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Recurrence and metastasis of breast cancer (RMBC) have a decisive impact on patient survival, 
necessitating reliable biomarkers for its early prediction. This study used machine learning to evaluate 
blood microbiome profiles as predictive biomarkers of RMBC. A retrospective predictive analysis was 
conducted on 288 participants, including 96 patients with breast cancer and 192 healthy controls. 
After 7 years of follow-up, patients were classified into disease-free survival (DFS, n = 88) and RMBC 
(n = 8) groups. Blood microbiome composition was analysed using 16S rRNA sequencing, followed by 
quality control. The Synthetic Minority Oversampling Technique (SMOTE) was employed to address 
class imbalance. Eleven machine learning models were trained using leave-one-out cross-validation 
(LOOCV) and k-fold cross-validation, and evaluated based on the area under the receiver operating 
characteristic curve (AUROC), recall, precision, F1-score, and Matthews correlation coefficient (MCC). 
Alpha diversity was significantly lower in DFS and RMBC groups than in the healthy control group 
(p < 0.05), while beta diversity analysis revealed distinct clustering. The random forest achieved an 
AUROC of 0.94, a recall of 0.81, an F1-score of 0.83, and an MCC of 0.88. Enterobacter, Bacteroides, 
Klebsiella, and Bifidobacterium were among the key microbial genera predicting RMBC in the top five 
models. Blood microbiome profiling shows potential as a non-invasive RMBC biomarker. Machine 
learning effectively distinguished RMBC, warranting further validation.
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Breast cancer (BC) is the most prevalent malignancy among women worldwide, accounting for the highest 
incidence and mortality rates1. Despite advancements in diagnostic methods, 5–10% of patients with BC present 
with metastatic disease at initial diagnosis and 20% develop recurrence later2. Recurrence and metastasis of 
breast cancer (RMBC) significantly increase the mortality rate3,4. This trend highlights the need for reliable 
indicators for RMBC and early detection strategies.

Over the past several decades, traditional markers such as carcinoembryonic antigen and tumour-associated 
antigen CA-15.3 have been used to predict the risk of BC recurrence, with elevated levels suggesting recurrence 
before the emergence of clinical symptoms5. However, the American Society of Clinical Oncology noted 
insufficient evidence to support their routine use6. To address these limitations, traditional markers have been 
combined with molecular techniques7. While these approaches can improve diagnostic efficiency and accuracy, 
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their high cost remains a considerable challenge8. Thus, the need to identify reliable and affordable predictors 
remains.

With the emergence of next-generation sequencing (NGS), human blood has been shown to carry complex 
microbiomes, even in healthy individuals. Furthermore, disruptions in microbial balance have been associated 
with numerous diseases, including cancer, and unique blood microbiome profiles have shown the potential for 
early cancer detection9,10. However, most studies focus on cancer diagnosis rather than prediction of recurrence 
or metastasis, possibly due to a limited sample size11.

In this study, we focused on developing a machine learning model to predict RMBC risk using blood 
microbiome data, by incorporating the synthetic minority oversampling technique (SMOTE) for data 
augmentation to address the small sample size of patients with RMBC. We further aimed to identify significant 
microbes associated with RMBC and evaluate their predictive performance. This approach will help advance our 
understanding of the role of the blood microbiome in BC pathophysiology and contribute to the management of 
its recurrence, metastasis, and prediction of prognosis.

Methods
Study population and demographics
This study was a retrospective predictive analysis comparing patients with BC and healthy controls to analyse the 
predictive power of the blood microbiome. Participants were recruited between 2014 and 2017 at Ewha Womans 
University Hospital and Inje University Haeundae Hospital, and their clinical outcomes were subsequently 
followed for 7–8  years. Blood samples from the healthy control group were collected at a health screening 
centre, and all participants were confirmed to have no underlying chronic or acute diseases based on routine 
comprehensive health examinations. In contrast, blood samples were collected prior to any treatment (surgery, 
chemotherapy, or radiation), and patients with BC were diagnosed after presenting with symptoms or abnormal 
radiological findings, confirmed by histological examination. After a 7-year follow-up, patients were stratified 
into disease-free survival (DFS; n = 88) and RMBC (n = 8) groups based on their recurrence or metastasis status12. 
The RMBC group included patients with locoregional recurrence or distant metastases (Fig. 1). Ethical approval 
for the study was obtained from the Institutional Review Board of the Ewha Womans University Hospital (IRB 
No. EUMC 2014-10-005) and Inje University Haeundae Hospital (IRB No. 1297992-2015-064). All procedures 
followed institutional guidelines and informed consent was obtained from all participants.

