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The Multiple-Input Multiple-Output (MIMO) system can provide improved spectral efficiency and 
energy performance. However, the computational demand faced by conventional signal recognition 
techniques has significantly increased due to the growing number of antennas and higher-order 
modulations. To overcome these challenges, deep learning approaches are adopted as they offer 
versatility, nonlinear modelling capabilities, and parallel computation efficiency for large-scale MIMO 
detection. Therefore, a deep network for channel estimation and massive MIMO detection is developed 
to reduce computational complexity issues. Initially, a channel estimation scheme is developed 
to enhance the channel capacity of the MIMO system. It correlates the transmitted and received 
signals using a confusion matrix. The proposed Modified Squid Game Optimizer (MSGO) is employed 
for channel state estimation. Based on the obtained channel state information, MIMO detection is 
performed within the communication system. Here, Multiuser Interference Cancellation (MIC)-based 
iterative sequential detection is initially conducted. Then, massive MIMO detection is performed using 
the Dilated Adaptive Recurrent Neural Network with Attention Mechanism (DARNN-AM) through 
learnable parameters. Moreover, to further optimize the detection performance by fine-tuning the 
attributes of DARNN-AM, the MSGO is utilized. The proposed network performs multi-segment 
mapping across multiple constellation points with different modulation schemes. The effectiveness of 
the proposed deep learning-based MIMO detection system is evaluated by comparing it with existing 
techniques and algorithms to validate its superior performance.

Keywords  Channel estimation, Massive MIMO detection, Modified Squid Game Optimizer, Dilated 
adaptive recurrent neural network with attention mechanism

One of the foremost intriguing developments in Fifth Generation (5G) mobile communications is Machine-
to-Machine (M2M) communication and other networks using MIMO, which substantially improve spectral 
efficiency and energy conservation1. This system employs a large number of antennas at the Base Stations (BS), 
enabling high-speed connectivity and low-latency transmission2. However, these large-scale deployments also 
pose significant challenges for MIMO detection3. To separate the originally transmitted signal from the signal 
received at the BS antennas, the MIMO detection process is employed4. Yet, designing a MIMO detector that 
provides high accuracy with low complexity remains difficult, especially in massive MIMO configurations5. 
Various wireless communication systems incorporate MIMO technology, which can significantly enhance 
spectral efficiency and network reliability. Effective channel estimation and signal detection mechanisms must 
strike a balance between computational speed and complexity, playing a critical role in receiver design and 
prompting extensive research to fully realize the advantages of MIMO6.

Since the introduction of Third-Generation (3G) wireless networks, MIMO has played a critical role 
in enhancing the performance of wireless transceivers7. For improved spectral efficiency and link reliability, 

1School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India. 2Digital Development 
Center, Szechenyi Istvan University, MTMT-10092856, Gyor, Hungary. 3Computer Science Department, Community 
College, King Saud University, Riyadh, Saudi Arabia. 4 Physical Design Engineer, Wafersemiconductors Technologies 
Pvt Ltd, Bangalore, India. email: cvrkvit@gmail.com; oliver.takacs@ddc.sze.hu

OPEN

Scientific Reports |        (2025) 15:31921 1| https://doi.org/10.1038/s41598-025-16899-1

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-16899-1&domain=pdf&date_stamp=2025-8-29


multiple antennas are utilized at both the receiver and the transmitter ends8. However, the MIMO receiver 
requires a detection mechanism to distinguish signals corrupted by noise and interference. Over its five-decade 
evolution, MIMO detection has attracted significant research attention9. Massive MIMO systems are a natural 
extension of conventional small-scale MIMO technology, incorporating a large number of antennas at the base 
station or gateway10. The number of antennas at the BS is significantly higher than the number of antennas 
present in user devices within the same cell or service area11. This is a key characteristic of the traditional massive 
MIMO architecture, which typically operates at frequencies up to 6 GHz. As a result, pilot contamination poses 
challenges to accurate channel estimation, and multiuser interference increases the additive noise throughout 
the network12.

The Deep Neural Network (DNN) is one of the most powerful and promising deep learning architectures, 
currently applied in various domains such as channel encoding and decoding, channel estimation, signal 
detection, CSI feedback, and interference management13. Nevertheless, these networks are often trained as 
“black boxes,” making their internal functioning difficult to interpret14. Traditional detection methods also 
exhibit several limitations15. For instance, conventional detection algorithms typically treat signal instances 
independently, lacking any connection between adjacent signal observations, as they rely on “snapshot” 
detection16. This significantly impairs detection performance. Additionally, KBest is considered the most 
effective technique among classical detection methods, achieving a balance between accuracy and complexity. 
KBest utilizes a flexible data structure and identifies segments of the sample space for processing17. However, 
tree-based search approaches require substantial computational resources, as they rely solely on optimizing 
an objective function. To overcome this, incorporating detection memory and designing efficient compressed 
storage structures can enable low complexity and robust detection mechanisms. Despite advancements, many 
existing systems still face major challenges. Some deep networks are highly complex and demand extensive 
vector processing. Others, such as DetNet18 and MMNet19, underperform in downlink MIMO scenarios but 
show strong performance in uplink MIMO. Hence, this work developed a deep learning architecture for channel 
estimation and MIMO detection to address these limitations.

The significant offerings of the deep structure-based channel estimation with the MIMO detection model are 
organized as follows.

•	 To establish a deep structure-based channel assessment with an MIMO signal detection model to identify the 
channel characteristics and hence the distortion, as well as the noise effects occurring in the signal, is highly 
prevented.

•	 To develop MSGO for optimizing the channel matrix to minimize the Bit Error Rate (BER), Normalized Mean 
Square Error (NMSE), Symbol Error Rate (SER), and Pairwise Error Probability (PEP) in the received signal 
during channel estimation. This helps in achieving higher throughput or data rate by maintaining good BER.

•	 To detect the channel matrix for efficient communication, a DARNN-AM is suggested in which the data is 
collected from MSGO-based channel estimation, where the channel state information is given to train the 
DARNN-AM to get a channel estimate. The proposed MSGO is also used to optimize the parameters in the 
DARNN-AM to improve the channel estimation performance.

•	 The results attained by the MSGO-DARNN-AM-based channel estimation with the MIMO detection model 
are compared with the usual approaches to determine the usefulness of the explored MSGO-DARNN-AM-
based channel estimation with the MIMO detection model.

The persisting portions of the recommended MSGO-DARNN-AM-based channel assessment with the MIMO 
detection model are enumerated as follows. The pros and cons of the conventional channel judgment and the 
massive MIMO detection model are elucidated in fragment II. In fragment III, the MIMO system model with 
the need for channel estimation and massive MIMO identification in wireless communiqué systems and the 
proposed channel estimation with the MIMO detection model is offered in a brief way. Fragment IV explores 
the details of the channel judgment in MIMO for attaining channel coefficients from the received signal for 
detecting MIMO. In fragment V, deep learning-based massive MIMO detection using a dilated adaptive deep 
learning network with optimal tuning of parameters is detailed in detail. The outcome generated by developed 
channel estimation with the MIMO detection model and the discussion part is briefly given in fragment VI. At 
last, fragment VII concludes the developed channel estimation with the MIMO detection model.

Literature survey
Related works
In 2023, Yu et al.20 presented an effective data-driven detection network called the Accelerated Multiuser 
Interference Cancellation Network (AMIC-Net). To enhance convergence performance, an extrapolation factor 
was integrated into the Multiuser Interference Cancellation (MIC) algorithm for the Iterative Sequential Detection 
(ISD) detector. Then, using a weakly connected approach instead of a fully connected one, the accelerated iterative 
method was employed to design a relatively simple Deep Neural Network (DNN) structure, which improved the 
detection rate when combined with the data-driven deep learning approach. An innovative activation function 
was developed by combining multiple soft sign activation functions with different modulations. The proposed 
deep learning network outperformed existing detectors with similar or lower computational complexity.

In 2021, Mahmoud et al.21 proposed a deep learning approach for non-coherent multiple-symbol detection 
in Differential Phase-Shift Keying (DPSK) multi-user massive MIMO systems. The proposed model reduced 
the high computational complexity required by traditional DPSK detection algorithms. For the same system 
characteristics, Decision-Feedback Differential Detection (DFDD) and conventional Multiple-Symbol 
Differential Detection (MSDD) were compared with two deep-learning-based multiple-symbol detection 
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receiver designs. Traditional MSDD was implemented using Multiple-Symbol Differential Sphere Detection 
(MSDSD). The final results demonstrated the effectiveness of the proposed channel estimation process.

In 2020, Wei et al.22 developed an iterative Conjugate Gradient Descent (CGD) detector to construct a 
Learned Conjugate Gradient Descent Network (LcgNet). The network learned generalizable features. A novel 
quantized version of LcgNet was also proposed to reduce memory costs, where the learned parameters were 
quantized using a low-resolution, non-uniform quantizer. The quantizer function was specifically designed 
to reshape the soft staircase function. Moreover, the proposed networks were easy to train due to the limited 
number of learnable parameters. According to numerical results, the network achieved promising performance 
with significantly reduced complexity.

In 2023, Nigatu and Zhang23 introduced two DNN-based detectors that effectively addressed limitations of 
conventional methods. The DNN architecture was designed to model adaptive penalty parameters efficiently, 
resulting in improved performance. Additionally, a sub-DNN architecture was utilized with the Alternating 
Direction Method of Multipliers (ADMM) for computation. The researchers proposed a detection framework 
with comparable effectiveness and lower computational complexity. Numerical results indicated that the 
proposed method outperformed modern detectors with similar or lower complexity.

In 2021, Xu and Du24 proposed a Machine Learning Network (MLNet) for sample space classification. For 
time-varying channels, MLNet significantly outperformed Deterministic Networks (DetNet) and Multi-Modal 
Networks (MMNet). MLNet required less computation than existing neural network algorithms. A novel 
training approach was also introduced to enhance DetNet’s detection performance, contributing further to 
MLNet’s advantages.

In 2020, Tan et al.25 presented a DNN architecture to enhance massive MIMO systems by embedding 
Message-Passing Detectors (MPDs). Recurrent MPDs were used to build a DNN-based MIMO detection model. 
Modified MPDs such as damped Belief Propagation (BP), Max-Sum (MS), and simplified Channel Hardening-
Exploiting Message Passing (CHEMP) were deployed to construct the DNN. To improve performance, the DNN 
correction factors were optimized. Simulation results showed that the proposed DNN detectors achieved lower 
bit error rates and better reliability under various antenna and channel conditions while maintaining complexity 
similar to conventional detectors. The DNN could be reused for multiple detection tasks with high efficiency, 
proving the flexibility and effectiveness of the proposed framework.

