The machine (Model: 
FSW-4T-HYD) has been developed using modular industrial components such as a high-torque STARK spindle 
system, hydraulic actuators, and programmable control for feed and thrust. The machine tool setup used in the 
present study is shown in Fig. 1, and its technical specifications are presented in Table 1.

Workpiece material
A 3 mm-thick carbon steel plate was used in the study. Table 2 shows the chemical composition and mechanical 
properties of the AISI 1018 steel grade obtained through Optical Emission Spectroscopy (OES) analysis.

Rectangular plates of 200 × 40 × 3 mm were cut from a standard 6′ × 4′ AISI 1018 carbon steel plate supplied 
by SAIL. A butt joint was prepared by keeping the two plates of the same dimensions together using a fixture.

Machine Component Specifications

Spindle motor

Rated Power: 11 kW
Maximum Speed: 1440 rpm
Voltage: 440 V
Phase: 3-phase
Drive Type: AC Drive
Mounting: Flange mount (STARK).

Spindle housing tilting Range of adjustable angles: −5° to 5°

Spindle pulley type Timing Pulley

Z-axis
Stroke Length: 300 mm
Feed Rate: 0–2000 mm/min
Range of thrust capacity: Adjustable from a minimum of 400 Kgf to a maximum of 4000 Kgf, with customizable increments.
Feedback: Load cells with a capacity of 5000 Kg and a resolution of 1 kg are used to measure feed force.

X-axis
Stroke Length: 600 mm
Feed Rate: 0–5000 mm/min
Thrust capacity range: Adjustable from a minimum of 250 Kgf to a maximum of 2500 Kgf, with 50 Kgf increments.

Y-axis Stroke Length: 200 mm

Table Size: 600 mm x 400 mm
T-Slot Dimensions: 18 × 3 mm

Table 1.  Specification of the FSW machine employed in the present study.

 

Fig. 1.  The FSW setup used in the current investigation.
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Tool selected for experimentation
Figure 2 represents the profile for the tungsten carbide tool used in the current investigation. The tool used in 
the present study was made of tungsten carbide (WC) with 7% cobalt (Co) binder, a composition selected for 
its excellent wear resistance, high hardness, and thermal stability. These properties make it ideal for friction stir 
welding of carbon steels, as the tool maintains structural integrity under high loads and temperatures, enabling 
consistent heat generation and long tool life without premature wear. The tool pin is designed as a truncated 
cone, with a pin length of 2.8 mm and a pin diameter of 6 mm. A 3° tool tilt (θ) was applied to enhance material 
flow and weld quality. A truncated cone pin profile was selected because it can yield effective material flow, 
consistent heat distribution, and enhanced mechanical properties in FSW of carbon steel. In comparison with 
other pin profiles, the truncated cone profile maximizes stirring action and minimizes defects like voids and 
tunnelling. It also promotes grain refinement through effective heat generation and plastic deformation22.

Implementation of optimization techniques for FSW parameters
The optimization of FSW parameters is implemented in this study to enhance the mechanical properties of 
AISI 1018 steel joints by systematically determining the most effective welding conditions. Traditional welding 
processes often result in inconsistent mechanical performance due to uncontrolled heat input and material flow.

The use of GRA is particularly beneficial in this case as it converts multiple performance metrics into a 
single relational grade, facilitating an efficient decision-making process. PCA further refines the analysis by 
identifying the most influential parameters, reducing dimensionality, and improving the reliability of the results. 
This optimization approach minimizes experimental iterations while maximizing weld quality, ensuring that 
the selected process parameters lead to structurally sound and high-performance welded joints. The process of 
optimization is further illustrated in detail by the following sequential steps. This methodology is illustrated in 
Fig. 3.

Step 1: Defining the output responses. The optimization procedure was initiated by establishing the desired 
performance goals for a given process. The output responses examined in this study are UTS, PE, RA, and IE. 
UTS and IE were prioritized for their relevance to strength and toughness, while PE and RA provided insights 
into ductility and plastic deformation, enabling a comprehensive mechanical assessment. This initially involves 
optimizing each of the four individual responses as mentioned above using a single-response optimization 
approach, followed by multi-response optimization of the combined output responses.

Step 2: Selecting the input parameters along with their levels: Three parameters, namely welding speed (N), 
tool rotational speed (N), and shoulder diameter (D), are considered in the study. The values of V, N, and D can 
be varied within a range, where V ranges between 60 and 210 mm/min, N ranges between 430 and 750 rpm, and 
D ranges between 15 and 20 mm. The selection of these parameter ranges was based on the authors’ previously 
published study23, 26,  32 and practical feasibility in FSW of carbon steel. The selected levels are intentionally 
non-uniform to reflect real-world process limitations and allow finer optimization around expected critical 
points. The ranges are validated based on earlier trials and industrial feasibility. Lower welding speeds ensure 
sufficient material mixing, and the low rotational speed prevents excessive heat generation, which can cause 
grain coarsening, material softening, and defects like voids. The chosen tool rotational speed range balances 
heat input to prevent excessive softening, grain coarsening, and defects such as voids or tunnel formation. The 
shoulder diameter was selected to optimize heat distribution and material flow, ensuring adequate stirring 

Fig. 2.  Tool profile used for FSW of steel.

 

C S Mn P Fe UTS (MPa) Yield Strength (MPa) PE IE (J)

0.16–0.18 0.03 0.65 0.04 Bal 435 280 18 30

Table 2.  Chemical composition (wt%) and mechanical properties of the base metal.
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action for defect-free welds. Each of these factors is categorized into three levels as indicated in Table 3. After 
conducting optimization, the output responses were obtained using the optimized set of factors, which were 
compared to those obtained using the initial set of factors.