DNA extraction and microbiome sequencing
Blood samples were processed for extracellular vesicle (EV) isolation through centrifugation and 
filtration. Bacterial DNA was extracted from EVs using the DNeasy PowerSoil Kit (QIAGEN) and 
quantified with the QIAxpert system. The 16S rRNA gene was amplified using the primers 16s_V3_F 
(5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and 16s_V4_R 
(5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′)13. 
Microbiome profiling was performed following the Illumina protocol using a MiSeq platform (MiSeq Software 
v4.1.0). To minimise the risk of contamination, bacterial DNA was extracted from EVs rather than directly from 
whole blood. The extracted DNA was then used for 16S rRNA sequencing to identify operational taxonomic 
units (OTUs)12.

Data preprocessing
All preprocessing and analyses of the sequencing data were performed using the CLC Workbench (QIAGEN, 
Hilden, Germany). Adapter trimming and quality control were applied with a quality limit of 0.05 and a maximum 
of two ambiguous bases. The sequences were filtered to exclude reads shorter than 200 bp, longer than 550 bp, 
and those with insufficient coverage, based on CLC Workbench filtering parameters (minimum number of reads: 
100; minimum percent from the median: 50.0). After excluding low-quality data, the final dataset consisted of 
229 individuals, including 141 healthy controls, 81 patients with DFS, and seven patients with RMBC. OTUs 
were clustered using a reference-based method with a 97% similarity threshold, and taxonomic classification was 
performed using the SILVA 138 database in CLC Workbench. The OTUs with a relative abundance of less than 
1% across all samples were excluded from further analysis14. Amplicon sequence variant (ASV)-based analysis 
was not performed, since the sequencing data were processed using CLC Workbench, which is limited to an 
OTU-based pipeline.

Data augmentation
SMOTE was applied to augment the RMBC group to address the class imbalance in the dataset. This technique 
synthesises new samples by interpolating existing samples within the minority class15. While the default SMOTE 
algorithm uses a k-value of five (considering the five nearest neighbors for synthesis), we selected a reduced 
k-value of three after evaluating multiple oversampling methods, as it was better suited to the limited RMBC 
samples and provided more stable performance (Supplementary Table S1). SMOTE (k = 3) and Adaptive 
Synthetic Sampling Approach for Imbalanced Learning (ADASYN; n_neighbors = 3) showed similar KS D values, 
indicating low distributional bias. We evaluated both methods using cross-validation, with detailed results 
presented in Supplementary Table S2. Specifically, for LOOCV, the results of SMOTE (k = 3) and ADASYN (n_
neighbors = 3) are presented in Supplementary Tables S2.1 and S2.2, respectively. For k-fold cross-validation, the 
corresponding results are provided in Supplementary Tables S2.3 for SMOTE (k = 3) and in S2.4 for ADASYN 
(n_neighbors = 3). Additional validations were conducted using permutation tests (Supplementary Tables S3) 
and bootstrapping (Supplementary Table S4), with bootstrapping results for SMOTE (k = 3) and ADASYN 
(n_neighbors = 3) presented in Supplementary Tables S4.1 and S4.2, respectively. ADASYN exhibited superior 
performance metrics, which may be attributed to its adaptive approach. Nonetheless, SMOTE was ultimately 
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selected due to its ability to generate synthetic data while preserving the original data distribution. The number 
of RMBC samples was increased from 7 to 35. The augmented dataset exhibited diversity comparable to that of 
the original RMBC data, thereby minimising the risk of overfitting.