In 2020, Liao et al.26 proposed an efficient DNN-based massive MIMO detector. Deep learning was used for 
the detection process, integrating an iterative detection strategy into the DNN structure. Additionally, Multiuser 
Interference (MUI) cancellation was incorporated at each layer of the proposed model. The learning process was 
designed to optimize the auxiliary parameters. Compared to existing detectors for massive MIMO systems, the 
proposed model demonstrated superior detection performance.

In 2023, Nguyen et al.27 developed a DNN model for massive MIMO detection. The latest advances in DNN-
based MIMO detection were combined with well-established MIMO detection techniques. Neural networks 
(NN), machine learning (ML), and deep learning (DL) techniques have emerged as powerful approaches for 
improving various aspects of wireless communication networks28–55, including signal processing, channel 
estimation, resource allocation, and network optimization. The proposed model’s key numerical performance 
indicators were compared against existing methods to validate its effectiveness.

Problem statement
Deep learning networks used for MIMO detection are often too complex. Additionally, a large number of matrix 
inversions are required for accurate detection. Some algorithms suffer from increased complexity, which leads 
to degraded detection performance. The uses and limitations of existing deep learning-based massive MIMO 
detection techniques are summarized in Table 1. AMIC-Net20 uses backpropagation to learn input sequences 
more effectively and significantly reduces gradient vanishing. However, it struggles to handle the complexities of 

Author 
[citation] Methodology Features Challenges

Yu et al.20 AMIC-Net It uses backwards propagation to learn input sequences more effectively
It highly reduces the gradient vanishing

It struggles to manage the complex situation of 
massive MIMO

Mahmoud et 
al.21 MSDS It highly minimizes the high computational complexity needed for the detection

It reduces the energy required for the channel inference process
It does not detect non-coherent signals effectively
It does not provide better accuracy because of the 
absence of encoding techniques

Wei et al.22 LcgNet It highly reduces the cost required for the memory
It eliminates the complexity of detecting signals

It requires more training data
Operational costs are high

Nigatu and 
Zhang23 DNN It effectively handles the penalty parameters to enhance the performance of the network

It does not need technical computation to update the variables Computational complexity is high

Xu and Du24 MLNet It greatly reduces the computations required for the detection
It has less complexity

It lacks in latency
It suffers from packet loss

Tan et al.25 CHEMP It provides high robustness
It requires less training time

It is highly expensive
It is not suitable for software implementation

Liao et al.26 DNN It effectively manages the connection between each layer It is difficult to process the data with a complex size

Nguyen et al.27 DNN and 
OAMP-Net

It provides high efficiency
It could be reused for multiple detections

It needs more amount of data
It does not consider the necessary information 
during training

Table 1.  Features and challenges of existing deep learning-based massive MIMO detection.
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massive MIMO scenarios. MSDSD21 significantly reduces the computational complexity required for detection 
and lowers the energy consumption during channel estimation. Nonetheless, it is ineffective at detecting non-
coherent signals and lacks accuracy due to the absence of encoding techniques. LcgNet22 greatly reduces 
memory costs and eliminates signal detection complexity. Yet, it requires a large volume of training data and 
incurs high operational costs. DNN23 efficiently manages penalty parameters to enhance network performance 
and does not require extensive computations for variable updates. However, its computational complexity 
remains high. MLNet24 substantially reduces the computational effort for detection and offers lower complexity. 
However, it suffers from high latency and packet loss. CHEMP25 provides high robustness and requires less 
training time. Yet, it is costly and unsuitable for software-based implementations. DNN26 efficiently manages 
layer-wise connectivity. However, it struggles to process data with complex or large dimensions. DNN27 offers 
high efficiency and can be reused for multiple detection tasks. Nevertheless, it requires a large dataset and fails 
to consider essential information during training. Therefore, to address these challenges, a deep network for 
massive MIMO detection is proposed.

MIMO system model with need of channel estimation and massive MIMO detection 
in wireless communication system
System model of MIMO
Throughout the communication process, the phantom efficiency rate is enhanced with the assistance of the 
MIMO network. This is primarily due to the roles of the transmitter and receiver in the MIMO system. The 
spreaders and receivers in the MIMO network are represented as tmimo, and rmimo accordingly. The signal 
transmitted through the MIMO network contains a high level of noise, which is reduced by the subcarrier, 
denoted as Td. The signal W n(r) is transmitted from the MIMO network antenna n. This transmitted signal is 
then mapped into a vector space of dimension B × 1. A cyclic prefix is added to the MIMO network by passing 
the vector value to the Fast Fourier Transform (FFT) block. The length of the cyclic prefix is selected within the 
range of m ≥ O − 1, and the dimension of the MIMO channel is denoted as O. A receiver antenna u is added 
to the MIMO network. This process is mathematically represented in Eq. (1).

	
du(r) =

tmimo∑
n=1

Xu,n
mr ℵXEu(r) + νu(r)� (1)

Here, the process of removal of the cyclic prefix from the MIMO network is indicated as du(r), the vector of 
the spherical part is represented as Xu,n

mr , the desire retort of the channel is indicated as Xu,n and here, the 
breadth of the vector space is taken as B × 1. The primary column of the spherical shape vector is indicated 

as 
[
Xu,n∪

, 0r×(B−O)

]∪
, the unitary matrix of size B × B is attained by the term ℵ. The spherical vector has 

some specific Eigenvalue, and its decomposition process is illustrated in Eq. (2).

	
Xu,n

mr = ℵXdi
{√

Bℵ
[
Xu,n∪

, 01r×(B−O)

]∪}
ℵ� (2)

The result attained from the FFT is indicated as du(r), and it is evaluated by Eq. (3).

	
du(r) =

tmimo∑
n=1

di
{√

Bℵ
[
Xu,n∪

, 01r×(B−O)

]∪}
× Du(r) + ℘u(r)� (3)

In the above Eq. (3), the term ℘u(r) is substituted instead of νu(r). The system model of the MIMO is shown 
in Fig. 1.

Problem formulation and analysis
The hybridized precoding is indicated by TF , which is generated in the mmWave system for estimating the vector 
channel. The uplink channel present in it assists in attaining the downlink channel through the estimation of 
vector channels in the channel dataset. Here, the developed model is employed to acquire downlink precoding. 
In terms of the uplink channel, the BS requires more power, and the sequenced orthogonal pilots Z = DS×S  
have been shifted via different signals along with the users H . There are totally H  analogue precoding vectors 
T q

F ∈ DRc×UT  and digitalized precoding vectors T q
C ∈ DUT ×UT  are present in the uplink channel, wherein 

the term q lies in 1, 2, ..Q . The BS received the sequenced pilots in Qth sender, as per Eq. (4).

	 Aup
q = (T q

F T q
C)V RV Z + (T q

F T q
C)V Rq � (4)

In Eq. (4), the additive white Gaussian noise matrix is indicated by Rq  for the transmission Q. Here, every vector 
in all the entries Q has the criteria QH =

(
q, α2)

. This is the criterion of the associated user, which is equally 
orthogonal to that of the sequenced pilot, which is indicated by F F Q = PS , with it, the terms such are Aup

q  and 
F R are multiplied. Then, the results will be obtained using Eq. (5) to Eq. (7).

	 Gq = Aup
q F R = (T q)V RT + Rq � (5)
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	 T q = T q
F T q

C ∈ DUT ×UT � (6)

	 Rq = (T q
F T q

C)V RqF r ∈ DUT ×S � (7)

Here, the term Gq  is stacked whenever the sequences are shared via every user at a time Q for every transmission 
q = 1, 2, ..Q, which is indicated in Eq. (8).

	 H = [Gq
F , ...Gq

F ] = T V RV + R� (8)

	 T =
[
T 1, ...T Q

]
∈ DRC ×UT Q� (9)

	
R =

[
R

V
1 , ...R

V
q

]
∈ DUC ×S � (10)

In the term RC > UT Q, where RC >>> UT  has very few slot durations owing to that the training occurs on 
the channel. The term Rw  is the vector R having a total column of w. The sparsity aspects are included in the 
beam area, and it is depicted in Eq. (11).

	 mo
w = Kmw � (11)

The dictionary matrix is indicated by K ∈ DI×Rc  in the beam space channel vector, and it has a column vector 
ϕ (R∂ , γv) having total I  columns as γv = −1 + 2 (v − 1) /I . The term I  is the grid, which evaluates the Angle 
of Arrival (AoA) variations, and it is taken as KRK = IMR∂ /RC  based on Eq. (12).

	
lw = R∂

I
T V JRmo

w + rw � (12)

Here, the term 1, 2, ..Q aids in determining the sparse recovery issue based on the sparse property, and due to 
the limited beam area with resolution 1, 2, ..Q, the channel leakage problem will exist in 1, 2, ..Q sparsity. Thus, 
this work developed a novel dilated adaptive model with an attention mechanism to solve the existing issues.

Need for channel estimation and massive MIMO detection
Efficient communication in wireless communication is obtained with the aid of MIMO networks. Efficient 
wireless communication is achieved with the help of MIMO networks. The capacity of the channels is enhanced 
by the use of the MIMO system. The channel capacity is significantly increased by utilizing the MIMO system. 
The ethereal efficiency of the wireless network is enhanced by using the MIMO system because it consists of 
more antennas for the communication process. The spectral efficiency of the wireless network is improved 
through the use of MIMO, as it incorporates multiple antennas for the communication process. So, the detection 
of the proper MIMO can fulfil the necessities of the user during the communication process. Therefore, accurate 
detection in the MIMO system can meet user requirements during communication. By the name itself, the 
MIMO system has numerous records of antennas in the spreader and the receiver of the wireless network. As 
the name suggests, the MIMO system involves multiple antennas at both the transmitter and receiver ends of the 
wireless network. The spectral effectiveness of the wireless network is very much improved, resulting in lossless 
communication over the world. This enhances the spectral efficiency of the network, resulting in near-lossless 
communication across long distances. The signal transmitted through the channel may be affected by the noise 

Fig. 1.  Explored view of the MIMO system model.
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and other characteristics of the channel. However, the signal transmitted through the channel may be affected 
by noise and various channel characteristics. The diverse characteristics of the channel affect the signals that are 
passed via these channels. The diverse properties of the channel influence the signals passing through it. The 
MIMO system has numerous number of antennas on the transmitter and receiver parts, so it is very difficult to 
determine the appropriate channel to carry out the lossless communication. Because the MIMO system includes 
numerous antennas on both the transmitter and receiver sides, identifying the optimal channel for lossless 
communication becomes highly challenging.

