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Accurate 3D hand reconstruction remains a challenging computer vision problem with numerous 
applications. Existing approaches predominantly focus on single-frame hand reconstruction, thereby 
neglecting crucial temporal information essential for stable hand tracking. A novel pipeline for 3D hand 
reconstruction from consecutive multi-view depth images, termed HandFlowNet, is presented in this 
work. The proposed methodology converts multi-view depth images into a single point cloud, from 
which temporal information between consecutive frames is deduced through estimated scene flow 
of hand mesh vertices. The scene flow estimator establishes one-to-one correspondences between 
point sets from sequential depth frames. This scene flow is subsequently applied as an offset to initially 
estimated hand mesh vertices from the previous frame to determine the current frame’s hand mesh 
vertices. These vertices are further refined using a graph convolutional network that incorporates 
predicted local and global features of the current frame. Through extensive evaluations, HandFlowNet 
is demonstrated to achieve state-of-the-art performance on public real hand benchmarks including 
DexYCB and HO3D.

The reconstruction of hands in three-dimensional space constitutes a critical component across numerous 
applications, including virtual and augmented reality environments where seamless, jitter-free interaction 
between hands and virtual objects is imperative. Additional applications encompass human-computer 
interaction, sign language production, user identification, gaming, gesture recognition, and motion capture1–6. 
Despite significant advances in this domain, achieving accurate and temporally stable three-dimensional hand 
reconstruction remains a formidable challenge within the computer vision community.

Recent investigations have demonstrated considerable progress in three-dimensional hand reconstruction 
from static imagery7–10. Nevertheless, the accurate estimation of temporally stable hand shape and pose in real-
time continues to pose significant difficulties. These challenges stem from multiple factors, including the high 
dimensionality inherent in hand mesh representation, the substantial variation in hand shapes and poses across 
individuals, severe occlusion during natural movements, and inherent noise in depth data acquisition. These 
complications are further exacerbated in video sequences, where temporal consistency becomes paramount for 
the production of smooth and realistic hand motion.

The majority of existing methodologies primarily address hand reconstruction from individual frames11–14. 
However, temporal information is fundamentally essential for achieving smooth reconstruction of hand 
movements across sequential frames. Several investigations15–21 have incorporated temporal data within given 
sequences to enhance hand reconstruction accuracy. For instance,16 introduce a spatial-temporal graph structure 
applied to two-dimensional skeleton sequences, which is subsequently processed through graph convolutional 
networks to estimate three-dimensional poses from predicted two-dimensional pose sequences.17 propose a 
self-supervised neural network that integrates optical flow features with estimated two-dimensional joint 
heat maps to determine three-dimensional hand shape and pose. While these approaches leverage temporal 
information, they frequently fail to capture the fine-grained motion cues essential for consistent and accurate 
hand reconstruction.

In contrast to previous approaches, our methodology for hand shape and pose reconstruction is guided 
by two key observations. First, estimating the three-dimensional movement of hand mesh vertices provides 
substantially richer geometric and motion information compared to two-dimensional optical flow or joint-
based temporal feature fusion. Although joint-based methods effectively capture high-level motion patterns, 
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they often sacrifice fine-grained spatial details that are critical for accurate and consistent hand reconstruction. 
Our approach estimates the three-dimensional motion of hand points-scene flow-which captures precise point-
level displacements between consecutive frames. This explicit motion modeling is particularly crucial for hand 
reconstruction, where minute, intricate movements of the hand mesh significantly impact the accuracy of 
shape and pose estimation. Drawing inspiration from advances in LIDAR-based scene flow22–24, we employ 
scene flow to address temporal inconsistencies and errors in single-frame reconstructions. By tracking the 
three-dimensional motion of hand vertices and joints, our method achieves more accurate and coherent results 
compared to static or joint-based methodologies.

Second, the point cloud representation of depth sequences offers superior suitability for our task. While this 
representation circumvents the limitations associated with voxelization or two-dimensional projections, it is 
not the primary focus of our investigation. Rather, we leverage the point cloud representation to enable efficient 
processing of three-dimensional spatial information, which complements our scene flow-based approach. 
Inspired by the work of25 and the BiPointFlow-Net framework26, we adopt the point set representation, enabling 
our network to efficiently process the 2.5D information contained within depth maps.

To our knowledge, we present the first scene flow-based hand reconstruction pipeline, designated 
HandFlowNet, which generates accurate three-dimensional hand shapes and poses given consecutive pairs of 
multi-view depth frames (see Fig. 1 for an overview). Our method leverages scene flow to explicitly model 
the three-dimensional motion of hand vertices and joints, enabling temporally consistent and accurate hand 
reconstruction. Through the combination of a transformer-based hand shape estimator with a graph convolution-
based refinement network, HandFlowNet effectively addresses the challenges of temporal inconsistency and 
noisy depth data. This novel integration of scene flow estimation and multi-view point cloud processing 
establishes a new direction for three-dimensional hand reconstruction research.

For the initial frame, a novel transformer-based neural hand shape estimator predicts an accurate hand mesh 
and pose from the corresponding input multi-view point set. Subsequently, our method estimates the three-
dimensional motion of hand points between consecutive frames utilizing a neural scene flow estimator. This 
estimator processes consecutive pairs of multi-view point sets as input and establishes a one-to-one mapping 
between the two point sets to compute dense scene flow. Dense scene flow refers to the three-dimensional motion 
vectors of all points in the input point set, while sparse scene flow captures the three-dimensional motion of 
hand joints and mesh vertices. The sparse scene flow is derived from the dense scene flow through application of 
the k-nearest neighbors algorithm (“Sparse scene flow estimation”).

To estimate the hand shape of the current frame, the sparse scene flow is added to the hand shape of the 
previous frame. However, to mitigate potential error accumulation caused by the scene flow estimation network, 
a graph convolution-based refinement network is introduced. This refinement network utilizes global and local 
features computed from the point set of the current frame to produce a more accurate and refined hand shape 
(“Method overview”).

In summary, we propose a novel approach for three-dimensional hand reconstruction from consecutive pairs 
of multi-view depth frames based on the three-dimensional scene flow of hands. The principal contributions of 
this paper are as follows:

•	 A novel hands scene flow estimation (SFE) approach which simultaneously and accurately estimates dense 
and sparse three-dimensional movement of hand joints and hand mesh vertices, respectively, from one frame 
to another (“Hand scene flow”).

•	 A new transformer-based neural network for three-dimensional hand pose and shape estimation (HSE) uti-
lizing multi-view point sets generated from multi-view depth maps (“Reference shape estimation”).

•	 A new graph convolution-based hand shape refinement network (RM) which employs global and local fea-
tures from point sets to further enhance hand pose and mesh estimation accuracy (“Hand shape refinement”).

•	 Extensive experiments on two challenging real hands benchmarks (DexYCB27 and HO3D28) demonstrate 
that HandFlowNet achieves superior or comparable results relative to existing methods (“ Evaluation of hand 
shape estimation” and “Evaluation of hand pose estimation”).

Related work
Hand pose and shape estimation from depth images and point sets is a critical problem in computer vision, 
influencing various applications. Over time, numerous approaches have been explored to address this challenge, 
alongside related methods for scene flow estimation from point sets.

Point cloud processing through deep learning
In the domain of point cloud processing, significant advances were made with the introduction of the PointNet 29 
and PointNet++  30 architectures, which brought groundbreaking improvements to the field. PointNet++   30 
particularly enhanced the preservation of geometric structures through the incorporation of ball query 
techniques and hierarchical clustering within a novel Set Abstraction Layer. This improvement allowed for better 
retention of the underlying geometric information present in point cloud data.

The advent of transformer architectures has led to numerous adaptations for three-dimensional point 
cloud processing tasks. Notably, 31 introduced Point Transformer, which applies vector attention-based feature 
aggregation to local neighborhoods of points, enabling more effective feature extraction. Similarly32,  achieved 
comparable performance with their Point Cloud Transformer through the application of Laplacian matrices for 
feature enhancement. Our proposed network architecture integrates these advancements by implementing a 
feature extractor comprising successive Set Abstraction layers 30 and Point Transformer blocks 31.
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Scene flow estimation from point sets
The concept of three-dimensional scene flow estimation was initially formulated by   33 as a correspondence 
problem, focusing on the determination of three-dimensional motion vector fields for points on surfaces within 
a scene. Early investigations in this field predominantly utilized RGB 34–43 and RGB-D 44–49 stereo image pairs to 
derive three-dimensional motion vectors from two-dimensional optical flow estimates. More recently, the field 
has expanded to include scene flow estimation from monocular RGB images 50–54, demonstrating the versatility 
of this approach.

With the increasing prevalence of depth cameras and significant breakthroughs in point cloud processing 
algorithms 29–32,55, a trend has emerged towards the direct estimation of three-dimensional scene flow from cloud 
pairs 23,56,57 in an end-to-end manner. FlowNet3D 58 pioneered this approach by introducing a PointNet 29-based 
flow embedding layer to address the correspondence problem between point sets. Subsequently, HPLFlownet 59 
enhanced this methodology through the incorporation of multi-scale learning and bilateral convolutions 60,61. 
PointPWCNet  62 achieved further significant improvements by implementing a coarse-to-fine estimation 
strategy within a pyramid-type network architecture.