Machine learning model development and evaluation
The data were split into training (80%) and test (20%) sets, preserving the class proportions in all groups. The 
SMOTE-augmented data were used for training, with the test set comprising only the original samples to ensure 
an unbiased evaluation. The resulting training set consisted of 204 samples (112 healthy control, 64 DFS, and 
28 RMBC), whereas the test set consisted of 53 samples (29 healthy control, 17 DFS, and seven RMBC). Eleven 
machine learning algorithms were employed to predict the RMBC: random forest, gradient boosting, decision 
tree, support vector machine, neural network, AdaBoost, Naïve Bayes, nearest neighbors, linear discriminant 
analysis, quadratic discriminant analysis, and logistic regression. All models were implemented using Python 
3.10 and the scikit-learn library. Because of the small number of RMBC class instances, leave-one-out cross-
validation (LOOCV) and k-fold cross-validation were employed for model evaluation, wherein each instance 

Fig. 1.  Flow chart of the study process. *Samples excluded due to low sequencing quality and number of reads. 
**Features with less than 1% relative abundance in each sample, and those with a Kruskal–Wallis test and FDR-
adjusted p-value greater than 0.05 across groups were excluded from the analysis. DFS, disease-free survival; 
RMBC, recurrence and metastasis of breast cancer; OTU, operational taxonomic unit.
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served as a separate test set16. Model performance was evaluated using accuracy, recall, precision, F1-score, 
MCC, and area under the receiver operating characteristic curve (AUROC). Confusion matrices were generated 
to visualise the classification performance. Feature importance was assessed for the five best-performing models 
using permutation analysis for Naïve Bayes, Shapley additive explanation (SHAP) values for nearest neighbors, 
and scikit-learn attributes for tree-based models. Biological significance was inferred by analysing feature 
contributions across the healthy control, DFS, and RMBC groups. Permutation tests and bootstrapping analyses 
were performed to evaluate the model’s robustness (Supplementary Tables S3, S4).

Statistical analysis
Kruskal–Wallis test and false discovery rate (FDR) correction were conducted to identify differentially abundant 
OTUs between the healthy control and cancer groups. Taxa with Kruskal–Wallis and FDR-adjusted p-values 
below 0.05 were selected to reduce the risk of ‘false positives’. Differences between DFS and RMBC in baseline 
characteristics were assessed using the Mann–Whitney U test for age and Fisher’s two-sided exact test for 
categorical variables. Principal coordinate analysis (PCoA) using the Bray–Curtis dissimilarity distance was 
conducted to assess the clustering of groups. Permutational multivariate analysis of variance (PERMANOVA), 
centroid shift, and the Kolmogorov–Smirnov (KS) test were applied to analyse the metrics from principal 
component analysis (PCA). All analyses were performed using Python version 3.11 (Python Software Foundation, 
Beaverton, OR, USA), SPSS version 18.0 (SPSS Inc., Chicago, IL, USA), and R version 4.4.2 (R Foundation for 
Statistical Computing, Vienna, Austria). The data processing scripts used in this study are available at: ​h​t​t​p​s​:​​​/​​/​g​i​
t​h​u​​b​.​c​o​​m​/​d​o​k​k​​u​l​​l​a​/​​b​r​e​a​s​t​​c​a​n​c​​e​​r​-​m​i​c​r​​o​b​i​​o​m​e​.​g​i​t.

Results
Clinical characteristics
The baseline characteristics of the study population are summarised in Table 1. The mean age at diagnosis was 
lower in the RMBC (48.7 ± 11.5 years) than in the DFS group (51.9 ± 11.5 years); however, the difference was not 

Characteristic
Healthy control
group

Disease-free survival
group Recurrent or metastatic breast cancer p-value

Female
(Number of patients) 141 81 7

Age at diagnosis (year) 0.405

 Mean ± standard deviation 51.6 ± 10.6 51.9 ± 11.5 48.7 ± 11.5

 Median (range) 50 (28–84) 50 (29–91) 45 (34–70)

Tumour stage 0.618

 Tis 1 (1.2%) 0 (0.0%)

 T1 49 (60.5%) 3 (42.9%)

 T2 27 (33.3%) 4 (57.1%)

 T3 4 (4.9%) 0 (0.0%)

Lymph node metastasis 0.675

 No 56 (69.1%) 4 (57.1%)

 Yes 25 (30.9%) 3 (42.9%)

Histological grade 0.158

 G1 13 (16.0%) 0 (0.0%)

 G2 37 (45.7%) 2 (28.6%)

 G3 29 (35.8%) 4 (57.1%)

 Unknown 2 (2.5%) 1 (14.3%)

Ki67 expression 1.000

 < 20% 38 (46.9%) 3 (42.9%)

 ≥ 20% 43 (53.1%) 4 (57.1%)

Primary surgery type 0.671

 Mastectomy 24 (29.6%) 3 (42.9%)

 BCS 57 (70.4%) 4 (57.1%)