Step 3: Finalising the orthogonal array (OA): In this study, three parameters, each having three levels, are 
examined. Therefore, L9 OA is utilized, as illustrated in Table 4. L9 OA is preferred over L27 because it effectively 
captures the main effects with minimal experimental runs. L27 would have 27 trials, adding workload without 
much added understanding. L9 accomplishes statistical efficiency with fewer trials while still ensuring data 
dependability through three replications per experiment.

Step 4: Conducting the experiments: The assessment of the UTS, PE, RA, and IE is conducted by performing 
a total of nine experiments, with three trials each. The data is displayed in Table 5.

Parameter Units

Levels

1 2 3

V mm/min 60 110 210

N rpm 430 550 750

D mm 15 18 20

Table 3.  Selected input parameters and levels.

 

Fig. 3.  Flowchart showing the methodology of single/multi-response optimization of process parameters.
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Step 5: Data analysis for determining the effect of input parameters: The larger-the-better (LTB) loss 
function was used to calculate the S/N ratio32, as shown in Eq. (1), to maximize the output response33.

 

	
S/Ni = −10log = 1

ntr,i

∑
ntr,i
u=1

1
yu

2 )� (1)

Here, ‘ntr, i’ represents the number of trials for the ith experiment, ‘u’ indicates the trial order, ‘i’ represents the 
experiment number, and ‘yu’ indicates the performance characteristic. The study sets ntr, i’ to 3, and i takes a 
value of 9. For single-response optimization, Eq. (1) is employed to compute the S/N ratio. However, for multi-
response optimization, aiming to simultaneously maximize UTS, PE, RA, and IE. Initially, GRA standardizes the 
observed response data, aligning their values within a scale from zero to one. The following steps were followed 
to implement the multi-response optimization.

	1.	 Normalization of Experimental Data.

To normalize the experimental data, Eq. (2) is applied for LTB response24.

	
y’i (k) =

yi (k) -min[yi (k) ]
max [yi (k)] -min[yi (k) ]

� (2)

yi’(k) represents the normalized data obtained through GRA for the kth response of the ith experiment. 
Simultaneously, yi(k) represents the average of the kth response in the ith experiment, with the minimum and 
maximum values denoted as min[yi(k)] and max[yi(k)].

	2.	 Calculation of Grey Relational Coefficients (GRCs).

Subsequently, in the calculation of the GRC, the normalized values are employed to assess the connection 
between the target information and the observed experimental results. This analytical process is crucial for 
assessing the relationship between the normalized and average data, thereby offering valuable insights into 
experimental correlations. GRC ξi (k) is presented by Eq. (3).

Order

Original 
values

UTS (MPa) PE RA IE (J) IE (%)V N D

1 60 430 15 532.74 23.37 53.62 31.15 62.11

2 60 550 18 529.01 23.47 54.21 31.18 62.09

3 60 750 20 529.29 23.67 54.12 31.18 62.11

4 110 430 18 538.21 23.79 55.63 31.03 61.79

5 110 550 20 528.04 23.50 51.15 31.79 63.58

6 110 750 15 531.68 23.32 54.03 31.27 62.28

7 210 430 20 550.61 23.23 56.36 31.50 62.39

8 210 550 15 539.59 23.49 56.24 31.52 62.74

9 210 750 18 543.93 24.86 59.91 32.25 64.51

Table 5.  Outcomes of the experiment conducted.

 

Run order

Coded 
values

Original 
values

V N D V N D

1 1 1 1 60 430 15

2 1 2 2 60 550 18

3 1 3 3 60 750 20

4 2 1 2 110 430 18

5 2 2 3 110 550 20

6 2 3 1 110 750 15

7 3 1 3 210 430 20

8 3 2 1 210 550 15

9 3 3 2 210 750 18

Table 4.  Design matrix used for the experimentation.
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ξ i (k) =

∆min + Ψ∆max

∆0i (k) + Ψ∆max
� (3)

Δ0i(k) = | y0i(k) − yi (k) | shows discrepancy of desired data. The distinguishing coefficient Ψ is a number in the 
interval [0, 1]. Δmin and Δmax are the minimum and maximum values of yi(k). It should be noted that it is not 
possible to directly compare the originally measured responses, since they have different units of evaluation, 
and must be translated to GRCs to be compared to each other. Nevertheless, these responses represent different 
aspects.

	3.	 Determination of Grey Relational Grades (GRGs).

For the LTB approach, GRCs were converted into an overall value GRG once it has been weighted. GRG is 
calculated by Eq. (4).

	
γi=

∑
r
k=1ω (k) ξi(k)� (4)

Where γi represents the GRG for all responses in the ith experiment. ω(k) denotes the weighting factor of the 
kth response with 

∑ r
k=1ω (k) =1. Optimizing welding processes is crucial for ensuring good quality, and this 

depends on handling multiple aspects simultaneously. To achieve this, researchers often use a combination of 
two methods: GRA and PCA. This is quite different from the traditional way of optimizing based on a single 
factor. The GRA and PCA are powerful statistical tools that have successfully identified optimal parameter 
combinations across various aspects.

	4.	 Formation of GRC Matrix.

PCA is a statistical tool for multiple-objective optimization. It deals with complex, critically important, and 
highly interrelated information by simplifying and consolidating it- the system retains the major portions of the 
information in easily manageable forms through linear arrangements. PCA presents multi-factor optimizations 
as easy to handle under single response optimization because different sets of information are combined into a 
few simpler sets. This work initiates variable relationships determination initially, and then, GRCs are calculated 
that are required to form a matrix by Eq. (5)

	

y=




y1(1) y1(2) . . . y1(k)
y2(1) y2(2) .. y2(k)

...
... . . .