Fig. 1.  HandFlowNet architecture. Given an estimated hand shape Ht and a pair of consecutive point sets 
(P Ct, P Ct+1), the Hand Scene Flow Estimator (SFE) module generates scene flow (SFM ) of hand mesh 
vertices and joints. For the first frame, Ht is extracted from P Ct through the reference hand shape estimator 
(HSE) module. For subsequent frames, the hand shape of the previous frame is fed back into SFE for tracking 
purposes. SFM  is added to Ht to obtain an initial estimate of hand shape for the next frame. To compensate 
for error propagation due to scene flow uncertainty in subsequent frames, Ht + SFM  is refined by the hand 
refinement module (RM) using the local and global features (LF t+1 and GF t+1, respectively) extracted from 
P Ct+1.
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Bi-PointFlowNet 22 introduced an innovative approach featuring bidirectional flow embedding layers that 
facilitate learning in both forward and backward flow directions, substantially improving the accuracy of scene 
flow estimation. In our research, we utilize a fine-tuned Bi-PointFlowNet as an off-the-shelf scene flow estimator 
for our experimental validations.

Hand reconstruction from depth images
Methods for hand shape reconstruction can be broadly categorized based on input type: two-dimensional 
depth image-based techniques 63–75 and three-dimensional data-based approaches 11,76–79. Due to the inherent 
lack of three-dimensional geometric information, two-dimensional depth image-based techniques suffer from 
perspective distortions  9. Consequently, three-dimensional data-based approaches utilizing voxels or point 
clouds are better suited for accurate hand shape and pose estimation tasks.

Among three-dimensional data-based methods, voxel-based approaches  9,78,79 employ three-dimensional 
convolutional neural networks, which, while effective, are computationally expensive. In contrast, point cloud 
processing networks  30,31 offer comparable or superior accuracy with significantly improved computational 
efficiency.  25,80 proposed PointNet 29-based networks for direct regression of hand joints utilizing point-wise 
probability distributions, establishing a foundation for this approach. SHPR-Net 81 improved upon this work 
through the integration of an auxiliary semantic segmentation module, while the Point-to-pose method  82 
further enhanced performance through residual permutation layers 83.

Recent advancements include HandFoldingNet  84, which introduced a multi-scale feature-guided folding 
mechanism for three-dimensional hand pose estimation, and HandOccNet 85, which improved shape estimation 
by transferring features from non-occluded to occluded regions through feature injecting transformer (FIT) and 
self-enhancing transformer (SET) blocks. HFL-Net  86 enhanced hand shape reconstruction by incorporating 
features extracted from occluding objects, while DiffHand  87 pioneered a diffusion-based framework with a 
novel cross-modality decoder for accurate modeling of vertex connectivity.

The Anchor-to-Joint regression network (A2J)  88 utilizes two-dimensional CNN-based local regressors to 
learn global-local spatial context for improved hand joint estimation. Adaptive Weighting Regression (AWR) 89 
combines pixel data from dense representations to estimate hand joint coordinates, effectively leveraging the 
strengths of both detection and regression approaches.  90 introduced virtual view selection and fusion modules 
specifically designed for pose estimation tasks. The Image-Point cloud Network (IPNet)  75 combines two-
dimensional CNNs for efficient initial estimation with iterative refinement in the point cloud domain to more 
effectively leverage three-dimensional geometry.

Graph convolutional neural networks (GCNN) 91–96 have recently demonstrated significant benefits for the 
refinement of hand pose and shape estimates. Our proposed HandFlowNet also incorporates a GCNN-based 
refinement module to enhance the accuracy of hand reconstruction.

Hand reconstruction using temporal information
Temporal information inherent in video sequences has been successfully utilized in various hand-related tasks, 
including pose estimation  28,97,98, shape estimation  99, gesture recognition  15,100–103, and hand tracking  97,104, 
typically using RGB image sequences as input data. Self-supervised and semi-supervised networks  18,105,106 
frequently employ cyclic-consistency losses as temporal guides to enhance training efficiency.

Notable contributions in this area include the work of Cai et al. 16, who proposed a spatial-temporal graph 
convolutional neural network to simultaneously exploit geometric and temporal consistency in hand pose 
estimation. Wen et al.  15 introduced a hierarchical temporal transformer specifically designed for exploiting 
temporal consistency across frames. Chen et al.  17 implemented temporal cycle-consistency learning 
techniques 107 applied to two-dimensional optical flow for estimating hand poses throughout video sequences.

H2ONet 108 significantly enhances three-dimensional hand mesh reconstruction quality by exploiting non-
occluded information from multiple frames through finger-level occlusion-aware feature fusion. Zhang et al. 109 
proposed the Pyramidal Mesh Alignment Feedback (PyMAF) method for generating well-aligned meshes across 
temporal sequences. VIBE  19 employs a self-attention-based adversarial network to generate kinematically 
plausible three-dimensional pose and shape estimations from video without requiring in-the-wild ground-truth 
three-dimensional labels. TCMR 21 enhances temporal consistency through effective fusion of features from past 
and future frames using an intelligent feature integration architecture. Deformer 20 improves accuracy through 
a dynamic fusion transformer that learns spatial-temporal features specifically designed to handle occlusions.

In contrast to these approaches, our method utilizes three-dimensional scene flow estimated from temporally 
consecutive point clouds as a temporal indicator to directly predict three-dimensional hand shape and pose 
simultaneously, without requiring the entire video sequence. To the best of our knowledge, this represents the 
first attempt to incorporate three-dimensional scene flow as temporal information for simultaneous hand shape 
and pose estimation.

Multi-view hand reconstruction
The fusion of multiple hand views represents a challenging multi-view stereo (MVS) problem. Several approaches 
address this challenge by extracting two-dimensional features from each view and subsequently merging them 
in feature space  110–114. Alternative methodologies extract three-dimensional features directly from point 
clouds 115–118 using three-dimensional convolutional neural networks or point cloud processing networks.

POEM  119 represents a state-of-the-art network that fuses two-dimensional features in three-dimensional 
space through sophisticated feature aggregation and structure-conscious vertex query mechanisms.  120 
implemented a cross-view fusion method for multi-view aggregation in a self-supervised manner. HaMuCo 121 
integrated single-view estimators through a cross-view interaction network. SiMA-Hand 122 improved accuracy 
in occluded regions using Single-to-Multi-view Adaptation through feature fusion at image, joint, and vertex 
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levels. MLP Hand 123 employs a multi-view feature infusion network for tri-axis modeled per-bone reconstruction 
of hands, achieving superior real-time performance.

In contrast to these complex fusion approaches, our HandFlowNet implements a more straightforward yet 
effective methodology by directly merging point clouds into a global frame of reference using camera calibration 
matrices, simplifying the reconstruction process while maintaining high accuracy.

Method overview
Figure 1a illustrates our proposed approach for 3D hand reconstruction. Given a pair of temporally consecutive 
depth image frames, our objective is to accurately estimate the 3D hand shape and pose of the second frame 
Ht+1 ∈ R3×(V +J), where V = 778 represents MANO124 hand mesh vertices and J = 21 denotes MANO 
hand joints. The input depth images Dt and Dt+1 are transformed into 3D point sets P Ct, P Ct+1 ∈ R3×N , 
where N is the number of 3D points per point set (see  “Point set representation of depth image”). The hand scene 
flow estimator (SFE) computes the scene flow of hand SFM , which represents the 3D movement of hand mesh 
vertices and joints from P Ct to P Ct+1 (see “Hand scene flow”).

For the initial frame in an image sequence, a reference hand shape and pose Ht is estimated using a reference 
hand shape estimator (HSE) based on a neural transformer network (see “Reference shape estimation”). The 
hand shape and pose Ht+1 corresponding to the subsequent input point set P Ct+1 is obtained by adding the 
scene flow of hand SFM  to the reference hand shape Ht is given in Eq. (1):

	 Ht+1 = Ht + SFM � (1)

It is important to note that the reference hand shape estimator is exclusively utilized for generating hand shape 
and pose for the first frame in a given image sequence. For tracking during subsequent frames, Ht+1 is recursively 
fed back to the input of the Scene Flow Estimator via a multiplexer. To mitigate error accumulation inherent in 
the Scene Flow Estimator, the hand shape and pose estimated from Equation 1 is further refined using a hand 
refinement module (RM) (see “Hand shape refinement”). In this module, local and global features extracted 
from the input point set P Ct+1 using neural transformer networks (see “Feature extractors”) are concatenated 
with the scene flow based hand shape and pose estimate. This concatenated representation forms an input graph 
which is processed through GCNN to produce the final refined hand shape and pose (see “GCNN-based shape 
refinement”).

The proposed HandFlowNet approach
In this section, the architecture and methodology of the proposed HandFlowNet pipeline are detailed. The 
approach effectively harnesses the temporal information embedded within the 3D motion of hand points across 
consecutive frames, represented as scene flow. For the first time, the scene flow of hand mesh vertices and joints 
is leveraged to accurately reconstruct both 3D hand shape and pose, thereby offering a novel perspective in hand 
motion modeling.