Subtype 0.940

 Luminal A 32 (39.5%) 2 (28.6%)

 Luminal B 24 (29.6%) 3 (42.9%)

 HER2 enriched 12 (14.8%) 1 (14.3%)

 TNBC 13 (16.0%) 1 (14.3%)

Table 1.  Patient’s characteristics (N = 229). BCS, breast-conserving surgery; TNBC, triple-negative breast 
cancer. *p-values were calculated using the Mann–Whitney U test for age. p-values were calculated using the 
two-sided Fisher’s exact test for categorical variables.
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significant. Significant differences were not observed between the groups in terms of tumour stage, lymph node 
metastasis, histological grade, Ki67 expression, primary surgery type, and BC subtype.

Microbiome diversity
Alpha diversity
Alpha diversity metrics, including the observed OTUs, Chao1, Shannon, and Simpson indices, were calculated 
for each group (Fig. 2a). The observed OTUs, Chao1 and Simpson indices showed significantly reduced microbial 
diversity in the DFS and RMBC groups compared with the healthy control group (p-value < 0.05). In contrast, 
the Shannon index did not differ significantly from the healthy control in the RMBC groups.

Beta diversity
Beta diversity analysis was conducted using the Bray–Curtis dissimilarity metric. PCoA plots at different 
taxonomic levels revealed distinct clustering patterns among the three groups (Fig. 2b). PERMANOVA based 
on the Bray–Curtis distance indicated significant differences between the healthy control group and both the 
DFS and RMBC groups, whereas no significant difference was observed between the DFS and RMBC groups.

Fig. 2.  Diversity metrics across study groups. (a) Alpha diversity metrics (observed operational taxonomic 
units, Chao1, Shannon, and Simpson indices) for the healthy control, DFS, and RMBC groups. (b) Principal 
coordinate analysis (PCoA) based on Bray–Curtis dissimilarity at phylum, class, order, family, genus, and 
species levels. Healthy: healthy control, DFS: disease-free survival, RMBC: recurrence and metastasis of breast 
cancer.
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Comparative blood microbiome profiles
Significant differences in the relative abundance of specific genera were observed among the healthy control, 
DFS, and RMBC groups (Fig.  3). The stacked bar plot shows a clear difference between the healthy control 
group and the other groups, while the DFS and RMBC groups exhibit minimal differences relative to each other 
(Fig. 3a). The heatmap more specifically illustrates which bacteria differ among the three groups, particularly 
between the DFS and RMBC groups (Fig. 3b). The abundances of genera such as Corynebacterium, Pseudomonas, 
Acinetobacter, and Sphingomonas were significantly reduced in the DFS and RMBC groups compared with those 
in the healthy control group (p < 0.05) (Fig. 3c). In contrast, the abundances of Bacteroides, Bifidobacterium, 
Klebsiella, and Enterobacter were significantly enriched in the DFS and RMBC groups compared with those in 
the healthy control group (p < 0.05) (Fig. 3d).

Data augmentation
Principal component analysis (PCA) was conducted to visualise the data distribution before and after SMOTE 
augmentation (Fig.  4a). As shown in the PCA plots, the synthetic RMBC samples generated via SMOTE 
were distributed within the feature space of the original RMBC samples, confirming that the augmentation 
process preserved the underlying data structure. The relative abundance distributions of the top 20 genera were 
visualised using stacked bar charts by comparing the original RMBC samples with SMOTE-augmented data 
(Fig. 4b). As can be seen from these plots, the augmented data retained a composition consistent with that of 
the original samples, thus ensuring biological plausibility. The PCA-based statistical analyses, including centroid 

Fig. 3.  Differential abundance of genera among groups, including healthy controls, DFS, and RMBC. (a) The 
stacked bar plot represents the relative abundances of the 20 most common genera across the three groups. (b) 
The sample-level heatmap shows transformed relative abundance values for the three groups using log (x+1). 
(c) Four genera were reduced in the DFS and RMBC groups compared with the healthy control group. (d) Four 
genera were enriched in the DFS and RMBC groups relative to the healthy control group. Healthy: healthy 
control (green), DFS: disease-free survival (orange), RMBC: recurrence and metastasis of breast cancer (violet).
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shift, KS test, and PERMANOVA, revealed no significant group differences; the detailed results are provided in 
Supplementary Table S1.