...
yj(1) yj(2) . . . yj(k)


� (5)

Here, yp(q) represents the GRC for each response, with p ranging from 1 to j experiments and q from 1 to k 
quality responses. For this study, j is set to 9, and k is set to 3. Following this, Eq. (6) can be applied to generate 
the coefficient correlation matrix.

	
Rjl=

(
Cov(yp (q) ,yp(l)
σyp (q) *σyp (l)

)
� (6)

	5.	 Application of PCA to determine the optimal parameters.

The calculation of eigenvalues and eigenvectors is carried out using the Rji array according to Eq. (7).

	 (R − λkIj) Vpk = 0� (7) 

Principal components (PCs) are determined by using Eq. (8).

	
Zjk=

∑
n
i=1Yj (p) *Vpk� (8)

Where Zjk represents the kth PC. The way eigenvalues and PC are organized is like arranging them from the most 
important to the least. This order helps to highlight and prioritize the components based on their contributions 
to understanding the variation in the data. Hence, the first eigenvalue linked with the first principal component 
represents the most significant contribution to variance.

After obtaining the S/Ni for both single-response and multi-response problems, an average S/Ni of each 
factor f is denoted by 

-
S/Ni,f,land expressed by Eq. (9).

	

-
S/Ni,f,l =

1
m

∑
S/Ni,f,l� (9)

Here, m represents the total observations for the lth level of factor f, and S/Ni, f,l is the S/Ni value associated with 
factor f for the 1 st level. The delta (Δ) values are calculated by Eq. (10).
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	 Delta ∆ = max (S/Ni,f,l) − min (S/Ni,f,l)� (10) 

The ranking obtained by Δ is structured in a descending order, aligning with the significance of factors’ impact 
on process performance.

Step 6: Variance analysis (ANOVA): The application of ANOVA on S/Ns is employed to obtain the influence 
of control factors on responses. Additionally, ANOVA is utilized to estimate the variance associated with the 
effects and the prediction error.

Step 7: Confirmatory test: Applying the optimal levels is essential to predict and validate improvements in 
responses. This involves using the identified optimal factor settings to anticipate and confirm enhancements in 
the desired outcomes.

Results and discussions
Optimization of FSW process parameters for single response
To optimize individual responses, the consideration of S/N values is essential. The primary goal of this 
investigation is to maximize specific responses, including UTS, PE, RA, and IE. Determining optimal levels 
involves calculating the average S/N values for outcomes, as illustrated by Fig. 4. Higher S/N values indicate 
superior quality characteristics. Table 6 outlines the elevated S/N ratios for UTS, PE, RA, and IE, which are 55.03, 
28.14, 36.31, and 30.68, respectively.

In the case of UTS, the experimental run 9, characterized by a welding speed at level-3, tool rotational speed 
at level-3, and shoulder diameter at level-1, produced the highest S/N. Regarding PE, the peak S/N is achieved in 
experimental run 7, where welding speed is at level-3, tool rotational speed is at level-2, and shoulder diameter 
is at level-1. Similarly, for RA, the maximum S/N is observed in experimental run 9, where welding speed is at 
level-3, tool rotational speed is at level-1, and shoulder diameter is at level-2. Lastly, for IE, the highest S/N is 
identified in experiment 7, with welding speed at level-3, tool rotational speed at level-3, and shoulder diameter 
at level-1.

The optimal levels for UTS and IE are depicted in Fig. 4 (a, d). This corresponds to a welding speed set at 
210 mm/min (level 3), a tool rotational speed of 750 rpm (level 3), and a shoulder diameter of 15 mm (level 1). 
Figure 4 (b) shows optimal levels for PE, which corresponds to a welding speed set at 210 mm/min (level 3), a 
tool rotational speed of 550 rpm (level 2), and a shoulder diameter of 15 mm (level 1). Figure 4 (c) depicts the 
optimal levels for RA, which corresponds to a welding speed set at 210 mm/min (level 3), a tool rotational speed 
of 430 rpm (level 1), and a shoulder diameter of 18 mm (level 2).

Probability plots
Figure 5 provides a visual representation of the relationship between the experimental data and the fitted 
line. The alignment of data points along the 45-degree reference line in the probability plots indicates that 

Fig. 4.  Plots depicting the main effects of S/N for (a) UTS, (b) PE, (c) RA, (d) IE.
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the residuals are approximately normally distributed. This satisfies the normality assumption required for the 
validity of the ANOVA. This visual evidence supports the subsequent statistical analysis conducted using the 
Anderson-Darling Test (ADT).

To quantitatively validate the normality assumption, ADT computes specific statistics and derives a p-value. 
The ADT statistics, in the present study, demonstrate relatively low values. This indicates that the observed data 
does not deviate significantly from the expected values under a normal distribution. The p-values obtained for 
UTS, PE, RA, and IE were 0.052, 0.532, 0.331, and 0.244, respectively, all exceeding the 0.05 threshold. Hence, 
based on the chosen level of significance, there is insufficient evidence to reject the assumption of normality for 
the data. These findings provide reassurance regarding the validity of assuming a normal distribution for the 
dataset under consideration.

ANOVA and main effect plots
The ANOVA results for output responses, i.e., UTS, PE, RA, and IE, were compiled and presented in Tables 7, 8 
and 9, and 10, respectively. The plots of means are presented in Fig. 6.