The transformation of depth images into single-view and multi-view point set representations is discussed 
in “Point set representation of depth image”. The detailed architecture of the proposed hand mesh scene flow 
estimator is elaborated in “Hand scene flow”. “Hand shape refinement” describes the hand refinement module, 
which integrates transformer and graph convolution-based deep networks to enhance hand pose and shape 
predictions. Finally, in “Reference shape estimation”, a neural transformer-based reference hand shape estimator 
is introduced, facilitating robust shape reconstruction.

Point set representation of depth image
The input depth images Dt and Dt+1 are transformed into corresponding point set representations P Ct and 
P Ct+1 for each camera viewpoint by utilizing the camera intrinsic parameters. Subsequently, all viewpoints are 
merged using the camera extrinsic parameters to construct unified multi-view point sets. The transformation 
from a depth image Dt to its point set representation P Ct is performed in five distinct steps, as illustrated in 
Fig. 2.

First, the raw depth image is multiplied by a hand mask to suppress all pixels that do not belong to the hand 
region. Second, the camera intrinsic parameters are employed to project the non-zero pixels of the hand region 
into 3D camera coordinates. Due to inaccuracies in the hand mask, outliers appear in the hand point set, as 
indicated in orange in the top right and bottom left images of Fig. 2. In the third step, these outliers are removed 
using the DBSCAN density-based clustering algorithm 125. The point set is partitioned into clusters based on 
two constraints: (i) the maximum distance between any two points within the same cluster does not exceed 5 
mm, and (ii) each cluster must contain at least 5 points. The largest cluster is retained, while smaller clusters are 
discarded. Fourth, the point sets are transformed from camera 3D coordinates to world 3D coordinates using 
the camera’s extrinsic parameters. Finally, in the fifth step, all single-view point sets are concatenated to obtain 
a unified multi-view point set per frame, as all individual point sets have already been transformed into world 
3D coordinates.

The final multi-view point set (as depicted in Fig. 2) varies in point count depending on the hand posture 
and the degree of occlusion. In most cases, the number of points is sufficiently large; to ensure consistency, 4096 
points are randomly subsampled from each set. In rare cases where a set contains fewer than 4096 points, points 
from the existing set are randomly selected and duplicated to reach this number, ensuring uniformity. For the 
DexYCB dataset, multi-view point sets containing fewer than 1024 points are discarded, as they indicate frames 
in which the hand is not visible.
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Hand scene flow
As mentioned earlier, our main idea is to exploit the scene flow information between point sets to implicitly 
include the temporal information in a sequence for the estimation of hand shape. DexYCB and HO3D datasets 
do not provide scene flow ground truth. For this reason, we generate the sparse scene flow of hand mesh vertices 
by exploiting the movement of hand mesh vertices between previous and current frames. In the following 
subsections, we explain our method for annotating DexYCB dataset sequences for dense and sparse scene flow, 
and deep network architectures for scene flow estimation.

Our scene flow estimator comprises three primary stages. Initially, we generate ground truth scene flow 
annotations, as detailed in “Scene flow annotation”. This process begins by computing sparse scene flow at the 
vertices of the hand mesh, derived from the differences in their 3D positions across consecutive frames. These 
sparse annotations are subsequently propagated to the entire observed hand surface, yielding dense scene flow for 
all points in the point cloud using a k-nearest neighbors (k-NN) approach. Next, we train a deep neural network 
to estimate dense scene flow directly from pairs of point sets, as described in “Dense scene flow estimation”. 
Finally, for tracking the hand mesh and joints, we extract sparse scene flow at key locations from the dense 
predictions using a k-nearest neighbors (k-NN) approach, as outlined in “Sparse scene flow estimation”.

The deep neural network, combined with the subsequent k-NN algorithm, constitutes the Hand Scene Flow 
Estimator (SFE), as illustrated in Fig. 1a.

Scene flow annotation
To obtain scene flow ground truth between given point sets, accurate point-to-point correspondences between 
3D points are required. Once these correspondences are established, the scene flow ground truth SFP  of any 3D 
point P is defined as a vector directed from the location of this point in the previous frame Pt to its location in 
the current frame Pt+1 is given in Eq. (2),

	 SFP = Pt+1 − Pt� (2)

The DexYCB dataset provides comprehensive 3D hand shape annotations, enabling the derivation of sparse scene 
flow for hand mesh vertices, denoted as SF M  (illustrated in Fig. 4a). This sparse scene flow SF M , comprising 
scene flow vectors at the locations of hand mesh vertices, is obtained through the Eq. (3):

	 SF M = Ht+1 − Ht� (3)

where Ht and Ht+1 represent the known 3D hand shape annotations of two consecutive frames provided by the 
DexYCB dataset. The underlying assumption is that the scene flow within a local patch (or a group of 3D points) 
representing a rigid body (i.e., the hand) maintains relative consistency. Based on this fundamental assumption, 
dense scene flow annotations SF D  (depicted in Fig. 4b), which comprise scene flow vectors at the locations of 
all 3D points in point set P Ct, can be effectively deduced from the known SF M  annotations.

When the hand mesh vertices and joints Ht are overlaid on the point set P Ct, a mixed point set is formed, 
containing points from both Ht and P Ct. Within this integrated point set, the scene flow SF M  at the locations 
of Ht is already known, while the scene flow SF D  remains to be determined. In such a mixed point set scenario, 
the unknown scene flow SF D  can be reliably estimated from the known scene flow SF M  of neighboring points 
through the application of the k-nearest neighbors (k-NN) algorithm. Consequently, the scene flow SF Di  of 

Fig. 2.  Multi-view point sets. The input depth image is first refined by applying a hand mask and subsequently 
transformed into camera 3D coordinates utilizing the camera’s intrinsic parameters. The resulting point set 
inherently contains outliers (illustrated in orange), which are removed through the DBSCAN clustering 
algorithm 125. Subsequently, the point set is projected from camera 3D coordinates to world 3D coordinates 
using the camera’s extrinsic parameters. Once the point sets for all views are obtained, they are concatenated to 
construct a comprehensive multi-view point set representation.
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the ith point in P Ct is computed as the mean of scene flow vectors of its k-nearest vertices belonging to Ht, as 
given in Eq. (4):

	
SFDi = 1

k

k∑
j=1

SF Mj � (4)

where SF Mj  represents the scene flow vector of the jth neighbor belonging to Ht, as illustrated in Fig. 3. The 
quality of the estimated SF D  is systematically verified by overlaying the point set P Ct+1 with the transformed 
point set P Ct + SF D . The resulting overlay visualizations are presented in Fig. 4c, d. In these visualizations, the 
blue color represents P Ct+1 while red depicts P Ct + SF D . The high degree of alignment observed between 
these two point sets serves as a robust indicator of the quality and accuracy of the dense scene flow annotations 
SFD  derived through the proposed methodology.

Dense scene flow estimation
Given input point sets P Ct and P Ct+1, a set of 3D motion vectors (i.e., the dense scene flow SF D) corresponding 
to each 3D point in P Ct is estimated. Scene flow estimation represents a widely investigated research area, with 
numerous state-of-the-art deep learning architectures designed specifically for point cloud based scene flow 
estimation that achieve remarkable accuracy22,23,126.

Fig. 4.  Scene flow annotations for DexYCB27. (a,b) Depict sparse (SF M ) and dense (SF D) scene flow 
annotations, respectively. Here, the color signifies normalized scene flow magnitude with blue as lowest and 
green as highest value. (c,d) Represent the point set P Ct+1 (blue) overlaid on P Ct + SFD  (red). This figure 
is best viewed in color.

 

Fig. 3.  Dense scene flow annotations. SF D  of point set P Ct with no scene flow annotations can be estimated 
by averaging the sparse scene flow annotations SF M  of the k-nearest vertices of each point of P Ct in hand 
mesh Ht. This figure is best viewed in color.
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Bi-PointFlowNet22 is employed as an off-the-shelf dense scene flow estimator in this work. This particular 
architecture is selected primarily for two compelling reasons: (i) it achieves superior performance on the 
challenging real-world KITTI benchmark127, and (ii) it demonstrates enhanced cross-dataset generalization 
capabilities, as evidenced by the direct application of the model trained on the synthetic FlyingThings3D 
dataset128 to KITTI evaluations without requiring fine-tuning or normalization procedures. The Bi-PointFlowNet 
architecture implements a sophisticated coarse-to-fine scene flow estimation approach within a pyramid-like 
structural framework, drawing inspiration from the seminal PointPWCNet design62. Additional architectural 
details of this network are provided comprehensively in the supplementary material for interested readers. Bi-
PointFlowNet, originally trained on FlyingThings3D, exhibited suboptimal performance on our hand datasets 
due to inherent scale disparities between the training and target domains. To address this limitation, we adapted 
the network architecture for hand-specific applications through systematic input scaling and subsequent fine-
tuning on dense scene flow annotations (detailed in “Scene flow annotation”). The scaling methodology and 
fine-tuning procedures are comprehensively analyzed in “Ablation studies” and “Evaluation of hand scene flow 
estimation”, respectively.