Machine learning model performance
Eleven machine learning classifiers were evaluated for their ability to classify the healthy control, DFS, and 
RMBC groups based on genus-level microbiome data. The performance of the eleven machine-learning classifiers 
were evaluated both before and after the SMOTE augmentation (Table 2). Before SMOTE augmentation, the 
highest recall and precision achieved among all classifiers were below 0.67. After SMOTE augmentation, a 
significant improvement was observed across all classifiers, with a marked increase in recall and precision. The 
best-performing classifier achieved a recall of 0.88 and precision of 0.94. All models demonstrated promising 
performance, with the mean AUROC values ranging from 0.75 to 0.94 (Fig.  5a). The random forest model 
exhibited the strongest discriminative ability with an AUROC of 0.94. It also demonstrated high accuracy (0.81), 
recall (0.94), precision (0.83), F1-score (0.98), and MCC (0.88). The random forest model correctly classified all 
29 healthy control and 17 DFS samples in the test set, as well as three of the seven RMBC samples (Fig. 5b). All 
models were evaluated using LOOCV and k-fold cross-validation to ensure an unbiased assessment of classifier 
performance (Supplementary Table 2).

Feature importance
Significant features were analysed for the top five-performing classifiers, using feature importance (random 
forest, AdaBoost, gradient boosting), SHAP (nearest neighbors), and permutation importance (Naïve Bayes), to 
identify key microbial genera contributing to the classification of the healthy control, DFS, and RMBC groups. 
For the five best-performing models, the top 10 features with the highest importance scores were identified 
and visualised as bar graphs (Fig. 6a–e), with each panel corresponding to random forest (a), gradient boosting 
(b), AdaBoost (c), nearest neighbors (d), and Naïve Bayes (e). Among the identified features, Enterobacter and 
Obscuribacteraceae emerged as key genera common to all five models, highlighting their consistent predictive 
value for RMBC. Additionally, Klebsiella and Bifidobacterium were shared across three of the models (Table 3).

Discussion
In this study, important features associated with RMBC were identified using machine learning and augmented 
blood microbiome data. Due to the difficulty in acquiring recurrence and metastasis cases, the RMBC group 
had a limited sample size. This data imbalance reduces diversity and leads to a skewed distribution17. To 

Fig. 4.  Impact of SMOTE augmentation on RMBC data. (a) Principal component analysis plots illustrating 
the distribution of samples before and after SMOTE augmentation. (b) Stacked bar charts showing the relative 
abundance of the top 20 genera in the original RMBC and SMOTE-augmented RMBC samples. Healthy, 
healthy control; DFS, disease-free survival; RMBC, recurrence and metastasis of breast cancer; SMOTE, 
synthetic minority oversampling technique.
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address this issue, we utilised SMOTE, which relies on linear interpolation and may overlook compositional 
relationships in the data15. To better preserve these relationships, SMOTE was applied to the relative abundance 
data rather than OTU counts. After applying SMOTE, model performance substantially improved, particularly 
for recall, precision, and F1-score, compared with the performance prior to SMOTE application. Previous 
machine learning studies on RMBC risk primarily relied on clinical information and often required numerous 
examinations18,19. Our study demonstrated the potential of blood microbiome-based models using SMOTE, 
which was validated using clinicopathological data. Augmentation techniques can be a valuable tool for studying 
rare diseases, their recurrence and metastasis, which is often challenging due to small sample sizes and limited 
numbers of participants20.

In the present study, some bacteria were associated with RMBC. In a previous study, members of the 
Enterobacteriaceae family, including the genera Enterobacter and Klebsiella, which are crucial features in our 
models, were extensively studied for their association with cancer21,22. The abundance of Enterobacteriaceae 
was significantly associated with immune-related pathways, including antigen processing and presentation and 
cytosolic DNA sensing, suggesting potential roles in modulating tumour immune surveillance and evasion21,23. 
Yurdakul et al. elucidated the effects of Enterobacter strains and analysed the bacterial proteins that increased 
cancer cell viability and proliferation while reducing apoptosis23. They found that cancer cells exhibited higher 
levels of nuclear factor kappa B (NF-κB) activation compared with that of normal colonic mucosa following 
exposure to bacterial proteins. This finding suggested that these bacterial influences may enhance breast tumour 
cell progression and inhibit apoptosis through NF-κB activation24.