Based on the information presented in Table 7 concerning UTS, tool rotational speed exhibits the highest 
statistical significance with a contribution of 46.96%. Following closely is the welding speed with a contribution 
of 35.06%, signifying its noteworthy influence on the UTS as well. Conversely, shoulder diameter is observed to 
have a relatively insignificant impact, contributing a mere 8.65% to the UTS. Tool rotational speed and welding 

Fig. 5.  Normal probability plots of the response parameters.

 

Exp. No.

S/N of responses

UTS PE RA IE

1 54.63 26.23 33.01 29.44

2 53.27 26.29 33.2 29.28

3 54.43 25.5 32.56 29.18

4 54.54 26.85 35.39 29.31

5 54.42 27.33 34.37 29.95

6 54.8 27.54 33.61 30.61

7 54.91 28.14* 35.61 30.68*

8 54.41 27.71 36.2 30.37

9 55.03* 27.64 36.31* 30.13

Optimum V3N3D1 V3N2D1 V3N1D2 V3N3D1

Table 6.  S/N values for different response parameters. * Optimized setting for the individual response 
parameters.
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speed have a strong influence on UTS, while shoulder diameter does not exhibit a significant effect. These 
findings shed light on the varying degrees of importance among the input parameters, emphasizing the crucial 
role of N and V in determining UTS. Figure 6 (a) exhibits the main effect plots depicting the characteristics of 
UTS. The plot indicates that an increase in welding speed corresponds to an increase in UTS. Higher welding 
speeds form finer microstructures, improving strength27,28.

On the contrary, the main effect plot shows a negative correlation between UTS and tool rotational speed. An 
increase in the value of N corresponds to a decrease in UTS. This phenomenon can be explained by the adverse 
effects of high rotational speeds on the weld joint. Increased tool rotational speed generates frictional heat, which 
will lead to excessive plastic deformation and the formation of defects, thereby compromising joint strength28.

Additionally, the plot indicates that UTS decreases by increasing the shoulder diameter. The correlation 
between UTS and shoulder diameter is linked to the heat produced during welding. A greater shoulder diameter 
leads to a larger contact area, causing higher heat generation. Excessive heat can lead to thermal degradation 
and adversely affect the mechanical properties of joints, resulting in a reduction in UTS28. Upon examining the 
PE, it becomes apparent that welding speed holds the utmost influence, exhibiting a significant contribution 
of 87.19%. This implies that the welding speed has a substantial impact on PE. In contrast, both the tool rpm 
and shoulder diameter have negligible contributions to the PE, with meager percentages of 1.06% and 1.55%, 
respectively. These findings suggest that variations in the tool rotational speed and shoulder diameter have 
minimal impact on PE. To provide a visual representation and facilitate a comprehensive understanding, the 
ANOVA table corresponding to these findings is presented in Table 8. The results confirm that welding speed 
significantly influences elongation, whereas tool rotational speed and shoulder diameter have minimal impact. 
The 87.19% contribution highlights the welding speed’s dominant role.

Source DF Seq SS Adj SS Adj MS Percentage Contribution

V 2 23.537 23.537 11.7687 63.29

N 2 0.533 0.5330 0.2665 1.43

D 2 6.461 6.4618 3.2309 17.37

Error 2 6.659 6.6598 3.3299 17.91

Total 8 37.191 100.00

Table 10.  ANOVA table for IE of welds.

 

Source DF Seq SS Adj SS Adj MS Percentage Contribution

V 2 549.83 549.83 274.915 87.26

N 2 12.51 12.51 6.257 1.99

D 2 42.93 42.93 21.466 6.81

Error 2 24.87 24.87 12.433 3.95

Total 8 630.14 100.00

Table 9.  ANOVA table for RA.

 

Source DF Seq SS Adj SS Adj MS Percentage Contribution

V 2 33.5075 33.5075 16.7537 87.19

N 2 0.4058 0.4058 0.2029 1.06

D 2 0.5955 0.5955 0.2977 1.55

Error 2 3.9230 3.9230 1.9615 10.21

Total 8 38.4317 100.00

Table 8.  ANOVA table for PE.

 

Source DF Seq SS Adj SS Adj MS Percentage Contribution

V 2 2530.2 2530.2 1265.1 35.06

N 2 3389.2 3389.2 1694.6 46.96

D 2 624.6 624.6 312.3 8.65

Error 2 672.9 672.9 336.5 9.32

Total 8 7217.0 100.00

Table 7.  ANOVA table for UTS of welds.
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Figure 6 (b) illustrates the main effect plots concerning PE. The plots indicate important trends regarding the 
relationship between PE and various factors in the welding process. Primarily, the findings reveal that PE rises 
alongside an increase in welding speed. This can be attributed to the notion that elevated welding speeds often 
yield a finer microstructure, thereby enhancing the joint’s ductility and capacity for deformation19,20. Moreover, 
the plot illustrates a more complex association between the PE and tool rpm. As the tool’s rotational speed 
increases, there is a corresponding increase in PE. This can be explained by the heightened heat input at higher 
rpm, which enhances the material’s ductility. However, beyond a certain point, a further increase in tool rpm led 
to a decrease in PE. This decrease can be attributed to excessive heat input, which can induce grain growth and 
reduce ductility19.