When the input point sets are processed through Bi-PointFlowNet, the network generates estimated dense 
scene flow vectors SFD  at the precise location of each 3D point in the point set P Ct. A representative example 
of SFD  estimation resembles the visualization presented in Fig. 4b, providing a clear illustration of the estimated 
flow field.

Sparse scene flow estimation
Since the primary objective of this work is to track the 3D hand shape and pose using scene flow, an accurate 
estimation of the sparse scene flow SF M  of hand mesh vertices and joints is essential (as illustrated in Fig. 4a). 
Figure 1b illustrates the methodological approach for estimating sparse scene flow SF M  from the previously 
computed dense scene flow SF D . When the hand mesh vertices and joints Ht are overlaid on the input point 
set P Ct, a heterogeneous mixed point set is formed, consisting of points from both Ht and P Ct. Within this 
integrated point set, the scene flow SF D  at locations corresponding to P Ct is known, whereas the scene flow 
SF M  at locations corresponding to Ht remains undetermined.

Given such a mixed point set configuration, the unknown scene flow SF M  can be systematically estimated 
from the known scene flow SF D  of neighboring points through the application of the k-nearest neighbors (k-
NN) algorithm. Specifically, the scene flow vector SF Mi  of the ith point in Ht is computed as the arithmetic 
mean of dense scene flow vectors SF Dj  of the k-nearest neighbors of this ith point belonging to P Ct, as given 
in Eq. (5):

	
SFMi = 1

k

k∑
j=1

SF Dj � (5)

This bidirectional approach to scene flow estimation-from dense to sparse and vice versa-creates a robust 
framework for accurate hand tracking that effectively leverages the complementary strengths of both 
representation modalities.

Hand shape refinement
The proposed GCNN-based refinement module addresses inaccuracies in initial hand shape and pose estimates 
through a dual-branch architecture that exploits both global contextual information and local geometric features 
extracted from the input point cloud. The module employs two parallel processing pathways: one dedicated 
to shape refinement and another to pose refinement. Each branch integrates the coarse initial estimate with 
global contextual features and local geometric descriptors, subsequently applying Graph Convolutional Neural 
Networks (GCNNs) that influence the inherent topological structure of hand anatomy to predict precise vertex-
wise and joint-wise corrections. This architectural design ensures the preservation of both global structural 
coherence and fine-grained local geometric details, thereby enabling accurate and anatomically plausible hand 
reconstructions.

The hand shape and pose of the subsequent frame Ht+1 can be computed from the estimated reference hand 
shape Ht and sparse scene flow of the hand SFM  by utilizing Eq. (3). However, inaccuracies in the estimation of 
SFM  may propagate and exponentially amplify during hand tracking across successive frames. For this critical 
reason, the initially estimated hand shape and pose (i.e., Ht+1 = Ht + SFM ) necessitates refinement based on 
discriminative features extracted from the point set P Ct+1. The proposed Refinement Module (RM) operates 
through a two-stage process: first, it extracts comprehensive local and global features from the point set P Ct+1, 
and subsequently, it employs these multi-scale features within GCNN to estimate the final refined hand shape 
and pose Ht+1 with enhanced precision.

Feature extractors
Given an input point set and a scene flow based hand shape and pose estimate, the primary objective of the feature 
extractors is to derive complementary local and global features LF t+1 and GF t+1, respectively. The framework 
incorporates two specialized feature extractors: a global feature extractor for capturing holistic contextual 
information and a local feature extractor for preserving fine-grained geometric details. These feature extractors 
are architected upon a synergistic combination of Set Abstraction Layers (SAL) and Point Transformer Layers 
(PTL), drawing inspiration from the well-established PointNet++30 and Point Transformer31 architectures.

Set abstraction layer (SAL): this specialized layer learns hierarchical features from the input point set through 
a systematic three-step process. First, the input point set is down-sampled into a more compact representation 
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using the iterative farthest point sampling (FPS)129 algorithm, which ensures maximum spatial coverage. 
Second, a grouping operation is performed wherein the local neighbors of each point within the down-sampled 
point set are collected from the original input point set utilizing the k-Nearest Neighbors (k-NN) algorithm. 
Finally, a shared PointNET29 architecture is applied to each constructed group to estimate the respective output 
hierarchical feature corresponding to each point of the down-sampled point set. Comprehensive architectural 
details of this layer are provided in the supplementary material for thoroughness. Point transformer layer (PTL): 
this layer applies vector attention mechanisms to the features extracted by the preceding Set Abstraction Layer. 
The fundamental purpose of this transformer-based layer is to adaptively enhance the contribution of 3D point 
features based on their relative spatial configuration within a local neighborhood, thereby capturing long-range 
dependencies in the point cloud data. Detailed architectural specifications of this layer are elaborated in the 
supplementary material for completeness.

Global feature extraction: the global feature extractor component (see Fig. 1c) is constructed using four Set 
Abstraction Layers (SAL) and three Point Transformer Layers (PTL). The precise hyper-parameters selected for 
these complementary layers are meticulously documented in Tables 1 and 2.

While SAL-1, SAL-2, and SAL-3 generate per-point features without aggregation, SAL-4 specifically returns 
the final aggregated global feature vector that encapsulates the holistic geometric properties of the input point 
cloud.

Local feature extraction: as depicted in Fig. 1d, the local feature extraction component is implemented 
through a single specialized Set Abstraction Layer (SAL-5), with its hyper-parameters enumerated in Table 1. 
SAL-5 exhibits a distinctive characteristic compared to other SAL layers in that it deliberately omits the Farthest 
Point Sampling (FPS)129 operation. Instead of generating a sub-sampled point set through FPS, it directly 
utilizes the scene flow based hand shape and pose estimate (i.e., Ht + SF M ) as query points and systematically 
computes the features in the vicinity of these anatomically meaningful points. Through this dual-feature 
extraction approach, both global contextual information and local geometric details are effectively captured, 
providing a comprehensive feature representation for the subsequent hand shape refinement process. The global 
features provide the structural understanding of the entire hand, while local features preserve the fine-grained 
details necessary for accurate articulation modeling.

GCNN-based shape refinement
The core of the shape refinement module is GCNN. The initial hand shape estimate is obtained by combining 
Ht and SFM . However, this estimation of Ht+1 inherently contains uncertainties due to the prediction errors 
associated with both Ht and SFM . The primary objective of the GCNN is to address these uncertainties and 
eliminate slight discrepancies through alignment correction.

Graph convolutional neural networks91–93 have demonstrated significant effectiveness in solving refinement 
problems, particularly in the context of 3D shape and pose estimation. Our proposed GCNN architecture takes 
as input the scene flow-based hand shape and pose estimate (i.e., Ht + SF M ), along with global and local 
features extracted from the feature extractors. It then outputs the final refined hand shape and pose, denoted as 
Ht+1. The architecture of the proposed graph convolutional neural network (GCNN) (see Fig. 1e) is inspired 
by the works of94 and95. The formulation of the GCNN layer follows the methodology introduced by96 is given 
in Eq. 6:

	 G
H̃

= F(ÂGHW),� (6)

where GH represents the input hand shape or pose graph, GH̃ denotes the output refined hand shape or 
pose graph, F(·) is the activation function, W corresponds to the learnable weights matrix, and Â is the row-
normalized graph adjacency matrix.

Sr. Name Mdim Fdim Ns

1 PTL-1 64 64 4

2 PTL-2 128 128 4

3 PTL-3 256 256 4

Table 2.  Feature extractor—PTL hyper-parameters.

 

Sr. Name Nout Ns Fin MLP Fout

1 SAL-1 512 4 3 128, 128, 246 256

2 SAL-2 512 4 256+3 256, 256, 512 512

3 SAL-3 256 4 512+3 512, 512, 1024 1024

4 SAL-4 1 4 1024+3 1024, 2048, 4096 4096

5 SAL-5 778 4 3 32, 64, 128, 256, 512, 1024 1024

Table 1.  Feature extractor—SAL hyper-parameters.
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Two separate GCNNs are employed for refining the hand shape and hand pose, respectively. For the hand 
shape refinement, the adjacency matrix is derived from the standard MANO mesh124. In contrast, for the hand 
pose refinement, the adjacency matrix is constructed based on the skeleton definition illustrated in Fig. 5 The 
input graphs are constructed using the 3D locations of hand vertices and joints as graph nodes. Global and local 
features are appended to each node of the input graphs, which are then fed into the first graph convolutional 
layer of the corresponding GCNN.

The proposed architecture consists of five graph convolutional layers in both GCNNs. The first four layers 
have an output node feature dimension of 512, while the final layer produces the refined hand shape and pose 
Ht+1. This multi-layer design ensures a progressive refinement of the hand mesh, resulting in accurate and 
realistic hand shape and pose estimates. Each GCNN branch processes node-specific feature vectors constructed 
by concatenating 3D spatial coordinates with both global and local feature representations. Specifically, each 
node receives a 2051-dimensional input vector comprising 3D coordinates (3D), a global contextual feature 
(1024D), and a local geometric feature (1024D). The shape refinement branch operates on the adjacency 
matrix derived from the MANO mesh topology, while the pose refinement branch utilizes a kinematic skeleton 
adjacency matrix (detailed in Fig.5). Both adjacency matrices undergo row-normalization according to Eq. 
(6) to ensure numerical stability and convergence. The complete architectural specifications for both branches 
are presented in Table 3. Notably, the two branches maintain independent parameter sets to enable specialized 
learning for their respective tasks. This dual-branch design draws inspiration from the architectural frameworks 
proposed by Litany et al.94 and Kolotouros et al.95.