Simulation and dataset configuration
To train the MSGO-DARNN-AM model, a synthetic dataset was generated using Rayleigh fading channels with 
additive white Gaussian noise. The dataset comprised 100,000 sequences for training and 20,000 for testing. 
Each input sequence consisted of 64 complex symbols (split into real and imaginary parts), modulated using 
QPSK. The labels were mapped to the corresponding transmitted symbols. During training, the model used an 
Adam optimizer with an initial learning rate of 0.001, a batch size of 128, and 50 epochs. Dilated RNN layers 
were employed, and their parameters (hidden units, epochs, steps per epoch) were optimized by MSGO. This 
setup ensured generalizability and convergence across channel variations and SNR conditions. Components and 
specifications employed in the developed model and hyperparameter configurations used for training are given 
in Tables 2 and 3.

Proposed channel estimation and MIMO detection model
A new channel estimation scheme is implemented using the developed optimization strategy to attain perfect 
knowledge of the channel gain at the receiver. Before performing the MIMO detection, the MIC-based sequential 
detection is applied, which helps to greatly improve the accuracy of the symbol detection. The wireless channel 
characteristics are less predictable and more time varying because of the rise in user mobility and Doppler 
effects. Here, the MIC-based preprocessing enhances the predictive quality and also maintains the stability 
of the network to get accurate results in the channel estimation process. The recommended MIC has higher 
reliability in determining the symbols that sequentially impact the detection accuracy in the channel estimation 
process. Outdated channel state information causes a significant influence on the accuracy of the channel 
detection since it causes a mismatch between the actual and the estimated channel. So, here the quasi-static 
varying channel and iterative refinement are hinged by the recommended MIC to improve the accuracy of the 
channel detection. Initially, the channel estimation process is performed using the proposed MSGO algorithm. 
In the channel estimation process, the channel matrix from the transmitted signal is optimized with the help 
of the proposed MSGO to get the channel state information. During the channel estimation phase, the channel 
matrix derived from the transmitted signal is optimized using the proposed MSGO to obtain accurate channel 

Parameter Value

Training epochs 50

Batch size 128

Optimizer Adam

Learning rate 0.001 (adaptive)

Loss function Cross-Entropy

Dropout rate 0.2

Hidden layers 3 dilated RNN layers

Hidden units/layer 128 (tuned by MSGO)

Attention mechanism Softmax over the temporal axis

Table 3.  Hyperparameter configurations used for training.

 

Component Specification

Channel model Rayleigh (training), tested on Rician and CDL-C

Antenna configuration MIMO: 32 × 4 (Tx × Rx), ULA during training

Modulation scheme QPSK (train), tested on 16-QAM and 64-QAM

User mobility Low Doppler (30 Hz) in training; tested on 100 Hz

Pilot symbols Inserted every 10 symbols (MIC-based extraction)

Noise model AWGN added post-channel

Total samples 100,000 training, 20,000 testing (random symbols)

Input representation Real/imaginary parts separated, normalized to [–1, 1]

Output label Clean symbol index (1 to M)

Sequence length 64 symbols (temporal RNN input)

Table 2.  Components and specifications employed in the developed model.
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state information. This algorithm uses less number of pilot symbols for the channel estimation process. The 
algorithm requires fewer pilot symbols for effective channel estimation. Here, the developed MSGO is adopted 
to optimize the channel matrix for estimating the efficient channel for data transmission that helps to minimize 
the BER, SINR, PEP and NMSE. The MSGO is utilized to optimize the channel matrix, enabling efficient data 
transmission while minimizing BER, SINR, PEP, and NMSE. Here, the channel state information is attained 
using the proposed MSGO, and this information is given to the DARNN-AM in order to recover the original 
signal based on the past channel realizations. The channel state information obtained through MSGO is then 
provided to the DARNN-AM, which recovers the original signal based on previous channel realizations. The 
parameters, such as hidden neuron count, epoch count and steps per epoch, from DARNN-AM to increase the 
channel estimation performance. Parameters such as hidden neuron count, epoch count, and steps per epoch 
in DARNN-AM are optimized to enhance channel estimation performance. These optimization processes raise 
the value of spectral efficiency in the MIMO system. These optimization steps significantly improve spectral 
efficiency in the MIMO system. Before doing the MIMO detection process, a MIC-based iterative sequential 
detection process is applied to the signal to figure out the symbols present in the corresponding signal. Before 
MIMO detection, a MIC-based iterative sequential detection algorithm is applied to identify the symbols in 
the received signal. The MIMO detection process separates the signal, which is exaggerated by the noise and 
interference, so the spectral efficiency of the system is greatly enriched. The MIMO detection process isolates 
the signal affected by noise and interference, thereby enhancing the system’s spectral efficiency. Moreover, the 
capacity of wireless communication is enriched because of the proper selection of symbols from received signals 
in massive MIMO. Additionally, the wireless communication capacity is increased due to accurate symbol 
selection from the received massive MIMO signal. Therefore, the original signal from the receiver is effectively 
recovered without any noise and interference. As a result, the original signal is accurately recovered at the 
receiver with minimal noise and interference. A detailed illustration of the proposed channel estimation with 
the MIMO detection process is indicated in Fig. 2.

Channel estimation in MIMO for attaining channel coefficients from the received 
signal for detecting MIMO
Basic SGO
The SGO56 is a hyper-heuristic meta-optimisation algorithm. It is inspired by a traditional playground game 
predominantly played in Korea. In this game, elimination and attacking strategies are employed by the players. 
This game requires a vast area because this game must be played with a large number of people. It requires a 
large playing area due to the participation of multiple players. Here, the squid shape of the land is taken for 
conducting this game. The game is typically played on a field shaped like a squid. Here, the fighting is initiated 
by the offensive player, and this player moves in the direction of the safe player to begin the fighting process. The 
combat begins with an attacking player moving toward the defending player to initiate the confrontation. The 
objective function is adopted to find the players in the successful team. In the optimization context, the objective 
function is used to identify the most successful players or solutions.

Motivation: This is a playground game, and it is played by children in Korea. This traditional playground 
game is commonly played by children in Korea. There are no restrictions available regarding the dimensions of 
the field that is used for the squid game. There are no strict rules regarding the dimensions of the playing field. 
Several players are needed to conduct the squid game, and it is mostly conducted in an area with loose sand. It 
typically involves many players and is often played on loose sandy ground. The ground area used for the squid 
game seems like half a portion of the basketball court. The field size is approximately equivalent to half of a 
standard basketball court.

Arithmetic design: The playing field in the squid game process is considered as the search space in the SGO 
algorithm, and the players situated on that particular playfield are taken as a candidate solution in this algorithm, 
and it is stated in Eq. (13).
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yk

j = yk
j,min imum + rndi ∗

(
yk

j,max − yk
j,min

)
,

{{
j = 1, 2...o

j = 1, 2...e
� (14)

Thus, the measurement of the issues is represented as e, the total count of aspirant solutions in the investigated 
space is denoted as o, the random number is signified as rndi in [0, 1][0, 1], higher, and the subordinate 
bound of the candidate j is constituted as yk

j,max, yk
j,min, and the beginning location of the entrant solution is 

identified by the verdict variable termed as yk
j  .

The team separation process is done in the second phase of the SGO algorithm, and it is mainly dependent 
upon the abominable player and the secure player in the squid gamer process, and it is given in Eq. (15).
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Here, the secure and the abominable player at the jth location are represented as Y abdo, and Y abo
j , the total 

number of players at both teams is represented as n.

Fig. 2.  Schematic illustration of the proposed channel estimation with the MIMO detection process.
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The combating process is initiated by the abominable player after starting the squid game. The secure player 
plays the squid game with their legs, and the abominable player plays the game with a single leg, and it is 
specified in Eq. (17).

	
EH =

∑n

j=1 Y sec
j

n
, j = 1, 2..n� (17)

	 Y abo1
j =

Y abo
j + e1 ∗ EH − e2 ∗ Y sec

e3 , i = 1, 2..n� (18)

Here, the two random numbers are characterized as e1 and e2 correspondingly, and both of the random numbers 
lie in the interval of [0, 1], The random integer number is expressed as e2in [1, n], the secure team is represented 
as EH , the location vector of the forthcoming abominable player Y abo1

j  is stimulated as Y abo
j , the term Y sec

e3  
signifies the secure player elected to form the team.

The winning team is identified after the completion of the combat between the secure and the abominable 
player. The objective function plays a key role in the winning team selection process.

The abominable player is announced as a winner of the squid game if the endearing shape of the abominable 
player is superior to the endearing state of the secure player. The winning team is further joined in the victorious 
nasty group, and this process is given in Eq. (19).
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T P H =

∑p

j=1 Y victori aba
j

p
, j = 1, 2...p� (20)

	 Y abo2
j = Y abo1

j + e1 ∗ T P H − e2 ∗ CTj = 1, 2...n� (21)

Thus, the preeminent candidate solution is represented as CT , the random numbers are represented as e1 and 
e2 in in [0, 1], the location vector of the forthcoming abominable player Y aba1

j  is indicated as Y aba2
j , the term 

T P H  depicts the victorious nasty group. The most successful players in the T P H  team are represented as p.
The secure members are ready to join the victorious protective group T EH , if the winning chance of the 

abominable player is lower than the secure player. After the winning process, the secure players intrude on the 
team of the abominable player’s team to begin the fighting process, and it is elucidated in Eq. (22).

	

Y victori sec =




Y victori sec
1

Y victori sec
2

...
Y victori sec

j

...
Y victori sec

p




=




y1
1 y2

1 · · · yk
1 · · · ye

1
y1

2 y2
2 · · · yk

2 · · · ye
2

...
...
...

. . .
...

y1
j y2

j · · · yk
j · · · ye

j

...
...
...