While examining the ANOVA results for RA, an insight is presented in Table 9. Notably, the factor that exerts 
the most substantial influence is welding speed, contributing significantly with a percentage contribution of 
87.26%. This finding underscores the significant impact of variations in welding speed on the RA. Conversely, 
both the tool rpm and shoulder diameter are observed to have relatively insignificant contributions. Tool 
rotational speed contributes a mere 1.99%, while shoulder diameter contributes 6.81%. The findings indicate 
that variations in the tool rpm and shoulder diameter have minimal impact on RA.

The main effect plots of RA are presented in Fig. 6 (c). This plot reveals that increasing the welding speed 
correlates with a higher RA. This correlation can be explained by the greater energy input and plastic deformation 
experienced by the material during higher welding speeds. Consequently, the material exhibits greater 
deformation and reduction in cross-sectional area19,20. The plot further illustrates that PE initially rises as the 
tool’s rotational speed increases, but eventually reaches a peak and subsequently decreases. At lower rotational 
speeds, the increased tool rotational speed contributes to enhanced plastic deformation and subsequent reduction 
in area. However, beyond a certain point, further increases in rotational speed led to excessive heat input and 
material softening, resulting in reduced plastic deformation and a decrease in the percentage reduction in area19. 
Lastly, RA exhibits an upward trend with an increase in shoulder diameter up to a certain threshold, beyond 
which it begins to decline. Initially, the larger shoulder diameter provides increased contact area and improved 
heat generation, resulting in enhanced plastic deformation and a higher RA. However, beyond a certain shoulder 
diameter, factors such as increased heat dissipation and potential defects begin to limit the plastic deformation, 
leading to a decrease in the percentage reduction in area28.

Table 10 illustrates the ANOVA results for impact energy, providing valuable insights into the influential 
factors. Welding speed is the most influential factor, contributing 63.29% to the impact strength (p < 0.05). This 
finding underscores the crucial role of welding speed in determining the Impact strength. Following welding 
speed, shoulder diameter exhibits a noteworthy contribution of 17.37%, indicating its considerable impact on 
the measured variable. Conversely, tool rotational speed is observed to have an insignificant effect on Impact 
strength, contributing a mere 1.43%.

Fig. 6.  Plot (Main effects) of means for (a) UTS, (b) PE, (c) RA, (d) IE.
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The error percentage exceeding 10% in Tables 8 and 10 may be due to experimental variations and external 
uncertainties beyond control. FSW is a sophisticated process wherein microstructure evolution and mechanical 
properties are extremely sensitive to minimal changes in heat input, tool wear, and material heterogeneities. 
Also, metallurgical changes, plastic deformation characteristics, and grain refinement mechanisms yield inherent 
variability, leading to variation in the results of the experiments. Though every effort was taken to reduce these 
uncertainties, phenomena like thermal dissipation, distribution of localized strain, and slight deviation in the 
tool penetration depth may introduce an error above the tolerable level. However, despite this variability, the 
statistical significance of key parameters remains evident, as reflected in the percentage contributions calculated 
through ANOVA.

Figure 6 (d) shows the plots for IE, indicating that increasing welding speed corresponds to a higher impact 
energy. As the welding speed increases, the material undergoes more intense deformation, resulting in higher 
impact energy29. Likewise, as the tool’s rotational speed increases, there is a corresponding rise in the impact 
energy. This increased rotational speed generates more heat and plastic deformation, thereby improving impact 
energy. The higher rotational speed facilitates enhanced material flow and deformation, leading to improved 
impact energy29. Additionally, impact energy decreases with an increase in shoulder diameter up to a certain 
level, after which it starts to increase. Initially, the smaller shoulder diameter allows for better heat generation 
and material flow, resulting in higher impact energy, but beyond a certain threshold, an increase in shoulder 
diameter leads to reduced heat input and limited plastic deformation, resulting in reduced impact energy. A 
further increase in shoulder diameter expands the contact area that facilitates better material flow and heightened 
plastic deformation, resulting in a subsequent increment in the impact energy30,31.

Multi-Response optimization
GRA-PCA is used in this study as it provides a structured and efficient method for multi-response optimization. 
While GRA simplifies complex decision-making by converting multiple performance measures into a single 
relational grade, PCA reduces dimensionality by transforming correlated mechanical properties into a set of 
uncorrelated principal components. This allows objective determination of response weights, enhancing the 
robustness of the optimization. Their combination leverages the strengths of both—GRA’s ranking and PCA’s 
dimensional reduction—to deliver a robust multi-response optimization. Unlike TOPSIS, which depends on 
predetermined weights and requires additional decision-making steps, or hybrid GRA-TOPSIS, which involves 
higher computational effort without yielding significant advantages for correlated responses, GRA-PCA offers 
a more practical and reliable alternative. It was selected in this study for its objectivity in weight assignment, 
reduced subjectivity in decision-making, and computational efficiency—features particularly beneficial when 
analyzing highly correlated responses such as UTS, PE, RA, and IE2425,.

The objective is to compare the effectiveness of multi-objective optimization using GRA alone versus GRA 
combined with PCA. To quantify the relationship between variables, GRC for individual responses is obtained 
using Eq. (3). Additionally, the unweighted grey relational grade (GRG), determined using Eq. (4), is employed 
as an indicator of the performance. The results of the same are presented in Table 11. In PCA, Eq. (7) is utilized 
to calculate the eigenvalues along with their corresponding variance contributions and eigenvectors. The results 
are presented in Table 12.

As shown in Table 12, the first principal component (PC) makes a substantial contribution, explaining as 
much as 70.3% of the variance in the four quality characteristics. Figure 7 shows a scree plot illustrating variance 
distribution across components. PCA assigns weights like ‘importance scores’, where responses with greater 
variance influence are given higher weight in the optimization.