Reference shape estimation
To track 3D hand shape and pose throughout a sequence, a reference or initial hand shape and pose for the 
first frame is required. This initial hand shape is estimated using a reference hand shape estimator (HSE), 
which consists of a global feature extractor (see “Feature extractors”) and a three-layer multilayer perceptron 
(MLP). Initially, a global feature vector is extracted from the input point set using the global feature extractor, 
as illustrated in Fig. 1c. Subsequently, this global feature vector is utilized to regress the hand shape and pose 

Layer Input dim Output dim Operation

Input 3 + 1024 (global) + 1024 (local) 2051 Concatenation

GraphLinear 2051 1024 Linear

GraphResBlock 1 1024 512 Residual GCN

GraphResBlock 2–5 512 512 Residual GCN (4×)

GraphResBlock 6 512 64 Residual GCN

GraphResBlock 7 64 32 Residual GCN

GroupNorm + ReLU 32 32 Normalization + activation

GraphLinear 32 3 Linear (regress coordinates)

Table 3.  GCNN architecture for shape and pose refinement. Both branches employ identical layer 
architectures, differing solely in their respective adjacency matrices: the shape branch utilizes the MANO 
mesh adjacency, while the pose branch employs the kinematic joint adjacency (illustrated in Fig. 5). Each 
node receives input comprising concatenated 3D coordinates, a 1024-dimensional global feature, and a 
1024-dimensional local feature.

 

Fig. 5.  Kinematic joint adjacency template. Illustration of the 21-joint hand skeleton topology employed 
in the pose refinement GCNN branch. Edges represent kinematic adjacency relationships as defined by the 
anatomical joint hierarchy, which forms the structural basis for the adjacency matrix Â utilized in the pose 
refinement network.
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through an MLP. The MLP consists of three fully connected layers, each employing a ReLU activation function 
and batch normalization (BN)130. The significance of these architectural choices is demonstrated in the ablation 
study (see Table 4).

HandFlowNet training
Following the generation of multi-view point sets (see “Point set representation of depth image”), the training 
of HandFlowNet is performed in a sequential manner. Initially, the reference hand shape estimator and the 
scene flow estimator are trained separately. Subsequently, the entire HandFlowNet pipeline is fine-tuned in an 
end-to-end fashion. Training is conducted using a single NVIDIA RTX 3090 GPU, with the Adam optimizer131 
employed for optimization.

Training of reference hand shape estimator (HSE)
The reference hand shape estimator is trained for 100 epochs using the hand shape and pose annotations 
provided by the DexYCB dataset27. A batch size of 96 is utilized, with an initial learning rate set to 0.01, which 
is progressively reduced by a factor of 0.314 at every 10th epoch. The loss function is defined as a weighted 
combination of mean squared error and mean absolute error, formulated as given in Eq. (7):

	
L = 1

N

N∑
i=1

[
(p̂i − pi)2 + |p̂i − pi|

]
� (7)

where pi and p̂i represent the ground truth and predicted locations of the ith 3D point in Ht, respectively.
Prior to training, both the input point set (P Ct) and the corresponding ground truth hand shape and pose 

annotations (Ht) undergo mean normalization, where the mean value of the input point set (P Ct) is subtracted 
from each point. To further normalize the scale, all points in P Ct and Ht are multiplied by a factor of 10 to 
ensure values lie within the range [−1, +1]. This normalization is performed as given in Eq. 8:

	 pi := (pi − P Ct) × 10� (8)

where pi denotes any 3D point location in P Ct or Ht.

Training of hand mesh scene flow estimator (SFE)
The scene flow estimator is initialized with Bi-PointFlowNet22, which is pre-trained on the FlyingThings3D 
dataset128. For adaptation to the DexYCB dataset, fine-tuning is performed for 20 epochs with a learning rate of 
0.001 and a batch size of 20. The dense scene flow annotations, generated using the method described in “Scene 
flow annotation”, serve as the supervision signal. The loss function employed follows the mean squared error 
formulation as defined in22.

Training of HandFlowNet
For training the complete HandFlowNet architecture, the weights of the reference hand shape estimator, 
scene flow estimator, and global feature extractor remain fixed, while the local feature extractor and the graph 
convolutional neural network are optimized. HandFlowNet is trained for 30 epochs with an initial learning rate 
of 0.001 and a batch size of 96. The loss function employed is the same as in Eq. (7).

To ensure consistency in feature representation, the input point sets (P Ct, P Ct+1) and the target hand 
shape and pose annotations (Ht+1) are normalized in the same manner as described earlier. Specifically, the 
mean of the second point set (P Ct+1) is subtracted, followed by scaling of all values to the range [−1, +1] as 
given in Eq. (9):

	 pi := (pi − P Ct+1) × 10� (9)

where pi represents any 3D point in P Ct, P Ct+1, or Ht+1.

Sr. BN Act. Layers GF t  Size MPVPE (mm)

1 No ReLU 3 1024 33.25

2 Yes ReLU 2 1024 10.91

3 Yes ReLU 3 1024 10.52

4 Yes ReLU 4 1024 10.57

5 Yes ReLU 5 1024 10.79

6 Yes Leaky ReLU 3 1024 10.65

7 Yes ReLU 3 2048 10.40

8 Yes ReLU 3 4096 9.76

9 Yes ReLU 3 8192 12.40

Table 4.  Ablation study on the architecture of HSE.
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For the HO3D dataset, fine-tuning is performed on the model pre-trained on DexYCB for an additional five 
epochs to adapt to the dataset characteristics.

Experiments
We conduct both qualitative and quantitative evaluations of our approach on multi-view point sets derived from 
the DexYCB dataset27 and the HO3D dataset (see “Point set representation of depth image”). Additionally, a 
series of ablation studies are performed to validate the effectiveness of key design choices in our method.

Datasets and evaluation metrics
DexYCB dataset: DexYCB is a real-world hand dataset comprising 100 RGB-D sequences captured from eight 
different viewpoints. It provides annotated hand masks along with pose and shape parameters in the form of 
MANO representations132. The hand shape and pose annotations (Ht) are obtained using Manopth133. Following 
the approach of119, only sequences containing the right hand are utilized. Furthermore, the validation and test 
splits of subject S0 are merged to form a single validation set. In our multi-view point set representation (see 
“Point set representation of depth image”), the DexYCB dataset comprises 25,387, 1,412, and 4,951 samples in 
the training, validation, and test splits, respectively.

HO3D dataset: we employ version 3 of the HO3D dataset, which consists of multiple RGB-D sequences 
captured from varying viewpoints. Similar to DexYCB, this dataset includes annotated hand masks and hand 
pose/shape information represented using MANO parameters132. The hand shape and pose annotations (Ht) 
are extracted using Manopth133. Following the methodology of119, sequences captured from five viewpoints are 
used, adhering to their train/test split strategy.

In the multi-view point set representation (see “Point set representation of depth image”), the HO3D dataset 
comprises 9,087 and 2,706 samples in the training and test splits, respectively. Consistent with POEM119, the test 
split is also used for validation, and results should be interpreted accordingly. The HO3D test split is used for 
validation to enable direct and fair comparison with state-of-the-art methods, ensuring consistent benchmarking 
across the literature. To enhance the diversity of training samples, data augmentation is performed by applying 
3D rotations. Specifically, point clouds are rotated with roll and pitch angles selected from the set {0, 90, 180, 
270} degrees, thereby increasing the number of training samples by a factor of 16.

Evaluation metrics: the evaluation of scene flow estimation is conducted using the 3D Endpoint Error 
(EPE3D, mm), which computes the average Euclidean distance between predicted and ground truth scene 
flow vectors for both dense scene flow SFD  and sparse hand scene flow SFM . For hand shape estimation, the 
Mean Per-Vertex Position Error (MPVPE, mm) is used, measuring the average Euclidean distance between the 
predicted and ground truth 3D hand mesh vertices. Similarly, for hand pose estimation, the Mean Per-Joint 
Position Error (MPJPE, mm) is employed, which computes the average Euclidean distance between predicted 
and ground truth hand joints.

Additionally, root-relative versions of these metrics, MPVPE-RR (mm) and MPJPE-RR (mm), are evaluated 
by subtracting the root location (palm center) from both the predicted and ground truth hand shape/pose before 
computing MPVPE and MPJPE, respectively.

To assess temporal consistency, the acceleration error Accel-RR (mm/s²)19 is reported. This metric quantifies 
the difference between the predicted and ground-truth root-relative 3D hand joint accelerations, capturing the 
smoothness of motion predictions.