. . .
...

y1
q y2

q · · · yk
q · · · ye

q




,

{
j = 1, 2...o

j = 1, 2...e

� (22)

	
P H =

n∑
j=1

Y aba
j

n
, j = 1, 2..n

� (23)
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	 Y sec 1
j = Y sec 1

j + e1 ∗ P H − e2 ∗ Y aba
e3 , j = 1, 2...o� (24)

Here, the arbitrary numbers are signified as e1 and e2 in [0, 1], the team having the secure player is represented 
as P H , and the location vector Y sec

j  of the expected secure player is denoted as Y sec 1
j . The arbitrary number is 

represented as e3 in [1, n]. The term Y aba
e3  elucidates the arbitrarily selected second abominable player.

The abominable player prevents the entry of the secure player in the exploration and exploitation phase. In 
order to prevent this action, the position updating process is carried out, and it is elucidated in Eq. (25).

	
Y aba3

j = Y victori aba
j + e1 ∗ CT − e2 ∗ Y victori sec

j

{
j = 1, 2...p

l = 1, 2...q
� (25)

Here, the forthcoming location vector of the abominable player Y aba3
j  is expressed as Y aba

j , the arbitrary 
number is denoted as e1 and e2 in [0, 1]. The excellent candidate solution is indicated as CT , the total count of 
abominable and the secure players are indicated as p, q, respectively.

Algorithm 1 shows the pseudocode of the conventional SGO.

Algorithm 1.  SGO.

Proposed MSGO
The developed MSGO is created by modifying the existing SGO algorithm. The developed MSGO is utilized 
in the channel estimation process. In this process, the channel matrix of the transmitted signal is optimized 
using the proposed MSGO. This optimization minimizes the BER, SINR, PEP, and NMSE, thereby increasing 
the efficiency of data transmission. The channels of the wireless network have some key characteristics, and 
this may affect the signal that is passed via the corresponding channel. These effects are mitigated through the 
channel estimation process using the developed MSGO. Here, the developed MSGO is employed to train the 
hidden neuron count, number of epochs, and steps per epoch of the model to improve spectral efficiency in the 
MIMO network. The SGO is a metaheuristic algorithm inspired by the Korean game. It incorporates multiple 
constraints and objectives to solve complex optimization problems. However, it has not been widely applied 
to solve real-world problems. In particular, SGO is inadequate for addressing load dispatch problems. These 
limitations are overcome by the developed MSGO.
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Novelty: By the utilization of the developed MSGO, the spectral effectiveness of the system is highly enriched. The 
uniqueness of the developed MSGO stems from its adaptive fitness-based search strategy that employs stochastic 
randomness to guide the exploration and exploitation phases effectively. Unlike conventional metaheuristics that 
rely on fixed update rules, MSGO dynamically adjusts the search trajectory based on randomly generated values, 
which govern the transition between global and local search modes. This randomness is intelligently bounded 
using the best, worst, and mean fitness values obtained during each iteration, as described in Eq. (26), enabling 
the algorithm to learn from historical performance rather than static decision-making. This probabilistic 
decision-making framework allows MSGO to escape local optima more efficiently while maintaining solution 
quality. The combined use of the best, worst, and mean fitness metrics forms a tri-criteria update scheme that 
balances intensification and diversification with minimal parameter tuning. This results in faster convergence 
and robust optimization performance across high-dimensional spaces such as those encountered in massive 
MIMO systems. By embedding this statistical fitness-based control mechanism within the squid-inspired role 
dynamics, MSGO demonstrates a novel capability to adaptively refine both channel estimation parameters and 
neural network hyperparameters in a unified optimization cycle, an innovation not present in traditional single-
objective or static-structure optimizers. The implementation of the developed MSGO is based on the random 
number, and it is evaluated by the best, worst and mean fitness values, and it is briefly discussed in Eq. (26).

	
rndi = (b ∗ m)

(w ∗ m) � (26)

Here, the term rndi specifies the accidental number calculated by the developed MSGO, the best fitness is 
represented as b, the mean fitness is delineated as m, and the worst fitness is indicated as w. Because of the 
developed MSGO, the spectral efficiency value is increased so the channel estimation process is successfully 
carried out.

The proposed MSGO introduces a significant advancement over conventional metaheuristic optimization 
strategies by embedding a set of intelligent mechanisms tailored for deep learning-based MIMO detection 
systems. The core novelty of MSGO lies in its hybridized architecture, which modifies the original SGO by 
incorporating a memory-guided learning mechanism, adaptive role-transitioning among virtual agents, and 
nonlinear disturbance handling through stochastic perturbation. These enhancements empower MSGO with 
superior global search ability and convergence speed, enabling it to avoid premature convergence and local 
optima traps. This optimization strategy is a distinctive feature not observed in traditional approaches, where 
either the network or the channel is optimized in isolation. Moreover, MSGO incorporates a multi-objective 
fitness function that simultaneously minimizes key performance metrics such as BER, NMSE, SER, and PEP 
to enhance spectral efficiency and detection reliability. The pseudocode of the explored MSGO is pinpointed in 
Algorithm 2, and the flowchart of the explored MSGO is formulated in Fig. 3.

Algorithm 2.  Proposed MSGO.

Channel estimation procedure
The channel estimation process is carried out to determine the characteristics of the channels because they may 
affect the signals that are passed through these channels. Optimal channel conditions may increase the spectral 
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efficiency of the wireless communication system and a reduction in the BER so that lossless communication 
is effectively attained. Here, the channel estimation process is carried out by the proposed MSGO. A detailed 
explanation of the channel estimation process is provided in the following sections.

•	 Initially, the sampling time, subcarrier count, interval in the sentinel interval and the modulation order are 
considered as the parameters of the MIMO network.

•	 Here, the signal is given to the receiver of the network by selecting a random attribute using the random 
function Sn(g).

Fig. 3.  Flow diagram of the explored MSGO.
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•	 In order to modulate the signal, the carrier signal is modulated into the amplitude modular of the MIMO 
network.

•	 The pilot symbols from the signal are identified by the “Multiuser Interference Cancellation (MIC)-based 
iterative sequential detection process”. These symbols are also considered in the subcarrier of the MIMO net-
work. Additionally, these symbols are inserted into the equalization techniques during the channel estimation 
process.

•	 The inverse FT is used to attain the time waveform in the MIMO network. Additionally, the progress of the 
network is driven by the key element applied at the particular guard time.

Here, the system model is indicated by the Rayleigh channel model, and it is specified in Eq. (27).

	 Ma(U) =
(
Ma(0), .....Ma(u − 1)f

)
� (27)

Here, the random variable is represented as u.
The demodulation process is considered to neglect the free space on the receiver side of the network; 

therefore, the effectiveness of the identified channel is enormously improved.
It is very important to determine the proper channel in the MIMO network for the broadcast process. Here, 

the real and the imaginary parts are present in the original signal of the structure, and it is given in Eq. (28).

	 Eu (r) = Ju (r) + Iu (r)� (28)

Here, the arbitrary operator is represented as Ju (r), this arbitrary operator is situated in the vector break and 
Iu (r), and the coefficient is represented as du(r) and it is evaluated by Eq. (29).

	
du(r) =

tmimo∑
n=1

di {Eu(r)} HXm,n + ℘u(r)� (29)

The reduced matrix is attained when substituting the value of Eu (r) in Eq.  (20) and the reduced matrix is 
signified in Eq. (30).

	
du(r) =

tmimo∑
n=1

(di {Ju(r)} + di {Iu(r)}) × HXm,n + ℘u(r)� (30)

The computational intricacy of the channel estimation progression is lowered by substituting H  instead of 
√

Bℵ 
in the arrangement model, and it is given in Eq. (31).

	
du(r) =

tmimo∑
n=1

Ju
di(r)HXm,n + Iu

di(r)HXm,n + ℘u(r)� (31)

The time index j ∈ {0, 1....k − 1} must be taken into consideration to train the MIMO network, and it is 
elucidated in Eq. (32).

	 Dr = SXr + UXr + ℘u(r)� (32)

Here, the term Dr  is represented as a coefficient, and it is attained by 
[
Dr∪

(0)....Dr∪
(k − 1)

]∪
, and ℘u(r) 

is identified by 
[
℘u∪

(0)....℘u∪
(k − 1)

]∪
 , the circular matrix is indicated as Xr  and it is estimated by 

[
Xu,n∪

(0)....Xu,T ∪
(k − 1)

]∪
. The equations below Eqs. (33) and (34) give the matrix S , and U .

	

S −




J1
di(0)X · · · JT m

di (0)X
... · · ·

...
J1

di(k − 1)X · · · JT m

di (k − 1)X


� (33)

	

U =




U1
di(0)X · · · UT m

di (0)X
... · · ·

...
U1

di(k − 1)X · · · UT m

di (k − 1)X


� (34)

The least squares is evaluated by using Eq. (35).

	
⌣

Xur = U+Dr � (35)

The below Eq. (36) specifies the expression for the inverse pseudo matrix.
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	 U+ =
(
UXU

)−1
UX � (36)

	
⌣

Xur = Xr + U+SDr + U+℘u(r)� (37)

The interior signal interference is neglected from the signal, and it is indicated in Eq. (38).

	 U+S = 0OBr×OBr
� (38)

The channel vector Xu,n
mr  is mapped to get the term 

⌢

Xur  but the signal noise greatly affects the channel vector, 
so it is solved by taking the pilot tones ∃

∀  in the MIMO network, and this phenomenon is indicated in Eq. (39).

	
⌢

Xur = U+D̃r = Xr + U+℘u(r)� (39)

The modified form of the matrix U  is indicated in Eq. (40).

	

U =




U1
di(0)H̃(0) · · · UT m

di (0)H̃(0)
... · · ·

...
U1

di(k − 1)H̃(k − 1) · · · UT m

di (k − 1)H̃(k − 1)


� (40)

Here, the diagonal matrix is expressed as U1
di and it consists of non-zero entities represented in the form of 

Ju(r)Uu(r).
The objective function of the proposed channel estimation process with an optimized channel matrix is to 

minimize the BER, SINR, PEP and NMSE value, and it is given in Eq. (41). This optimization helps to improve 
the performance over getting channel state information by suppressing the noise and interference.

	
A = arg min

{CM
A

}
(BER + SINR + P EP + NMSE)� (41)

Here, the term CM
A  represents the optimized channel matrix in [0, 1] and the BER, NMSE, PEP and SINR are 

determined through the following expressions.
BER: It is evaluated using Eq. (42).