The squares of the eigenvectors linked to the primary PC, chosen as weights, are presented in Table 13. These 
weights are specifically determined to be 0.145, 0.2777, 0.2560, and 0.3214 for UTS, PE, RA, and IE, respectively.

Using the weights established via PCA and GRCs, W-GRGs are calculated for each experiment using Eq. (4). 
Subsequently, these W-GRGs are arranged in a ranking and presented in Table 14. Significantly, Experiment 
No. 7 is recognized as the sample with the highest values for both GRG and W-GRG. Table 15 presents the 
average GRG and W-GRG values, which consistently indicate that the predicted optimal combination of input 
parameters for achieving superior mechanical properties is V3N3D1. This combination, corresponding to a 
welding speed of 210 mm/min (level 3), tool rotational speed of 750 rpm (level 3), and shoulder diameter of 

Exp No.

Normalized values GRC

GRG RankUTS PE RA IE UTS PE RA IE

1 0.77 0.28 0.12 0.17 0.69 0.41 0.36 0.38 0.46 7

2 0.00 0.30 0.17 0.07 0.33 0.42 0.38 0.35 0.37 9

3 0.66 0.00 0.00 0.00 0.59 0.33 0.33 0.33 0.40 8

4 0.72 0.51 0.75 0.09 0.64 0.51 0.67 0.35 0.54 6

5 0.65 0.69 0.48 0.51 0.59 0.62 0.49 0.51 0.55 5

6 0.87 0.77 0.28 0.95 0.79 0.69 0.41 0.91 0.70 4

7 0.93 1.00 0.81 1.00 0.88 1.00 0.73 1.00 0.90 1

8 0.65 0.84 0.97 0.80 0.58 0.75 0.94 0.71 0.75 3

9 1.00 0.81 1.00 0.63 1.00 0.72 1.00 0.58 0.83 2

Table 11.  Table showing normalized values of GRC and GRG for the response parameters.
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15 mm (level 1), was identified through optimization analysis and subsequently validated through confirmatory 
testing.

Exp No.

Normalization GRC

GRG Rank W-GRG RankUTS PE RA IE UTS PE RA IE

1 0.77 0.28 0.12 0.17 0.69 0.41 0.36 0.38 0.46 7 0.43 7

2 0.00 0.30 0.17 0.07 0.33 0.42 0.38 0.35 0.37 9 0.37 8

3 0.66 0.00 0.00 0.00 0.59 0.33 0.33 0.33 0.40 8 0.37 9

4 0.72 0.51 0.75 0.09 0.64 0.51 0.67 0.35 0.54 6 0.52 6

5 0.65 0.69 0.48 0.51 0.59 0.62 0.49 0.51 0.55 5 0.55 5

6 0.87 0.77 0.28 0.95 0.79 0.69 0.41 0.91 0.70 4 0.70 4

7 0.93 1.00 0.81 1.00 0.88 1.00 0.73 1.00 0.90 1 0.91 1

8 0.65 0.84 0.97 0.80 0.58 0.75 0.94 0.71 0.75 3 0.76 3

9 1.00 0.81 1.00 0.63 1.00 0.72 1.00 0.58 0.83 2 0.79 2

Table 14.  Table showing normalized values of GRC, GRG, and W-GRG for the response parameters.

 

Response variable UTS PE RA IE

Contribution 0.1451 0.2777 0.2560 0.3214

Table 13.  Contribution of variance in response variables for the initial PC.

 

Fig. 7.  Scree Plot based on PCA Eigenvalues.

 

Components PC1 PC2 PC3 PC4

Eigen value 0.14890 0.04207 0.01899 0.00199

Proportion 0.703 0.199 0.090 0.009

Cumulative 0.703 0.901 0.991 1.000

Eigen vector

0.381 0.028 −0.923 −0.043

0.527 −0.137 0.251 −0.8

0.506 0.79 0.22 0.266

0.567 −0.596 0.191 0.536

Table 12.  Calculations of Eigen values and Eigen vectors for PCs.
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Contribution of input parameters that affect the weld integrity
GRA is employed to find out the relative contribution of FSW input parameters (V, N, D) on the mechanical 
properties of AISI 1018 steel weldments. The objective of GRA is to determine the contribution of every 
parameter towards output responses, i.e., UTS, PE, RA, and IE.

The input parameter contribution is obtained from GRCs, which are calculated for every response after 
normalizing the experimental data. The GRG is then obtained by averaging the GRCs, giving a single numerical 
value that reflects the overall performance of every experiment. The greater the GRG, the more effective the 
combination of process parameters concerning weld quality.

To enhance the accuracy of the analysis, Principal Component Analysis (PCA) is coupled with GRA to 
provide proper weighting to every response parameter. This ensures that responses with greater influence on 
the mechanical properties (like UTS and PE) are assigned more weight in the final optimization process. The 
findings of the GRA-PCA technique indicate that the greatest contribution to the mechanical properties is 
welding speed, followed by tool rpm, and the least contribution is observed for shoulder diameter. Such a trend 
is consistent with the basic knowledge of FSW, in which welding speed is known to dominate heat input and 
material flow, and hence the final microstructure and mechanical performance of the welded joint.

Confirmatory tests
The experimental results demonstrate notable improvements in mechanical properties after single response 
optimization. UTS increased from 549.76 MPa to 570.27 MPa, reflecting a 3.73% enhancement. This improvement 
can be credited to the careful adjustment of input parameters, which helps to create stronger weld bonds and 
improve overall joint strength.