The genera Bacteroides and Bifidobacterium were also key features, showing higher relative abundances in 
the DFS and RMBC groups than in the healthy control group. These genera are part of the “estrobolome” that 
metabolises oestrogens25. Elevated oestrogen levels are associated with the risk of RMBC26. Kibria et al. reported 
higher Bacteroides and Blautia levels in the faecal samples of patients with breast cancer, and other studies have 
shown that toxins produced by certain Bacteroides spp. promote breast cancer progression27,28. Furthermore, 
hormones like oestrogen and progesterone can increase their levels, influencing BC dynamics29,30. The increased 
levels of these hormones may be involved in a positive feedback loop, triggering RMBC.

Among the taxa selected by the model, family Obscuribacteraceae belongs to under-characterised clade 
with no functional annotation currently available. Their inclusion among the top-ranked features may reflect 
microbial community shifts associated with disease status, but the biological interpretation is currently limited.

Recent studies have highlighted the blood microbiome as a promising tool for cancer diagnosis31. Building 
on this insight, we identified microbial taxa associated with BC prognosis. The findings of this study enhance our 
understanding of the intricate relationships between microbial communities and cancer progression, potentially 

Models Accuracy AUROC Recall Precision F1 MCC

pre-SMOTE

AdaBoost 95.83 0.87 0.67 0.63 0.65 0.92

Decision Tree 93.75 0.74 0.65 0.62 0.63 0.88

Support Vectors 93.75 0.8 0.65 0.62 0.63 0.88

Neural Net 93.75 0.76 0.65 0.62 0.63 0.88

Gradient Boosting 93.75 0.89 0.65 0.62 0.63 0.88

Random Forest 93.75 0.73 0.66 0.62 0.63 0.88

Nearest Neighbors 91.67 0.86 0.63 0.61 0.62 0.83

Linear DA 87.5 0.69 0.59 0.62 0.6 0.76

Logistic Regression 83.33 0.82 0.55 0.56 0.55 0.66

Naïve Bayes 83.33 0.69 0.57 0.59 0.58 0.69

Quadratic DA 70.83 0.57 0.43 0.51 0.42 0.41

post-SMOTE

Random Forest 92.45 0.94 0.81 0.94 0.83 0.88

Naïve Bayes 92.45 0.9 0.88 0.94 0.9 0.88

Gradient Boosting 90.57 0.92 0.79 0.85 0.8 0.84

AdaBoost 90.57 0.9 0.76 0.92 0.77 0.85

Nearest Neighbors 88.68 0.92 0.83 0.84 0.83 0.8

Decision Tree 88.68 0.83 0.77 0.84 0.79 0.8

Support Vectors 88.68 0.91 0.74 0.91 0.76 0.81

Neural Net 86.79 0.88 0.69 0.9 0.68 0.78

Linear DA 86.79 0.88 0.78 0.77 0.77 0.77

Logistic Regression 73.58 0.83 0.53 0.49 0.5 0.52

Quadratic DA 73.58 0.75 0.67 0.84 0.7 0.56

Table 2.  Performance comparison of 11 classifiers before and after the SMOTE augmentation. AUROC, area 
under the receiver operating characteristic curve, MCC, Matthews correlation coefficient; DA, discriminant 
analysis; SMOTE, synthetic minority oversampling technique.
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mediated through immune regulation and hormone metabolism. Furthermore, this work may bring us one step 
closer to developing a tool that could improve clinical outcomes in BC patients.

The study size was determined based on a power analysis using G*Power to ensure sufficient statistical power 
to detect significant differences among the three study groups (healthy control, DFS, and RMBC)32. A priori 
power analysis for MANOVA was conducted with an effect size of f2(V) = 0.15, a significance level of 0.05, and a 
statistical power of 0.80. Given three groups, 80 predictors, and three response variables, the analysis indicated 
that a total sample size of 222 participants was required to achieve an actual power of 0.80 and Pillai’s V of 0.26.