	
BER = uber

Ubr
� (42)

Here, the overall bit transferred in the network is represented as Ubr , and the total number of bits received with 
error is indicated as uber .

NMSE: The NMSE is signified in Eq. (43).

	
NMSE = |EW − FW |2

|EW |2
� (43)

PEP: It is indicated in Eq. (44).

	 P EP = Q (C1 → C2) q (C1) + Q (C2 → C1) q (C2)� (44)

Here, the probability of the transmitting error is represented as q (C1) and the probability of the decoding output 
is delineated as Q (C1 → C2).

SINR: It is pinpointed in Eq. (45).

	
SINR = Qt

κ2 + κ · Qj−qd
� (45)

Here, the noise discrepancy is represented as κ, the power of the signal is represented as Qt and the obstruction 
control is denoted as Qj−qd.

Data formation for deep learning
The transmitted signal is propagated via the channel, and it is affected by noise and interference when it 
reaches the receiver. Pilot symbols are used for the estimation of the channel, where the noise at the receiver is 
significantly reduced. The proposed MSGO is utilized for optimizing the channel matrix from the transmitted 
signal to effectively obtain the channel state information. This channel state information is applied to the 
proposed DARNN-AM to recover the original information. The attributes considered for the data formation 
include the number of base stations, the number of active base stations, the number of antennas, antenna spacing, 
bandwidth, number of multiplexers, multiplexer sampling factor, multiplexer limit, the number of users, and 
user grid. A better BER is ultimately achieved, which helps to improve the throughput with fewer errors.
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Deep learning-based massive MIMO detection using a dilated adaptive deep 
learning network with optimal tuning of parameters
Basic RNN
In most detection processes, the RNN57 is considered one of the most important structures. The RNN structure 
is also used in prediction and image-processing tasks. The RNN architecture utilizes temporal and semantic 
data for effective detection. However, it faces challenges in recognizing long-term dependencies. The RNN 
structure consists of three layers: input, hidden, and output layers. The hidden layer of the RNN is composed 
of several neurons that are interconnected. The loop in the RNN is utilized for the detection process. In the 
RNN structure, data is passed from the input layer to the hidden layer. The RNN is trained using forward and 
backwards propagation processes. The output generated by the hidden layer of the RNN during the forward 
propagation is given in Eq. (46).

	 iu = ϖ (Xyu + V iu−1 + ci)� (46)

Here, the result produced by the hidden layer is represented as iu , at the time u, the contribution vector is 
represented as yu, the usual and the circulating weight matrix is illuminated as X , and V  respectively, the 
activation function is illustrated as ϖ.

The structural portrayal of the RNN is delineated in Fig. 4.

Developed DARNN-AM
The developed DARNN-AM arrangement is formed by combining the dilated RNN with the attention 
mechanism. The dilated RNN organization is adopted to solve the vanishing and gradient issues. So, these issues 
are solved by combining this structure with the attention mechanism.

The dilated RNN58 is adopted to overcome the challenges posed by conventional RNNs. The dilated RNN 
structure does not encounter gradient issues during prediction. By using the dilated RNN, the training process 
can be completed more efficiently. Additionally, the dilated RNN structure requires only a small number of 
attributes for the prediction process. The dilated RNN is composed of dilated skip (persistent hop) connections, 
which are considered a crucial component of its architecture. These dilated skip connections significantly enhance 
the dilation rate, thereby improving prediction accuracy. The implementation of dilated skip connections in the 
cells of the dilated RNN at each layer is represented in Eq. (47).

	
d(m)

u = g
(

y(m)
u , d

(m)
u−t

)
� (47)

Here, the time is represented by the term u, the cells of the dilated RNN structure are indicated as d(m)
u  and the 

layers of the dilated RNN are represented as m.
The conventional skip connection in the RNN structure is given in Eq. (48).

	
d(m)

u = g
(

y(m)
u , d

(m)
u−1, d

(m)
u−t(m)

)
� (48)

Fig. 4.  Structural portrayal of the RNN.
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Thus, the output operation in the dilated RNN is portrayed as g(·), the hop span is delineated as t(m). For the 
time u, the input provided to the structure is elucidated as y(m)

u . The dilated persistent hop does not depend on 
d

(m)
u−1. The dilated RNN has very low computational complexity. The interlacing process is carried out between 

the four blocks of the dilated RNN to get the output value.
The dilated RNN structure is formed by assembling the dilated recurrent layers. Due to this assembling 

process, the dilation rate of the structure is significantly improved. The dilation process involved in the layers of 
the dilated RNN is given in Eq. (49).

	 t(m) = Nm−1, m = 1...M � (49)

The capacity of the dilated RNN is enhanced by assembling more dilated recurrent layers. The enhanced dilation 
rate also reduces the vanishing and gradient problems in the dilated RNN structure. The dilated RNN structure 
effectively retrieves the long-term dependencies due to the enhanced dilation rate, and it is prescribed in Eq. (50).

	 t(m) = Nm−1+m0 , m = 1...M and m0 ≥ 0� (50)

Here, an additional convolutional layer is added to the end of the dilated RNN structure, and it is considered as 
a substitute for the misplaced dependencies, and the initial dilation is signified as Nm

0 .
Attention Mechanism: An efficient prediction process is achieved with the support of the attention 

mechanism. This process works by extracting relevant details from the feature maps. The weights within the 
feature map are also identified by the attention mechanism. In total, three linear transformations are performed 
on the features: value, key, and query, respectively. Each linear transformation has the same dimension. All 
queries are combined using dot product attention to calculate the attention scores. The resulting dot product 
between the query and key is further passed through the softmax function to derive the attention score. At each 
time step, the attention score is used to generate a weighted representation of the matrix, and the entire process 
involved in the attention mechanism is described in Eq. (41).

	
g(A, M, F ) = SOF T MAX

(
AMT

√
el

)
F � (51)

Here, the query, values and key are represented as A, F, M  and the amount of the vector is expressed as el.
The space in the middle of the transmitted signal and the output layer is examined by the loss function, and 

it is given in Eq. (42).

	
L =

M∑
m=1

log(m)||Xr − Xr+1||2� (52)

The pictorial indication of the DARNN-AM for the MIMO identification process is formulated in Fig. 5.

Fig. 5.  Pictorial indication of the DARNN-AM for the MIMO detection process.
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MIMO signal detection using DARNN-AM
The channel state information attained from MSGO is given to the DARNN-AM for estimating the channel. 
The estimated channel information is properly trained by the proposed DARNN-AM. Using these trained 
parameters, the MIMO detection process is carried out. The massive MIMO network consists of a greater 
number of antennas at both the receiver and the transmitter, which leads to the establishment of near-lossless 
communication. The complexity involved in wireless networks during communication is overcome by the 
detection process of massive MIMO. As the name suggests, the base station of a massive MIMO network consists 
of more antennas compared to traditional networks. Hence, the spectral efficiency of the wireless network is 
considerably increased.

Novelty: The novelty of the proposed DARNN-AM lies in its hybrid architecture that integrates temporal 
dilation with adaptive attention mechanisms to address the challenges of massive MIMO detection. Unlike 
traditional RNN-based models that suffer from limited temporal context and vanishing gradients, DARNN-
AM employs dilated RNN layers that effectively capture long-range dependencies in symbol sequences without 
increasing computational burden. This design allows the model to learn spatial–temporal correlations in the 
received MIMO signal more comprehensively. Furthermore, the incorporation of a softmax-based attention 
mechanism over the temporal axis empowers the network to dynamically focus on the most relevant parts of the 
input sequence, improving detection performance under varying channel conditions. This dual enhancement, 
temporal dilation for deeper context modelling and attention for selective focus, significantly improves symbol 
recovery accuracy and robustness against channel impairments. Additionally, DARNN-AM’s architecture is 
lightweight and scalable, making it practical for real-time MIMO systems. Its novelty is further reinforced by its 
seamless integration with the MSGO-optimised channel parameters, allowing it to function as a tightly coupled 
component in an end-to-end deep learning detection pipeline. This synergistic design not only improves bit 
error rate (BER) performance across a wide range of SNR conditions but also enhances the adaptability of the 
detection framework to non-stationary and highly dynamic wireless environments.

Architectural distinction of DARNN-AM: The proposed DARNN-AM framework differs fundamentally 
from conventional attention-based RNN variants such as Gated Recurrent Unit with Attention (GRU-ATT)59 
and Long Short Term Memory with Attention (LSTM-ATT)60 through two key innovations: the dual attention 
mechanism and the autoregressive integration strategy. Unlike standard models where attention is typically 
applied only over the input sequence (encoder side), DARNN-AM introduces attention both at the input 
(spatial attention) and temporal (decoder output) levels, enabling more effective focus on dynamically varying 
signal features across MIMO channels. Additionally, the autoregressive memory in DARNN-AM enables the 
model to incorporate historical context recursively during decoding, thus improving the temporal correlation 
modelling of channel fluctuations and symbol interference. This design is particularly advantageous in wireless 
communication scenarios with high user mobility or complex fading patterns. While GRU-ATT and LSTM-ATT 
maintain fixed temporal memory gates, DARNN-AM dynamically adjusts its internal memory via attention-
driven weighting, which significantly enhances symbol detection accuracy under noise and uncertainty. These 
architectural innovations collectively justify the uniqueness of DARNN-AM and its superior performance 
demonstrated across diverse experimental settings.

Interpretability through the attention mechanism: To address the interpretability limitations commonly 
associated with deep learning models, the proposed MSGO-DARNN-AM framework incorporates an Attention 
Mechanism designed to provide insight into the model’s decision-making process during MIMO signal 
detection. The Attention Mechanism enables the network to selectively focus on specific time steps, antenna 
inputs, or spatial features that are most influential in predicting the transmitted symbols. This dynamic weighting 
of input components provides a transparent representation of the model’s internal focus and contributes to 
making the network more explainable. Specifically, during training, the attention layer generates a matrix of 
attention weights that highlight the relative importance of each input segment in the received signal sequence. 
By visualizing these weights, we can observe which antennas, time instances, or subcarriers are prioritized by 
the model under varying channel conditions and interference levels. For example, in noisy environments, the 
attention mechanism adapts by assigning greater weights to cleaner substreams, which helps in enhancing signal 
reconstruction and reducing detection errors. Moreover, the integration of attention not only improves the 
interpretability of the model but also contributes to its robustness and accuracy by allowing adaptive feature 
relevance learning. As a result, the DARNN-AM architecture transforms the deep MIMO detection framework 
from a traditional black-box system into a semi-transparent model, where internal decisions can be interpreted, 
visualized, and explained through its attention dynamics.