In terms of ductility, PE showed a modest increase of 1.97%, rising from 23.82 to 24.29%. More significantly, 
RA, which indicates the material’s ability to undergo deformation before fracture, increased substantially by 
36.46%, going from 47.93 to 65.41%. This rise in RA suggests that the optimized conditions encourage better 
material flow and reduce defects during the friction stir welding process, resulting in a more flexible and durable 
joint.

IE also improved from 33.91 J to 34.71 J, a 2.35% increase. This gain is likely due to finer-grain structures 
formed under optimized welding conditions, which reduce brittleness and enhance toughness.

When considering multiple response optimization to find the best combination of input parameters, the 
experimental data confirmed enhancements across all measures: UTS improved by 3.73%, PE by 7.30%, RA 
by 23.13%, and IE by 2.35%. The predicted values closely matched the experimental findings, validating the 
optimization approach and confirming that the selected parameters effectively improve the quality and 
mechanical performance of the welded joints. These improved values are in close alignment with those reported 
in earlier works on similar steels28–30.

Trade-off analysis in multi-response optimization
The multi-response optimization findings indicate a clear enhancement in mechanical properties, but 
understanding trade-offs between output responses is important in understanding the optimization process. A 
noteworthy finding indicates that an increase in UTS improves joint strength but results in a lesser elongation 
from the inverse relationship between strength and ductility. Higher UTS values typically exhibit a finer grain 
structure, which, while increasing load-bearing capabilities, reduces deformability and elongation.

The same trade-off exists when optimizing for RA and IE. Higher impact energy values imply better 
toughness, but if there is too much softening from excessive heat input, there will be a decline in strength. The 
input parameters selected for the experiments (welding speed and tool rotational speed) attempted to balance 
UTS, PE, and IE.

Microstructural analysis
The microstructural characterization was done on a cross-sectional geometry extracted from the welded joint 
prepared using the optimal machine setting. The removed cross-section underwent polishing with silicon carbide 
emery paper. Following the polishing, the samples were etched in 3% nital solution. Various magnifications of 
the SEM were used to view the microstructures. Microstructural evaluation revealed the following features:

In Fig. 8(a), there is a distinct boundary visible, delineating the transition between the stirred zone and the 
unaffected base metal. To better understand the welding process, the image is magnified, revealing multiple 
zones formed during welding. These regions, notably the heat-affected zone (HAZ), stir zone (SZ), and 
thermomechanical affected zone (TMAZ), are identifiable, as illustrated in Fig.  8(b). Moreover, in Fig.  8(c), 
there is a detailed focus on the last two zones, showcasing the enhancement of grain structure and the 

Parameters

Average of GRG

Delta Rank

Average of 
W-GRG

Delta Rank

Levels Levels

1 2 3 1 2 3

V 0.4 0.6 0.83* 0.4 1 0.4 0.6 0.82* 0.4 1

N 0.6 0.6 0.64* 0.1 2 0.6 0.6 0.62* 0.1 3

D 0.64* 0.6 0.6 0.1 3 0.63* 0.6 0.6 0.1 2

Table 15.  Summary of average GRG and W-GRG for responses. * Optimized setting for response parameter.
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dynamic recrystallization process unfolding within the TMAZ region. Such a detailed analysis reveals nuanced 
microstructural alterations occurring throughout the welding procedure. The pin’s deformation and the heat 
generated by the shoulder’s friction collectively impact both the nugget zone and TMAZ. The pin rotation within 
the stir zone causes a distinct change in the orientation of crystallographic planes. Furthermore, the influence 
of the shoulder surface is more evident on the upper part of the weld in contrast to the lower part, ascribed to 
the increased centrifugal force in material flow. Lakshminarayanan et al.34 and Tiwari et al.35 presented similar 
findings. Unlike the original metal, grain dimensions in the stirred zone refine due to higher temperature and 
deformation (Fig. 9). The boundary between the nugget zone and TMAZ is distinctly illustrated in Fig. 9(c). 
SEM analysis revealed that the average grain size in the SZ was approximately 4–6 μm, significantly finer than 
the 10–12 μm grains in the TMAZ, confirming the effect of dynamic recrystallization.

The microstructural evolution observed is significantly impacted by the refinement mechanisms of dynamic 
recrystallization (DRX) and controlled thermal input during FSW. DRX primarily takes place in the stirred 
region because of heavy plastic deformation and localized thermal cycling, resulting in the development of fine, 
equiaxed grains that improve the strength and toughness of the joint. The nugget zone, in which maximum 
plastic deformation is realized, shows the finest microstructure because of continuous dynamic recrystallization. 
The high dislocation density and grain boundary migration also aid grain refinement and lower the occurrence 
of weld defects, along with an increase in mechanical integrity.

The heat input determines the microstructural properties of the weld. Too much heat input, normally generated 
due to the high rotational speed of the tools, can result in grain coarsening that adversely impacts strength and 
toughness. Simultaneously, too little heat generation at low rotational speeds can create incomplete material flow, 
resulting in defects like voids or insufficient fusion. This investigation identifies an optimal combination of tool 
rotational speed and welding speed that controls heat input, allowing sufficient material softening for proper 
mixing while avoiding excessive grain growth. The fine microstructure with evenly distributed grains resulting 
from this technique led to better mechanical properties.

To further validate these results, the microstructural findings were compared with prior literature for FSW of 
carbon steel. Studies conducted by Sundar Raju et al.36 and Wang et al.37 have concluded that smaller grain sizes 
and dynamic recrystallization occur in the stirred zone because of shear-controlled heat input and mechanical 
mixing. Additionally, a study by Wang et al.38 highlights that grain refinement in the TMAZ significantly impacts 
the mechanical properties of welded joints, which agrees with the findings in the present study.