Ablation studies
The design choices of HandFlowNet are substantiated by training its modules on a 10% subset (i.e., subject-01 
only) of the multi-view DexYcb dataset, following the training methodology outlined in “HandFlowNet training”. 
These investigations focus exclusively on hand shape recovery. Consequently, the MPVPE (mm) metric is 
employed for method assessment.

Reference hand shape estimator (HSE): the reference hand shape estimator is trained with various hyper-
parameter configurations of a 3-layer MLP, as outlined in Table 4. Optimal performance is achieved with 
an MLP incorporating batch normalization and Leaky ReLU. Increasing the network depth does not yield 
substantial improvements; therefore, the MLP configuration consists of three fully connected layers with batch 
normalization and Leaky ReLU. After finalizing the MLP parameters, experiments are conducted on the global 
feature extractor using different global feature vector sizes (1024, 2048, 4096, and 8192). As indicated in Table 4, 
a 4096-dimensional global feature vector provides the best MPVPE (mm).

Hand mesh scene flow estimator (SFE): the Scene Flow Estimator is evaluated using the Bi-PointFlowNet 
backbone, pre-trained on the FlyingThings3D dataset, with validation performed on the multi-view validation 
split. The EPE3D (mm) of dense scene flow (SF D) depends on the scale of the input point sets. To address this, 
a scaling factor (S) is introduced and applied to the input point sets. An empirically determined optimal value 
of S = 15 is selected. Since the Scene Flow Estimator derives sparse scene flow of hands (SFM ) from the dense 
scene flow (SFD) using k-NN, the EPE3D (mm) of SFM  is influenced by the choice of k. Based on the ablation 
study results presented in Table 5, an optimal value of k = 15 is selected using the knee point rule of thumb for 
the k-NN algorithm.

Refinement module (RM): the effectiveness of global and local feature vectors in the refinement module (RM) 
is assessed through three experiments: (i) utilizing only the global feature, (ii) utilizing only the local feature, 
and (iii) utilizing both global and local features. As shown in Table 6, quantitative improvements are observed 
when both global and local feature vectors are incorporated. Additionally, superior performance is obtained 
by employing the pre-trained global feature extractor used in the reference hand shape estimator, rather than 
training a new one from scratch. Consequently, the global feature extractor weights are shared between the 
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reference hand shape estimator and the refinement module. For the ablation study on the Refinement Module, 
the global feature vector size is fixed at 1024.

Significance of scene flow: the essential role of scene flow is evaluated through an ablation study, in which 
the scene flow module is removed, resulting in a model that consists only of the Feature Extraction Module and 
the Refinement Module, as illustrated in Fig. 6. In the “Without scene flow” setting, the scene flow estimation 
module is omitted, and the model is retrained to predict hand shape and pose directly from the input point set 
of the current frame. The objective is to predict the hand shape and pose Ht+1 based on the point set P Ct+1 
and the initial hand shape and pose Ht provided by the reference hand shape estimator. Rather than directly 
enhancing hand reconstruction, scene flow functions as a mechanism for tracking hand shape and pose over 
time by providing explicit 3D motion information between consecutive frames. This temporal information plays 
a crucial role in propagating hand shape and pose across frames, facilitating error correction in single-frame 
predictions, and maintaining consistency in reconstruction. In comparison to the proposed HandFlowNet 
(Fig. 1a), the results presented in Table 7 emphasize the significance of scene flow as temporal information. 
Furthermore, the inclusion of Accel-RR results in Table 7 demonstrates the substantial improvement in temporal 
stability achieved through the integration of scene flow into the pipeline.

Sr. Model type MPVPE MPJPE Accel-RR

1 Without scene flow 12.20 12.03 9.35

2 With scene flow 8.95 9.15 6.26

Table 7.  Ablation study showing the significance of scene flow estimation on the DexYcb dataset.

 

Fig. 6.  Ablation study. We assess the role of scene flow by conducting an experiment without it. The initial 
hand estimate (Ht) is predicted using the hand shape estimator (HSE). Local (LF t + 1) and global (GF t+1) 
features are extracted by the feature extraction (FE) module, and the final hand shape Ht+1 is predicted using 
the refinement module (RM).

 

Sr. Features MPVPE (mm)

1 GF t  only 10.97

2 LF t  only 10.75

3 GF t  only with shared GFE 10.75

4 BothGF tandLF twith sharedGF E 10.50

Table 6.  Ablation study on RM. Both global and local features play a crucial role in refinement. Identical 
weights of the global feature extractor (GFE) are utilized for both P Ct and P Ct+1. Significant values are in 
bold.

 

k SFM  EPE3D (mm) k SFM  EPE3D (mm) k SFM  EPE3D (mm)

1 4.33 17 4.14 40 4.05

3 4.27 19 4.13 45 4.04

5 4.24 21 4.12 50 4.03

7 4.22 23 4.11 55 4.02

9 4.20 25 4.10 60 4.01

11 4.18 27 4.09 65 4.00

13 4.17 30 4.08 70 3.99

15 4.15 35 4.07 75 3.98

Table 5.  Ablation study on SFE for k with S = 15.
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Evaluation of hand scene flow estimation
The performance of the Scene Flow Estimator is evaluated on the DexYCB dataset in this subsection. The 
accuracy of hand shape reconstruction depends on the estimation of hand scene flow, making robust and 
accurate scene flow estimation essential for the proposed approach. To enhance performance, transfer learning 
is applied by fine-tuning the Scene Flow Estimator, which has been pre-trained on the FlyingThings3D dataset, 
using the multi-view training split (see “HandFlowNet training”).

Bi-PointFlowNet, pre-trained on FlyingThings3D, initially demonstrated suboptimal performance on 
hand datasets, achieving an EPE3D of 512.78 mm due to inherent scale disparities between domains. Domain 
adaptation through systematic input scaling by a factor of 15 (detailed in “Ablation studies”) substantially 
reduced the EPE3D to 4.51 mm. Subsequent fine-tuning on our dense scene flow annotations (described in 
“Scene flow annotation”) further improved performance, yielding an EPE3D of 2.39 mm.

A quantitative comparison between the pre-trained and fine-tuned Scene Flow Estimator, evaluated on the 
multi-view validation split, is presented in Table 8. The results indicate that fine-tuning improves the EPE3D 
(mm) of Scene Flow Estimator for both SFD  and SFM  by 47% and 34.20%, respectively, representing a 
significant margin of improvement.

Figure 7 visualizes the point-wise EPE3D (mm) of the estimated dense scene flow SFD  and sparse hand 
scene flow SFM  using a color map. Points with errors exceeding 10 mm are marked in red, while the remaining 
errors are colored according to the color scale. The qualitative results in Fig. 7 indicate that the estimation of 
dense scene flow SFD  is both robust and accurate, as the majority of points fall within the 0–2 mm error range. 
This observation aligns with the overall qualitative average EPE3D (mm) value of 2.39 mm, as reported in Table 
8. Such accuracy is expected because the dense scene flow ground truth annotations are not derived from real 
measurements but are estimated from the sparse scene flow ground truth (see “Scene flow annotation”). Figure 
7 further reveals that sparse hand scene flow SFM  estimation exhibits higher variation, with increased errors 
observed near the fingers. This behavior is attributed to occlusions, inaccuracies in depth measurement, and 
errors in mask annotations. Consequently, despite an overall qualitative average EPE3D (mm) value of 3.04 mm, 
scene flow errors exceeding 10 mm are expected near the fingertips. These errors may result in inaccuracies in 
hand pose and shape estimation by HandFlowNet. A detailed discussion on this issue is provided in “Evaluation 
of hand shape estimation”, where it is demonstrated that the Refinement Module effectively compensates for this 
error. The qualitative results in Fig. 7 further illustrate that a significant performance gain is achieved in sparse 
hand scene flow SFM  estimation following fine-tuning.

Evaluation of hand shape estimation
The HandFlowNet pipeline is evaluated on the DexYCB and HO3D datasets for the task of 3D hand shape 
estimation. The models are trained following the methodology outlined in “HandFlowNet training”. A 
quantitative comparison of the proposed method with the state-of-the-art (SoTA) approaches is presented in 

Fig. 7.  Scene flow error diagram. It shows the point-wise EPE3D (mm) according to the color map. Significant 
improvement can be observed in SFM  after fine-tuning without causing any performance degradation in SFD  
estimation. This figure is best viewed in color.

 

Model weights SFD  EPE3D (mm) SFM  EPE3D (mm)

Pre-trained 4.51 4.62

Fine-tuned 2.39 3.04
Improvement 47% 34.20%

Table 8.  Effectiveness of fine-tuning SFE on DexYCB. Significant values are in bold.
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Tables 9 and 10. The Mean Per-Vertex Position Error (MPVPE (mm)) values demonstrate that the HandFlowNet 
approach achieves competitive performance in hand shape estimation on both DexYCB and HO3D benchmarks.

The statistical distribution of MPVPE across the DexYCB dataset is illustrated in Fig. 12. The MPVPE exhibits 
a standard deviation of 6.18 mm and variance of 38.21 mm on the test partition.