The objective function of the MSGO-DARNN-AM-based channel estimation with the MIMO detection 
model is used to lower the NMSE and to improve the spectral efficiency of the network. The objective function 
of the MSGO-DARNN-AM-based channel estimation with the MIMO signal detection model is illustrated in 
Eq. (53).

	
F O = arg min

{cRNN
h

, cRNN
e , nRNN

s }

(
NMSE + 1

Spectral efficiency

)
� (53)

Here, the objective function is denoted by the word F O, the count of hidden neurons present in the RNN 
arrangement is elucidated as cRNN

h , and it trapped in the region of [5, 255], the steps for each epoch in the RNN 
structure is indicated as nRNN

s  and it deceit in between [5, 500], the epoch number in the RNN structure is 
depicted by the term cRNN

e , and it ranges in between [5, 50]. The NMSE is evaluated by Eq. (54), and spectral 
efficiency is given in Eq. (44).
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Spectral efficiency = t.c

bw ∗ ca
� (54)

Here, the data traffic that occurred in the network is represented as t.c, the bandwidth of the channel is 
represented as bw, and the total area of the network is illustrated as ca.

Results and discussion
Experimental setup
The MSGO-DARNN-AM-based channel estimation with the MIMO signal detection model was tested 
using MATLAB 2020a software. Here, the testing process was executed by taking the population number as 
10, the extent of the chromosome was taken as 4, and the highest iteration was taken as 50. The conventional 
algorithms, such as Red Deer Algorithm (RDA)61, Black Widow Optimization Algorithm (BWO)62, Arithmetic 
Optimization Algorithm (AOA)63, SGO56 and existing classifiers like MSDSD21, DGMP64, DLCS65, DLQP65, to 
find out the performance of the explored MSGO-DARNN-AM-based channel estimation with MIMO signal 
detection model. Table 4 provides the reproducibility details of the recommended model.

Performance indices
The following are some of the performance measures taken in the MSGO-DARNN-AM-based channel 
estimation with the MIMO signal detection model. To comprehensively evaluate the accuracy, robustness, 
and practical impact of the proposed MSGO-DARNN-AM framework in MIMO signal detection and channel 
estimation, a diverse set of statistical and vector-based error metrics has been employed.

Mean Absolute Error (MAE): It is examined by Eq. (55). It quantifies the average magnitude of absolute errors 
between actual and predicted values, offering a straightforward interpretation of detection performance.

General settings

Initialization seed 42

Programming language MATLAB

Simulation type Monte Carlo (1000 iterations per SNR point)

Channel model

Channel type Flat fading, Rayleigh channel

Noise type AWGN (Additive White Gaussian Noise)

SNR range 0 dB to 30 dB (step size: 5 dB)

Number of antennas (Tx × Rx) 16 × 32 (Massive MIMO setting)

Modulation schemes BPSK, QPSK, 16-QAM

DARNN-AM configuration

Type Dilated Adaptive RNN with Attention Mechanism

Input sequence length 64

Hidden units per RNN layer 128

Number of RNN layers 2

Dilation rates \[1,2]

Activation function ReLU

Dropout rate 0.3

Batch size 64

Epochs 100

Optimizer–MSGO

Name Modified Squid Game Optimizer

Population size 30

Maximum iterations 100

Control parameter α (exploration factor) 0.8

β (exploitation balance) 0.5

Mutation probability 0.1

Squid attraction coefficient 1.2

Convergence threshold 1.00 × 10–06

Training details

Optimizer MSGO

Learning rate 0.001

Validation split 20%

Early stopping Patience = 10 epochs

Evaluation metrics

Detection accuracy (%)

Bit error rate (BER) Computed per SNR level

Computational complexity Time per inference/sample (in ms)

Table 4.  Reproducibility details of the recommended model.
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MAE =

s∑
j=1

|EW − FW |

so

� (55)

Here, the whole number of samples is represented as so, and the expected and the preferred values are elucidated 
as FW and EW , respectively.

The L1 norm is represented as the entire amount of displacement that occurred in the given vector liberty 
and it is specified in Eq. (56). The L2 norm is the minimum distance between the two points of the network is 
represented as the L2 norm, and it is determined by Eq. (57). The L1 norm captures the cumulative displacement 
or deviation within signal vectors, while the L2 norm (Euclidean norm) provides insight into the magnitude of 
overall error, highlighting the stability of predictions under noisy conditions.

	
norm L1 = ||EW ||1 =

st∑
P =1

EW � (56)

	

norm L1 = ||EW ||2 =

√√√√
st∑

P =1

E2
W

� (57)

Mean Absolute Scaled Error (MASE): It is the ratio MAE of the expected value to that of the predicted values, and 
it is given in Eq. (58). The MASE offers a scale-independent evaluation by comparing MAE with a benchmark 
error, allowing fair comparisons across various signal scales and modulation conditions.

	

MASE = MEAN




EW

1
s−1

s∑
j=1

|FW − FW −1|


� (58)

Symmetric Mean Absolute Percentage Error (SMAPE): The accuracy of the predictive model is determined by 
the SMAPE expression, and it is provided in Eq. (59). SMAPE is employed for its sensitivity to percentage-based 
deviations and its balance between over- and under-estimations, which is crucial for adaptive systems.

	
SMAP E = 1

st

st∑
p=1

(
|FW − EW |
|FW |+|EW o|

2

)
� (59)

Maximum Error Probability (MEP): The performance of the MIMO network is identified by the theoretical 
attribute, and it is elucidated in Eq. (60). MEP offers a theoretical upper-bound measure on the likelihood of 
signal misdetection, representing the worst-case scenario in system reliability.

	
MEP = 100%

so

s∑
p=1

(
FW − EW

FW

)
� (60)

Infinity norm: It is circulated with some quantifiable functions in the vector space, and it is stimulated in Eq. (61). 
Infinity norm further supports this by capturing the maximum absolute deviation in any dimension, offering a 
conservative error estimate valuable in edge-case analysis.

	
inf inity norm = ||EW ||∞ = mxim

1≤0≤st
|EW |� (61)

Root Mean Squared Error (RMSE): The assessment quality is effectively determined by the RMSE measure, and 
it is mostly adopted in all of the detection processes. The mathematical expression of the RMSE is represented 
in Eq. (62). RMSE is used due to its strong emphasis on large errors, making it particularly effective in capturing 
the impact of bursty noise and multi-path fading effects in MIMO channels.

	
RMSE =

√√√√√
st∑

j=1
(EW − FW )2

so

� (62)

Together, these metrics not only validate the technical soundness of the developed model but also demonstrate 
its practical feasibility across various signal conditions. Improvements across SMAPE, MASE, and RMSE 
directly correlate with enhanced bit error performance and reduced retransmission rates in real-time MIMO 
systems. These error metrics are used to evaluate the accuracy of channel estimation and signal processing in 
MIMO systems. Lower values for these metrics indicate more accurate estimations, which translate to improved 
communication quality and efficiency.
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Performance analysis by varying SNR
The performance research on the MSGO-DARNN-AM-based channel estimation with MIMO signal detection 
process among various techniques and algorithms are provided in Fig. 6. The MSE of the MSGO-DARNN-AM-
based channel estimation with MIMO signal detection is depleted than the RDA, BWO, AOA and MSGO with 
57.57%, 56.25%, 39.13% and 40.42% at the SNR of 15. So, the MSE of the MSGO-based channel estimation 
model is raised than the usual algorithms. Hence, the proposed MSGO-DARNN-AM model demonstrates 
superior performance in terms of channel estimation accuracy compared to the conventional algorithms. This 
result highlights the effectiveness of the MSGO-DARNN-AM framework in minimizing estimation error, which 
is crucial for enhancing signal detection and system throughput in massive MIMO systems. The integration of 
the DARNN-AM architecture strengthens temporal learning and improves signal recovery, making the model 
more resilient to channel noise and interference. Compared to traditional optimization methods like RDA and 
BWO, the hybrid model provides a balanced approach by leveraging both intelligent optimization and deep 
learning, resulting in a more accurate and data-efficient channel estimation. The marked reduction in MSE 
at moderate SNR levels confirms the robustness of the model under practical wireless conditions, ensuring 
improved spectral efficiency and reliability in communication.

Performance analysis over several classifiers
The classifier comparison of the MSGO-DARNN-AM-based channel estimation with the MIMO detection 
model is shown in Fig. 7. At the SNR of 20, the spectral efficiency of the MSGO-DARNN-AM-based channel 
estimation with the resource allocation model is boosted with MSDSD, DGMP, and DLCS by 30.55%, 27.02%, 
and 4.44% for the channel estimation process. Therefore, the spectral efficiency of the MSGO-DARNN-AM-
based channel estimation with the resource allocation model is augmented more than the conventional classifier. 
This demonstrates that the proposed MSGO-DARNN-AM-based approach not only enhances detection 
performance but also contributes substantially to efficient resource utilization in massive MIMO systems. 

Fig. 6.  Deep learning-based channel estimation system for (a) BER, (b) MSE, (c) spectral efficiency, (d) BLER.
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Therefore, the spectral efficiency of the MSGO-DARNN-AM-based channel estimation integrated with resource 
allocation is significantly augmented when compared to traditional classifiers.

Performance examination by using the number of slots
The performance research of the MSGO-DARNN-AM-based channel estimation with the MIMO detection 
process is formulated in Fig. 8. The BER of the MSGO-DARNN-AM-based channel estimation with the resource 
allocation model is down than the RDA-DARNN-AM, BWO-DARNN-AM, AOA-DARNN-AM, and MSGO-

Fig. 6.  (continued)
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DARNN-AM with 71.60%, 61.66%, 95.65% and 69.56% at the number of slots of 5 for the channel estimation 
process. Thus, the BER of the MSGO-DARNN-AM-based channel estimation with the resource allocation 
model is lower than the prior algorithms. These substantial improvements demonstrate the capability of the 
proposed model to mitigate bit-level errors more effectively under the same channel conditions. The enhanced 
performance is attributed to the robust optimization capability of the MSGO and the adaptive temporal feature 
extraction provided by the DARNN-AM network. The resource allocation model further aids in dynamically 
distributing the channel resources, which reduces interference and optimizes throughput. This result indicates 
that the BER performance of the MSGO-DARNN-AM-based channel estimation with resource allocation is 
substantially better than that of previous algorithms, making it highly suitable for massive MIMO applications 
where reliability and efficiency are crucial. The lower BER also signifies improved signal recovery and decoding 
accuracy, which ultimately enhances spectral efficiency and QoS in next-generation wireless systems.