Microhardness testing
The microhardness test was conducted to examine local variations in mechanical strength across different weld 
regions. It provides an effective means to evaluate how thermal cycles and material flow during FSW influence the 
properties of the stir zone, TMAZ, and HAZ. This measurement supports the microstructural observations and 
tensile test results by confirming improvements in hardness distribution under optimized processing conditions.

Fig. 9.  The microstructure of the welded joint from the base metal to the Stirred zone-TMAZ transition.

 

Fig. 8.  Microstructural transition from base metal to stirred zone, highlighting grain refinement.

 

Scientific Reports |        (2025) 15:31632 15| https://doi.org/10.1038/s41598-025-16668-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The test was conducted using a FISCHERSCOPE HM2000S microhardness tester. A load of 100  g was 
applied with an increment of 1 mm on the weld surface. Figures 10 and 11 show the transverse and top-section 
microhardness profiles, respectively. Higher microhardness is observed in the nugget zone, while the TMAZ 
and HAZ show values almost similar to the base metal. Wang et al.39 and Tamjidi et al.40 reported similar results.

The hardness variation between the weld zones is due to the metallurgical changes involved in the FSW 
process. The nugget zone (NZ) is subject to dynamic recrystallization (DRX) and severe plastic deformation, 
and develops a fine-grained microstructure, resulting in increased hardness. The TMAZ, however, partially 
deforms and is subjected to heat, giving rise to elongated grains but no full-scale recrystallization, thus resulting 
in moderate hardness. HAZ, having been exposed solely to thermal conditions, experiences grain coarsening, 
which results in decreased hardness relative to the NZ.

In addition, the tool rotation-induced asymmetric material flow impacts the hardness distribution. The 
material transported by the shoulder is transferred from the retreating side of the weld, around the tool, and 
deposited on the advancing side, resulting in greater microhardness on the advancing side than on the retreating 
side. This is because there is more strain hardening and finer grain structures on the advancing side.

Practical implications of the study for industrial applications
The results of the present study are of great practical importance for the industries that use AISI 1018 carbon 
steel extensively, including the automobile, construction, and manufacturing industries. The optimal FSW 
parameters revealed in this study can improve the structural integrity, mechanical strength, and durability of 
welded joints and address common challenges in industrial applications.

In the automobile industry, the application of the FSW process with appropriate parameters could also 
improve the performance of the  parts, such as chassis components, drive shafts, and structural reinforcements. 
The improvement of UTS and IE endows it with stronger load-carrying ability and crash resistance, which shows 
the potential to replace traditional  welding methods. Reduction of defects such as porosity  and residual stress 
further enhances the fatigue life of welded joints, and hence, longer vehicle structures.

In the construction sector, where AISI 1018 steel is applied extensively in structural frames, bridges, and tall 
buildings, the use of optimized FSW parameters yields stronger and more dependable joints. Increased percentage 
elongation and reduction  in area lead to higher ductility to resist failure under dynamic loadings. Its ability to 
join high-strength defect-free welds without additional filler material while providing reduced environmental 
impact makes FSW an attractive option for sustainable and cost-effective  infrastructure construction.

In manufacturing and heavy industry, the adoption of optimized FSW methods has the potential to enhance 
the production processes. Parts undergoing cyclic loading, like hydraulic systems, pipes, and pressure vessels, 
can reap the rewards of the superior mechanical properties provided through the optimized weld process. 
Elimination of residual stresses and refinement of microstructures guarantees a longer life.

Fig. 11.  Weld microhardness profile (top portion).

 

Fig. 10.  Weld microhardness profile (transverse section).
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Conclusions
Based on experimental and optimization results of FSW process parameters, the following significant conclusions 
can be inferred:

•	 FSW of AISI 1018 carbon steel with a tungsten carbide insert containing a 7% cobalt binder yielded welds 
with superior mechanical and metallurgical properties than the base metal.

•	 Single and multi-response optimization techniques identified welding speed as the most significant factor, 
followed by tool rotational speed and shoulder diameter, which influence UTS, PE, RA, and IE.

•	 The optimal parameters for achieving maximum mechanical properties were determined to be V3N3D1 
(210 mm/min welding speed, 750 rpm of the tool, and 15 mm shoulder diameter), resulting in appreciable 
weld performance improvement.

•	 Single-response optimization improved the mechanical properties by 3.73% for UTS, 1.95% for PE, 36.46% 
for RA, and 2.35% for IE, while multi-response optimization achieved improvements of 3.73%, 7.30%, 23.13%, 
and 2.35%, respectively. Although single-response optimization yielded the highest individual improvement 
in RA, the multi-response approach provided more balanced and consistent enhancements across all me-
chanical properties, making it more effective for overall weld quality optimization.

•	 Mechanical property trade-offs were noted, with UTS and impact energy enhancements being uniform in 
both optimizations, whereas PE had a higher increase in multi-response optimization, and RA improvement 
was less than in single-response optimization.

•	 Microstructural examination identified clear weld zones, such as the stirred zone, TMAZ, and HAZ, with 
fine-grain refinement in the stirred zone, resulting in enhanced mechanical properties.

•	 The combination of GRA-PCA with the Taguchi method gave a structured and effective method for optimiz-
ing process parameters, reducing experimental iterations, but with balanced improvements in both strength 
and ductility.

•	 The optimized process parameters are highly industrially relevant, enhancing weld quality in automotive, 
construction, and manufacturing sectors where improved mechanical performance is of primary importance.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article.
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