This study included 229 participants: 141 healthy controls, 81 patients with DFS, and seven patients with 
RMBC. In this dataset, we collected pre-treatment samples from patients with breast cancer, and then followed 

Fig. 5.  Performance evaluation of the predictive model. (a) AUROC curves for all classifiers. (b) Confusion 
matrices of the top five classifiers following SMOTE augmentation. Acc: accuracy, DA: discriminant analysis.
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Classifiers

Random Forest Naïve Bayes Gradient Boosting Adaboost Nearest Neighbors

Enterobacter (0.1040) Actinomyces (0.0704) Obscuribacteraceae; (0.5147) Enterobacter (0.2575) Enterobacter (0.5291)

Klebsiella (0.0988) Obscuribacteraceae; (0.0509) Acetobacteraceae; Uncultured 
(0.1118) Obscuribacteraceae; (0.1738) Pseudomonas (0.0557)

Obscuribacteraceae; (0.0905) Enterobacter (0.0503) Leuconostoc (0.1039) Klebsiella (0.0684) Bacteroides (0.0447)

Bifidobacterium (0.0726) Helicobacter (0.0440) Kluyvera (0.0520) Vaulcaiibacterium (0.0595) Faecalibacterium (0.0331)

Bacteroides (0.0514) Herminiimonas (0.0371) Enterobacter (0.0511) Cronobacter (0.0460) Obscuribacteraceae; 
(0.0295)

Sphingomonaas (0.0364) Brevibacterium (0.0358) Corynebacterium (0.0329) Comamonas (0.0450) Staphylococcus (0.0257)

Vaulcaiibacterium (0.0356) Herbaspirillum (0.0339) Actinomyces (0.0245) Bifidobacterium (0.0328) Bifidobacterium (0.0213)

Leuconostoc (0.0331) Sphingomonas (0.0333) Coriobacteriaceae UCG-002 
(0.0185) Leuconostoc (0.0246) Acinetobacter (0.0089)

Burkholderia-Caballeronia-
Paraburkholderia (0.0320)

Coriobacteriaceae UCG-
002(0.0321) Ralstonia (0.0131) Acetobacteraceae; Uncultured 

(0.0244) Ligilactobacillus (0.0036)

Limosilactobacillus (0.0235) Lautropia (0.0296) Deinococcus (0.0125) Subdoligranulum (0.0243) Klebsiella (0.0036)

Table 3.  Top 10 features with the highest importance scores for the top five models.

 

Fig. 6.  Bar plots of the top 10 most important features based on importance scores derived from feature 
importance, permutation analysis, and SHAP. (a–c) Feature importance for tree-based classifiers: (a) random 
forest, (b) gradient boosting, and (c) AdaBoost. (d) SHAP values for the non-tree-based classifier, nearest 
neighbors. (e) Feature importance using permutation analysis for Naïve Bayes. Bars represent the mean 
permutation importance scores, and error bars indicate the standard deviation. SHAP: Shapley additive 
explanation.
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up with them for approximately 7–8 years to confirm their recurrence and metastasis status. Recurrence and 
metastasis data are difficult to obtain due to the requirement for long-term follow-up. Therefore, analyses were 
conducted on this small yet essential dataset of recurrent cases. To address data imbalance, the SMOTE technique 
was applied, and group comparisons were performed using the Kruskal–Wallis test and FDR correction. Further 
studies involving larger cohorts will be necessary to longitudinally monitor recurrence and metastasis. Another 
major limitation of this study is the lack of external validation due to the rarity of comparable longitudinal 
datasets. However, this study remains valuable because it is a rare investigation that evaluates the potential of 
blood microbiome data to predict cancer recurrence.

As a future direction, this algorithm may be utilised for pre-treatment prediction of recurrence and 
metastasis in patients with breast cancer, enabling the identification of high-risk individuals who may benefit 
from more aggressive and personalised therapeutic strategies. Moreover, the integration of this model with 
imaging modalities—such as mammography, breast ultrasonography, and magnetic resonance imaging—and 
clinical features—such as age, body mass index, and hormone receptor status—holds promise for developing a 
multimodal fusion framework, which could further enhance predictive accuracy and support clinical decision-
making in real-world settings.

Conclusion
In the present study, we identified potential biomarkers for RMBC prediction using augmented blood 
microbiome data. This algorithm could enable the early identification of high-risk breast cancer patients 
before clinical relapse, facilitating more aggressive treatment or closer monitoring to improve outcomes, and 
supporting personalised therapeutic strategies. Our findings highlight the importance of blood microbiome 
profiling for the early diagnosis and prognosis of BC, enabling personalised diagnostic strategies and improved 
long-term management.

Data availability
The raw sequence data are available in the Sequence Read Archive under BioProject IDs PRJNA834579, PRJ-
NA834581, and PRJNA834582.
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