Figure 8aillustrates the quality of hand shapes reconstructed by the reference hand shape estimator and 
HandFlowNet for five selected frames from DexYCB. The first column presents input point sets (P Ct in blue 
and P Ct+1 in green). The second and third columns visualize the scene flow vectors of dense scene flow (SFD) 
and sparse hand scene flow (SFM ), with colors representing the magnitudes of scene flow vectors according to 
the provided color map.

Columns four and five display the outputs of the reference hand shape estimator, where the predicted hand 
shape is shown in red in column five, while column four overlays the reference hand shape estimator output on 
the ground truth. Similarly, the hand shape predicted by HandFlowNet is presented in green in column nine, 
whereas column eight overlays the HandFlowNet output on the ground truth. The effectiveness of the Scene 
Flow Estimator in estimating the hand shape (Ht+1) without the Refinement Module is demonstrated in the 
sixth and seventh columns. The seventh column shows the scene flow-based hand shape (Ht+1 = Ht + SFM ) 
in blue, while the eighth column presents the ground truth overlaid on this estimate.

Since the initial hand shape and scene flow are estimated through deep neural networks, they remain 
susceptible to errors. However, the HandFlowNet pipeline effectively mitigates these errors from the reference 
hand shape estimator (HSE) and the scene flow estimator (SFE) to produce accurate hand shapes. The samples 
in Fig. 8a illustrate this capability. Figure 8a(b), a(d) depict cases where deviations in the initial hand shape 
reconstructed by HSE are passed to the input of the Refinement Module (RM). Despite these deviations, RM 
successfully corrects the errors, producing accurate outputs. Figure 8a(c), a(e) present cases where variations in 
the initial hand shape (red) due to HSE, combined with additional deformations and artifacts from SFE errors 
(blue), are observed. In particular, Fig. 8a(e) highlights a case involving significant hand movement, as indicated 
by the large scene flow vector magnitudes. Despite this challenging scenario, the HandFlowNet pipeline 
accurately predicts the hand shape and pose with high precision. The final outputs indicate that RM effectively 
eliminates these errors, resulting in a smooth hand shape. Additionally, Fig. 8a(a) presents a case where the 
initial hand shape is accurate, but translation errors and artifacts from SFE remain present. RM successfully 
addresses these errors as well.

Sr. Method Input data Multiview Temporal MPVPE↓ MPJPE↓ MPVPE-RR↓ MPJPE-RR↓ Accel-RR↓

1 THOR-Net11 RGB – – 23.70 25.60 – – –

2 METRO14 RGB – – – – – 38.70 17.40

3 PyMAF-X109 RGB – Yes – – – 29.60 9.30
4 HandOccNet85 RGB – Yes – – – 24.9 –

5 POEM119 RGB Yes – 17.20 17.28 21.45 21.94 –

6 MLP Hand123 RGB Yes – 18.69 18.70 23.28 23.76 –

7 ShapeGraFormer134 D – – 19.40 19.90 – – –

8 HandFlowNet (ours) Point Yes Yes 13.79 14.41 12.73 13.35 9.65

Table 10.  Quantitative comparison on HO3D Dataset (best results are in bold, while second best are italics).

 

Sr. Method Input data Multiview Temporal MPVPE↓ MPJPE↓ MPVPE-RR↓ MPJPE-RR↓ Accel-RR↓
1 MobRecon99 RGB – – 13.05 14.20 13.10 14.20 –

2 HFL Net86 RGB – – – 12.56 – – –

3 HandOccNet85 RGB – Yes 13.09 14.04 – – –

4 H2ONet108 RGB – Yes 12.70 13.70 – – –

5 VIBE19 RGB – Yes – 16.95 – 16.95 36.40

6 Deformer20 RGB – Yes – – – 13.64 31.70

7 TCMR21 RGB – Yes – 16.03 – 16.03 34.30

8 PyMAF-X109 RGB – Yes – – – 38.10 17.10

9 POEM119 RGB Yes – 6.13 6.06 7.21 7.30 –

10 SiMA-Hand122 RGB Yes – 12.78 13.25 – – –

11 DiffHand87 RGB+D – – 12.1 – – – –

12 A2J10 D – – – 23.93 – – –

13 IPNet75 D+Point – – – 8.03 – – –

14 HandFlowNet (ours) Point Yes Yes 9.45 9.67 8.61 8.80 7.25

Table 9.  Quantitative comparison on DexYCB Dataset (best results are in bold while second best are italics).
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The qualitative performance shown in Fig. 8a demonstrates the robustness of the proposed approach. Rather 
than directly enhancing hand reconstruction, the approach utilizes scene flow to ensure temporal consistency by 
tracking hand shape and pose across frames. Sparse scene flow estimates the 3D motion of hand mesh vertices 
and joints, enabling error correction in single-frame predictions through temporal propagation. For instance, 
as depicted in Fig. 8a(d), the Refinement Module corrects inaccuracies, such as the pinky finger’s position, by 
integrating scene flow with features from the current frame. Even in challenging scenarios where both HSE and 
SFE introduce errors, as shown in Fig. 8a(d), the Refinement Module demonstrates its robustness by effectively 
addressing these inaccuracies. Similarly, Fig. 9 illustrates the effectiveness of our method for 3D hand pose 

Fig. 8.  Qualitative results of 3D hand shape estimation task.
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estimation. As shown in Fig. 9, our HandFlowNet accurately estimates joint positions across various hand poses 
and interactions. Rows (a) through (e) represent different input scenarios, showcasing the model’s ability to 
handle diverse hand configurations. For example, in challenging cases like row (c) with partially visible fingers 
and row (e) with more complex articulations, the Refinement Module significantly improves the final joint 
predictions (green) compared to those without refinement (blue), bringing them closer to ground truth. The 
scene flow visualization (SFD  and SFM  in columns 2-3) demonstrates how our approach effectively captures 
the motion patterns that guide accurate pose estimation.

The results indicate that the HandFlowNet pipeline generates accurate hand shapes utilizing the estimated 
scene flow and the refinement network. Fig. 8b further demonstrates similar qualitative performance on sample 
frames from the HO3D dataset.

Evaluation of hand pose estimation
In this subsection, the HandFlowNet approach is evaluated on the DexYCB and HO3D datasets for the 3D hand 
pose estimation task. The models are trained following the methodology outlined in “HandFlowNet training”. 
The quantitative results of the proposed method, in comparison with state-of-the-art (SoTA) approaches, are 
presented in Tables 9 and 10. The Mean Per-Joint Position Error (MPJPE (mm)) values demonstrate that the 
HandFlowNet method achieves competitive performance relative to SoTA techniques.

Figure 10b illustrates the percentage of samples within varying error thresholds, compared against depth-
based methods, specifically IPNet 75 and 10. Our approach achieves the lowest MPJPE across nearly all thresholds. 
Additionally, Fig. 10a depicts the error distribution across individual finger joints, which is analyzed in greater 
detail in “Discussion”.

Furthermore, the statistical distribution of MPJPE across the DexYCB dataset is illustrated in Fig. 12. The 
MPJPE exhibits a standard deviation of 6.24 mm and variance of 38.93 mm2 on the test partition.

The visualization of 3D hand poses estimated by the reference hand shape estimator and HandFlowNet for 
sample frames on DexYcb is shown in Fig. 8a. The first column presents the input point sets. The second and 
third columns illustrate the estimated dense scene flow (SFD) and sparse hand scene flow (SFM ) using vector 
representations. Columns four and five depict the estimations from the reference hand shape estimator. The 
hand pose predicted by the reference hand shape estimator is displayed in red in column five, while column four 
presents the estimator’s output overlaid on the ground truth. Similarly, the hand pose predicted by HandFlowNet 
is displayed in green in column nine, while column eight overlays the HandFlowNet output on the ground truth. 
The sixth and seventh columns highlight the effectiveness of the Scene Flow Estimator in estimating hand pose 
without the Refinement Module. In the seventh column, the scene flow-based hand pose (Ht+1 = Ht + SFM ) 
is shown in blue, while the eighth column overlays the ground truth on this estimate. The qualitative results 
illustrated in Fig. 8a indicate that the proposed approach effectively recovers accurate 3D hand poses by utilizing 
hand joint scene flow estimations.

Fig. 9.  Qualitative results of 3D hand pose estimation task on DexYcb dataset. First column shows input point 
sets. Second and third columns show predicted SFD  and SFM  where the color represents magnitude of the 
scene flow vectors as per given color-map. Fifth column shows Ht (red) predicted by HSE. Seventh column 
shows Ht+1 (blue) estimated directly from SFM  without the RM. Ninth column shows the final Ht+1 (green) 
predicted by HandFlowNet after the RM. Fourth, Sixth and Eighth columns show the overlay of predicted 
shapes with respective ground truth (grey). This figure is best viewed in color.
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Runtime and model parameters
The proposed HandFlowNet processes a single forward pass in 39 ms with a batch size of 1 on an NVIDIA RTX 
3090 GPU. This efficiency enables real-time deployment, achieving a throughput of 25 frames per second (FPS). 
The model architecture consists of 64 million parameters. Individually, HSE, SFE, and RFM comprise 37, 8, and 
19 million parameters, respectively, with inference times of 5, 19, and 15 ms per frame (batch size 1) on identical 
hardware as specified in Table 11 (Fig. 11).