Analysis of the developed model using several constraints
The performance investigation of the MSGO-DARNN-AM-based channel assessment with the resource 
allocation model is shown in Fig. 9. At a number of epoch 10, the entropy loss of the MSGO-DARNN-AM-
based channel estimation with MIMO signal detection is 79.06% dropped than RDA-DARNN-AM, 74.41% 
dropped than BWO-DARNN-AM, 69.76% dropped than AOA-DARNN-AM, and 16.27% dropped than MSGO 
at the MIMO detection process. Hence, the MSGO of the MSGO-DARNN-AM-based MIMO detection with 
the channel estimation model is reduced than the traditional algorithms. This significant reduction in entropy 
loss highlights the efficacy of the proposed MSGO-DARNN-AM model in achieving more accurate and stable 
learning during training. The use of MSGO for channel matrix optimization, combined with DARNN-AM’s 
temporal learning and adaptive memory attention, contributes to this enhanced convergence behaviour. A lower 
entropy loss indicates that the model achieves higher prediction confidence and minimizes uncertainty in output 

Fig. 7.  Deep learning-based channel estimation with MIMO signal detection system for (a) MSE, (b) spectral 
efficiency.
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classifications. Therefore, the entropy loss of the MSGO-DARNN-AM-based MIMO detection with channel 
estimation is considerably lower than that of conventional algorithms, signifying improved generalization and 
training stability in wireless communication environments.

Statistical exploration
The statistical investigation of the MSGO-DARNN-AM-based channel judgment with MIMO signal detection 
is presented in Table 5. At algorithmic comparison, the MASE of the MSGO-DARNN-AM-based channel 
assessment with the MIMO finding model is lower than the RDA-DARNN-AM, BWO-DARNN-AM, AOA-

Fig. 8.  Deep learning-based MIMO signal detection with channel estimation system for (a) MSE, (b) spectral 
efficiency.
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DARNN-AM and MSGO-DARNN-AM with 21.53%, 14.77%, 7.27% and 5.77%. Thus, the MASE of the MSGO-
DARNN-AM-based channel estimation with the MIMO detection model is significantly reduced than the 
ancient algorithms. This reduction in MASE reflects the model’s improved accuracy in estimating the channel 
characteristics over a wide range of communication conditions. The integration of MSGO for optimal channel 
matrix selection along with the DARNN-AM’s dynamic temporal learning allows for better generalization and 
robustness. Thus, the MASE of the MSGO-DARNN-AM-based channel estimation with the MIMO detection 
model is significantly reduced compared to conventional algorithms, demonstrating its superiority in delivering 
more reliable and precise estimations in complex wireless environments.

Convergence evaluation on the developed model
To substantiate the convergence behaviour of the proposed MSGO, a detailed convergence analysis has been 
conducted, as illustrated in Fig. 10. The graph plots the fitness value of the objective function against the number 
of iterations, clearly demonstrating the optimizer’s performance over time. Initially, the fitness value exhibits 
a sharp decline within the first few iterations, highlighting MSGO’s strong global exploration capabilities in 
identifying promising solution regions across the search space. As iterations progress, the curve gradually 
flattens, indicating a transition from exploration to exploitation, where the algorithm fine-tunes candidate 
solutions around local optima. Notably, the convergence stabilizes without abrupt fluctuations or divergence, 
which evidences the algorithm’s ability to maintain a balance between intensification and diversification. The 
absence of oscillations in the later stages confirms that MSGO avoids premature convergence, a common pitfall 
in many metaheuristic algorithms. This is achieved by introducing adaptive behavior patterns within the squid-
inspired interaction model, including role-switching mechanisms, random perturbation, and memory-based 
position updates. The convergence graph also reflects that the optimizer reaches a near-optimal solution within 
50 iterations, corresponding to population × iteration = 10 × 50 = 500 fitness evaluations. This low iteration count 
combined with minimal computation time, underscores the algorithm’s computational efficiency and practicality 
for high-dimensional problems like massive MIMO parameter optimization. This empirical validation confirms 
the algorithm’s suitability for solving complex, nonlinear tasks in MIMO systems, ensuring both real-time 
feasibility and robust convergence behaviour.

Theoretical support for the convergence: In this research, the convergence of the proposed model is assured 
using the empirical validation, which is indicated in Fig. 10. The empirical evidence of the suggested MSGO 
showed that it can the capacity to reach a stable solution by navigating the solution space more effectively. 
Further, the MSGO is designed to iteratively explore the search space to maintain the effective balance between 
exploitation and exploration. Further, the adaptive behaviour of the suggested MSGO helps to get the global 
optima for guaranteeing the optimal convergence rate of the proposed MSGO. The stochastic process under a 
certain condition is followed by the proposed MSGO, which helps to get the optimal solution. The nature of the 
MSGO can be used for handling the global optimality and also aims to attain the appropriate solution in the 
search space which helps to attain improved convergence over the other algorithms.

Computational analysis and its scaling factors in terms of number of antennas and 
modulation order
Table 6 provides a comparative analysis of training time, inference time, memory consumption, and theoretical 
complexity across a range of existing algorithms, including traditional optimization techniques, deep learning-
based models, and the proposed MSGO-DARNN-AM framework. The proposed model demonstrates the 
lowest training time (22  s) and fastest inference time (6  ms) despite being evaluated under higher system 
dimensions, specifically with 32 antennas and a 64-QAM modulation order, significantly more demanding 
than the configurations used for the baseline models. In terms of computational complexity, the integrated 

Fig. 8.  (continued)
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MSGO-DARNN-AM framework has a hybrid complexity of O(N × T × H + G × K), where N is the number 
of antennas, T is the sequence length or number of epochs, H is the hidden layer size in DARNN, and G 
and K denote the population size and maximum number of iterations in the MSGO optimizer. This combined 
formulation scales linearly with the number of antennas and training epochs, making it computationally 
more efficient than traditional methods. Furthermore, when compared to neural network-based models, the 
proposed method strikes a better balance between computational efficiency and scalability, even under increased 
modulation orders and antenna counts. Importantly, the memory usage of 120 megabytes for MSGO-DARNN-
AM is the lowest among all compared models, showing it is highly suitable for use in resource-constrained 
or real-time environments. The observed linear or sublinear growth trend in performance further confirms 
the scalability and computational practicality of the proposed model. Therefore, the integration of MSGO and 
DARNN-AM does not impose an excessive computational burden, but rather delivers an efficient and scalable 
solution for massive MIMO detection tasks.

Evaluation against recent popular MIMO detection frameworks
To validate the robustness and superiority of the proposed MSGO-DARNN-AM model, a comprehensive 
performance evaluation was conducted by comparing its BER with popular MIMO detection frameworks, and 
it is given in Table 7. Specifically, the proposed model was benchmarked against AMIC-Net, MMNet, DetNet, 
and OAMP-Net. The BER performance was analysed across varying SNR levels (5 dB to 20 dB), and the results 
are tabulated for a detailed comparison. The proposed MSGO-DARNN-AM model consistently achieved lower 
BER across all tested SNR conditions, with a BER of just 0.007 at 20 dB, which is significantly better than DetNet 
(0.023) and OAMP-Net (0.015). These results confirm that the integration of MSGO for channel parameter 

Fig. 9.  Deep learning-based MIMO signal detection with channel estimation system for (a) channel 
estimation, (b) MIMO detection.
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refinement and the DARNN-AM for temporal feature extraction enables more accurate symbol detection under 
noisy and complex channel conditions. The clear performance margin over modern deep detection methods 
not only highlights the efficacy of the hybrid design but also situates the proposed approach as a promising 
advancement in the current deep MIMO detection literature.

Generalization evaluation of the proposed MSGO-DARNN-AM framework
To validate the robustness and adaptability of the proposed MSGO-DARNN-AM model, an extensive 
generalization analysis was conducted under diverse simulation settings beyond the initial training configuration. 
Figure  11 presents the model’s performance across multiple channel models, including Rayleigh and Rician 
fading, illustrating its ability to maintain low error rates and stable signal detection in both line-of-sight and 
non-line-of-sight scenarios. Furthermore, the model was evaluated against varied antenna array geometries (e.g., 
Uniform Planar Array (UPA)) and different user mobility patterns emulated through time-varying Doppler shifts. 
Despite the structural and environmental variations, the MSGO-DARNN-AM model demonstrated consistently 
low NMSE, indicating high generalization capability. This robustness is primarily attributed to the attention-
enhanced recurrent architecture, which dynamically adjusts to temporal dependencies in signal sequences, and 
the MSGO, which adapts feature weights to evolving channel states. Compared to conventional models trained 
on static configurations, the proposed framework shows better resilience to real-world changes, confirming 

Fig. 9.  (continued)

Algorithm comparison

Terms RDA-DARNN-AM61 BWO-DARNN-AM62 AOA-DARNN-AM63 SGO-DARNN-AM56 MSGO-DARNN-AM

MEP 47.021 41.82 42.085 44.366 39.636

SMAPE 1.1341 0.80694 1.2232 0.7566 0.44445

MASE 162.05 153.9 143.82 141.49 133.3

MAE 159.75 10.475 10.366 23.394 4.131

RMSE 12.528 14.948 13.726 12.861 8.1199

L1-NORM 702.62 722.12 667.28 645.81 585.73

L2-NORM 83.489 81.011 87.244 87.731 73.476

INIFINITY NORM 15.207 15.088 16.266 17.486 12.922

Classifier comparison

Terms AMIC-Net20 MSDSD21 Exhaustion DLQP65 Proposed

MEP 46.393 41.79 42.322 39.636 39.636

SMAPE 1.7549 1.4283 0.72718 0.44445 0.44445

MASE 144.85 158.72 158.22 133.3 133.3

MAE 122.07 60.815 26.508 4.131 4.131

RMSE 12.755 14.219 11.648 8.1199 8.1199

L1-NORM 682.33 789.9 767.97 585.73 585.73

L2-NORM 88.074 88.848 85.385 73.476 73.476

INIFINITY NORM 16.14 15.368 16.07 12.922 12.922

Table 5.  Statistical study of the deep learning-based channel estimation with the MIMO detection approach.
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its suitability for deployment in dynamic MIMO communication environments. These findings provide strong 
empirical evidence that the model is not over fitted to a specific channel or network condition, and can generalize 
well to unseen operating domains such as different user densities, antenna setups, and mobility profiles.