Discussion
The quantitative results presented in Tables 9 and 10, coupled with the qualitative findings illustrated in Figs.8,9, 
and 10b, demonstrate the competitive performance of HandFlowNet-a novel scene flow-based hand tracking 
methodology.

HandFlowNet utilizes an estimated initial hand shape and dense scene flow to predict 3D hand configurations 
in subsequent frames. Consequently, the overall system accuracy is contingent upon the precision of both 

Fig. 11.  Error distribution on DexYcb dataset across different ranges of (a) hand movement (b) input point 
cloud occlusion ratios.

 

Module Inference time (ms) Parameters (M)

Hand shape estimator (HSE) 5 37

Scene flow estimator (SFE) 19 8

Refinement module (RFM) 15 19

HandFlowNet (Total) 39 64

Table 11.  Runtime performance (batch size 1) and parameter count for each module of HandFlowNet.

 

Fig. 10.  (a) Joint-wise error distribution on DexYcb dataset. (b) Distribution of samples across error 
thresholds on the DexYCB dataset..
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estimation components. We introduce a comprehensive strategy for generating scene flow annotations, 
facilitating the optimization of scene flow estimation methods specifically tailored to hand dynamics. As 
evidenced in Table 8, this domain-specific optimization proves crucial for achieving competitive performance. 
The results reported in Tables 9 and 10 are based on initial hand shape estimates from a reference estimator. 
Further performance gains remain achievable through the integration of more sophisticated hand shape 
estimation networks or the incorporation of hand calibration frames. Nevertheless, we acknowledge that the 
effectiveness of our GCNN-based refinement module becomes limited when initial errors from either the hand 
shape or scene flow estimators are substantial, particularly under conditions of severe occlusion or rapid hand 
motion. To address this limitation, future work could investigate multi-stage GCNN refinement strategies to 
enhance robustness against error propagation and further improve tracking accuracy.

While video-level and recurrent models such as VIBE 19 and TCMR 21 employ sophisticated temporal priors 
through recurrent or transformer architectures, they typically rely on parametric models optimized for global 
motion patterns. In contrast, our scene flow-based approach provides direct, dense temporal correspondence, 
making it particularly well-suited for capturing the fine-grained, highly articulated motions characteristic 
of hand dynamics without dependence on parametric model constraints. Future research could explore the 
integration of dense correspondence with recurrent temporal modeling to further enhance performance.

We conducted a comprehensive analysis to assess the impact of rapid movements on both the scene flow 
estimator and HandFlowNet, as illustrated in Fig.  10a. The analysis categorizes samples into three average 
point displacement bins (< 30  mm, 30–60  mm, > 60  mm) between consecutive frames. The primary y-axis 
displays EPE3D_D, EPE3D_M, MPJPE, and MPVPE error metrics per bin, while the secondary y-axis indicates 
the percentage of test samples within each bin. Scene flow estimator errors (EPE3D_D, EPE3D_M) exhibit 
increasing trends with displacement magnitude, particularly for rapid movements ((>60 mm)60 mm). Notably, 
HandFlowNet errors (MPJPE, MPVPE) remain stable across the first two bins, indicating that the GCNN-based 
refinement module effectively mitigates propagated errors. However, for rapid movements, errors increase 
proportionally with scene flow estimation errors.

To analyze the effect of occlusions systematically, we examined performance across four occlusion ratio bins 
(< 20%, 20–40%, 40–60%, > 80%), as presented in Fig. 10b. The occlusion ratio represents the percentage of 
hand mesh ground truth vertices lacking a neighboring input point cloud point within 20 mm. Both the scene 
flow estimator and HandFlowNet exhibit performance degradation proportional to the occlusion percentage, 
highlighting the fundamental challenge posed by incomplete observations.

We further evaluated error distribution across different hand components by analyzing mean errors 
(EPE3D_M, MPJPE) against each joint location. Performance degradation is most pronounced near the 
fingertips, as also observed qualitatively in Fig. 7. This degradation is likely attributable to occlusions near the 
fingertips, stemming from depth camera limitations in capturing fine-scale structures and the inherent geometric 
complexity of fingertip regions.

Collectively, these analyses (Figs.10 and7) indicate that the scene flow estimator’s performance is 
fundamentally constrained in frames with rapid movement or heavy occlusion, which consequently limits 
HandFlowNet’s overall accuracy.

As discussed in “Dense scene flow estimation”, the selection of a point cloud-based network for dense scene 
flow estimation in HandFlowNet is motivated by the pipeline’s multiview fusion strategy, which operates at the 
point cloud level using camera projection matrices. While Bi-PointFlowNet serves as an effective foundation, 
significant potential exists for improvement through the integration of advanced scene flow models such as 
RAFT-3D47 or FlowStep3D  56. Future research may explore these alternatives to enhance the robustness and 
performance of HandFlowNet, particularly under challenging conditions of rapid movement and heavy 
occlusion.

The current scene flow estimation network could be further adapted to hand-specific tasks by incorporating 
geometric or kinematic information into the model architecture. Additionally, the refinement module may 
benefit from a pyramid architecture for feature aggregation and multi-stage GCNN refinement strategies.

Fig. 12.  Statistical distribution (histogram), standard deviation and variance of errors on DexYcb dataset (a) 
MPJPE (b) MPVPE.
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For consistency and fair comparison with state-of-the-art methods such as POEM  119, we utilized only 
right-hand samples. However, HandFlowNet can be readily extended to both hands by incorporating a right/
left hand detector. For left-hand cases, a two-axis mirroring operation can convert the left hand to a right-
hand representation prior to processing, with the output mirrored back post-processing to restore the original 
configuration.

It is important to note that the DBSCAN-based artifact removal step presented in “ Point set representation 
of depth image” can present a vulnerability under heavy occlusion conditions, potentially removing valid hand 
regions along with outliers. This reduction in input point set quality underscores the need for more robust 
preprocessing methods that better preserve essential hand structures under challenging conditions.

Finally, we evaluated the proposed pipeline on single-view point sets, obtaining MPVPE and MPJPE values 
of 15.55   mm and 15.84   mm, respectively, on the DexYCB dataset. The observed performance limitation, 
compared to the multiview case in Table 9, is attributable to substantial occlusions, geometric inconsistencies in 
the 3D point cloud under single-view conditions, and the limitations of DBSCAN-based preprocessing. Given 
that this study primarily addresses the multiview scenario, extending the scene flow-based technique to single-
view settings through more adaptive algorithms and enhanced data fusion strategies represents a promising 
avenue for future research.

Conclusion and future work
In this work, a novel HandFlowNet method has been proposed for the reconstruction of 3D hand shape and 
pose from point sets by effectively leveraging scene flow information inherently present in an image sequence. 
The proposed architecture is designed using neural transformers and graph convolutional networks. A new 
approach has been developed for generating annotations of both dense and sparse hand scene flow, utilizing 
the available hand shape annotations in hand datasets. Experimental evaluations demonstrate that hand scene 
flow can be accurately estimated from a pair of consecutive image frames. The estimated scene flow, along with 
the extracted features from the subsequent frame, can be effectively processed within a graph neural network to 
generate an accurate reconstruction of the hand shape in the next frame. The results achieved on the DexYCB 
benchmark confirm that the proposed approach establishes a new state-of-the-art for 3D hand pose and shape 
reconstruction.

While our method demonstrates competitive performance, several challenges persist. As previously analyzed, 
HandFlowNet’s accuracy is constrained by rapid hand movements and severe occlusions, particularly in single-
view scenarios where incomplete observations and aggressive artifact removal algorithms can compromise input 
data quality. Performance degradation is most pronounced in fingertip regions, likely attributable to inherent 
sensor limitations in capturing fine-scale structures and the prevalence of occlusions in these anatomically 
complex areas.

Although graph neural networks inherently capture the structural properties of hand shape, the explicit 
integration of a parametric hand model within the pipeline could be explored as a potential future direction. 
Such an enhancement may contribute to the generation of more stable and refined hand shapes and poses. 
Furthermore, the development of a multi-frame scene flow estimation network could further improve not only 
the accuracy of hand scene flow estimation but also the precision of reconstructed hand shapes and poses.

Future research will investigate the integration of advanced scene flow models, incorporation of geometric or 
kinematic priors, and enhancement of the refinement module through pyramid and multi-stage architectures. 
Developing robust preprocessing methodologies to better address occlusions and outliers, alongside adaptive 
algorithms for single-view scenarios, represents promising research directions. Additionally, fusing dense 
correspondence with recurrent or transformer-based temporal modeling could further enhance the capture of 
fine-grained, highly articulated hand dynamics.

Data availability
The datasets utilized in this study, namely the DexYCB dataset and the HO3D dataset, are publicly accessi-
ble through their respective platforms. The DexYCB dataset is available at https://dex-ycb.github.io/, while the 
HO3D dataset can be accessed via https://paperswithcode.com/dataset/ho-3d. To ensure reproducibility and 
facilitate future research, the implementation code will be made publicly available on GitHub upon manuscript 
acceptance.
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