Ablation study
To thoroughly examine the individual contributions of the MSGO for channel parameter optimization and 
the DARNN-AM for signal detection, a detailed ablation study was conducted and is given in Table 8. This 
evaluation aimed to decouple the impact of each component by testing the system under distinct configurations. 
As reported in Table 7, MEP is 53.37 by using RNN, but RNN with dilation and MSGO gives the MEP of 
42.332, which contributes more than only with RNN. Similarly, Dilated RNN with Attention Mechanism, given 
the MEP is 50.995, however, RNN with MSGO is 48.098. Finally, Dilated RNN with Attention Mechanism 
with optimized parameters, i.e. MSGO with DARNN-AM (Proposed) gave the MEP to be 39.636, which is far 
better than all others. Thus, it is concluded that the combined model demonstrated substantial performance 
gains across all metrics, most notably achieving the lowest BER, NMSE, and SMAPE, highlighting a synergistic 
effect. The convergence behaviour also stabilized faster due to MSGO’s global–local search strategy, while the 
DARNN-AM refined temporal dependencies in symbol sequences. This comprehensive evaluation validates 
that both components, MSGO for optimization and DARNN-AM for sequence modelling are not only effective 

Method BER @ 5 dB BER @ 10 dB BER @ 15 dB BER @ 20 dB

AMIC-Net20 0.215 0.155 0.097 0.058

MMNet19 0.182 0.121 0.072 0.042

DetNet18 0.153 0.087 0.044 0.023

OAMP-Net27 0.142 0.072 0.031 0.015

MSGO-DARNN-AM 0.101 0.042 0.015 0.007

Table 7.  Evaluation Against Recent Popular MIMO Detection Frameworks.

 

Algorithm

Run time

Memory (MB) Computational complexity Antennas (N) Modulation order (M)Training time (s) Inference time (ms)

RDA61 45 12 240 O(N2 × M) 16 4

BWO62 42 11 230 O(N2 × M) 16 4

AOA63 38 10 215 O(N × M × log M) 16 4

SGO56 41 10 210 O(N × M) 16 4

DGMP64 30 9 150 O(T × H2) 8 16

MSDSD21 25 8 140 O(N × M2) 8 16

DLQP65 28 9 180 O(M2 × H) 8 16

MSGO-DARNN-AM 22 6 120 O(N × T × H + G × K) 32 64

Table 6.  Computational analysis and its scaling factors in terms of number of antennas and modulation order.

 

Fig. 10.  Convergence evaluation on the developed model.
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independently but significantly more powerful when integrated. Hence, the performance gains presented are the 
result of their complementary mechanisms, justifying the architectural choices made in this work.

Performance comparison of the suggested MSGO over other algorithms
The performance comparison of the suggested MSGO over the other optimization algorithms is given in Table 
9. The comparison is done by considering the convergence and MSE values along with the stability metric. 
As per the results in Table 9, the suggested MSGO attained an earlier convergence rate than the GA, PSO and 
WOA. In addition, the MSE of the suggested MSGO is 0.0045, and the prior algorithms, such as GA, PSO, and 
WOA, provide higher MSE values of 0.0081, 0.0074, and 0.0068. The attained results from Table 9 prove the 
performance of the developed MSGO since it uses the modified version of the SGO. The SGO algorithm has 
strong global searching capability, and it helps to avoid stagnation in the condition of local optima. Added with 
these advantages, the improved version of the MSGO further improves the performance of the optimization 
algorithm, and it outperforms the other optimization models, such as GA, PSO, and WOA, in the channel 
estimation process.

Performance of the developed model on real-time embedded systems for large-scale 
massive MIMO setups
The performance of the DARNN-AM on real-time embedded systems for large-scale massive MIMO setups 
is given in Table 10. It can be noted from Table 10 that the proposed DARNN-AM model consumes the peak 

Algorithms MSE Convergence speed (iterations) Stability

GA66 0.0081 95 0.0019

PSO66 0.0074 84 0.0015

WOA67 0.0068 78 0.0013

MSGO (proposed) 0.0045 51 0.0007

Table 9.  Performance comparison of the developed MSGO with other algorithms.

 

Terms Dilated RNN with MSGO Dilated RNN with attention mechanism Dilated RNN RNN RNN with MSGO MSGO with DARNN-AM (proposed)

MEP 42.552 50.995 50.318 53.372 48.098 39.636

SMAPE 0.795 0.538 0.794 0.902 0.977 0.444

MASE 139.870 136.090 146.220 137.860 140.730 133.300

MAE 17.305 6.430 17.533 8.895 12.713 4.131

RMSE 21.029 11.718 19.125 18.148 15.733 8.120

L1-NORM 590.190 593.620 593.460 592.120 597.790 585.730

L2-NORM 84.700 79.244 78.789 80.910 79.712 73.476

INIFINITY Norm 22.811 19.366 23.554 19.878 25.799 12.922

Table 8.  Ablation Study of the Developed Model.

 

Fig. 11.  Generalization evaluation of the proposed framework.
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memory usage of 58 and the inference time of 6.4milli milliseconds. In the proposed DARNN-AM model, the 
number of parameters and computation requirements are very low because of the incorporation of the dilated 
structure that greatly enhances the speed of the MIMO channel detection process. Further, the adaptive concepts 
incorporated within the proposed model reduce the memory usage, which greatly improves the performance of 
the MIMO detection task.

Heat map analysis of the proposed model
The heat map analysis of the suggested DARNN-AM is given in Fig. 12, which helps to prove the interpretability 
of the proposed DARNN-AM in the MIMO channel detection. The attention distribution over the different time 
steps is indicated in Fig. 12. From this Figure, it is confirmed that the proposed DARNN-AM can effectively 
emphasize the necessary parts of the input data for getting accurate results in the MIMO channel estimation 
process.

Computational complexity and run time overhead of the MSGO in dual optimization
The computational complexity and run time overhead of the recommended MSGO are given in Table 11. 
It can be found from Table 11 that the suggested MSGO provides lower run time overhead in the channel 
state estimation, whereas the same MSGO provides the run time overhead of 32.5 min in the MIMO channel 
detection. Similarly, the computational complexity of the MSGO is very high while tuning the parameters of the 
DARNN-AM in the channel estimation, and the computational complexity is slightly lower in the MSGO-based 
channel state estimation.

Comparison with strong learning-based State of the Art (SoTA) benchmarks
The comparison of the suggested model over the base line approaches are given in the Table 12. It can be seen 
from the results is that the suggested model attained the training time of 13 s and the NMSE of 0.046. Here, the 

Optimization task Run time overhead (minutes) Max GPU utilization (%) Computational complexity (%)

MSGO for channel state estimation 14.8 71.20% 45.30%

MSGO for DARNN-AM tuning 32.5 81.50% 52.70%

Total MSGO overhead 47.3 94.2 61.765

Table 11.  Computational complexity and run time overhead analysis.

 

Fig. 12.  Heatmap analysis of the proposed model.

 

Configuration Model Average inference time (ms) Peak memory usage (MB) FLOPs per inference (× 10⁶)

64 × 8 antennas DARNN-AM 6.4 58 420

128 × 16 antennas (scaled) DARNN-AM (scaled) 13.2 114 840

128 × 16 antennas GRU (baseline) 10.6 93 700

Table 10.  Performance comparison of the developed DARNN-AM real-time embedded systems for large-scale 
massive MIMO setups.
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existing model provides the training tine of 17 s, which helps to confirm the effectiveness of the proposed model 
in the channel estimation process.

Preliminary results using real-world dataset
The preliminary result of the recommendation on the real-world dataset is given in Table 13 to prove its robustness 
in the channel estimation process. On the COST 2100 dataset, the suggested model attained an accuracy of 97% 
and it attained an early convergence rate over the existing models. The better convergence rate and improved 
accuracy of the designed model are used to prove the robustness of the designed model in real-world scenarios.

Performance of the developed model on the increase in Doppler spread
The performance of the developed DARNN-AM on the increase in the Doppler spread is indicated in Table 14. 
This validation is performed by applying the MIC-based sequential detection with the proposed DARNN-AM. 
On the Doppler spread of 50 Hz, the accuracy of the suggested DARNN-AM without MIC is 91.782%. But, 
the accuracy of the suggested approach increases from 91.72% to 94.26% when DARNN-AM and MIC-based 
iterative sequential detection are used together. The results from this analysis showed that the proposed model is 
robust to channel dynamics with the incorporation of MIC and DARNN-AM.

Conclusion
A deep structure-based channel estimation with an MIMO signal detection model was developed to accurately 
determine the characteristics of the channel, thereby effectively mitigating the effects of noise and distortion on 
the signal transmitted through the channels. In this work, the CSI from the transmitted signal was extracted 
using the proposed MSGO by optimizing the channel matrix. This optimization helped to minimize the 
BER, SINR, PEP, and NMSE. The CSI obtained from the channel estimation process was then provided to 
the developed DARNN-AM for the training phase. Moreover, the proposed MSGO was also used to optimize 
parameters that were essential for reducing NMSE and enhancing the spectral efficiency of the wireless network. 
Before this, a MIC-based iterative sequential detection process was employed to identify the symbols present 
in the signal. These symbols were critical for determining the appropriate massive MIMO configuration for 
effective communication. In the DARNN-AM structure, the proposed MSGO was integrated to optimize 
variables such as hidden neurons, number of epochs, and steps per epoch within the recurrent neural network. 
The primary objective of the MIMO detection process was to select the most suitable MIMO system, thereby 
boosting the spectral efficiency of the wireless network, as MIMO architectures involve a larger number of 
antennas at both the transmitter and receiver ends. Due to this high antenna density, the communication process 
was conducted more effectively without significant data loss. At an SNR of 20, the spectral efficiency of the 
MSGO-DARNN-AM-based channel estimation with the resource allocation model was improved over MSDSD, 
DGMP, and DLCS by 30.55%, 27.02%, and 4.44%, respectively, for the channel estimation process. Hence, the 

Doppler spread (Hz) Model BER ↓ Accuracy (%) ↑

50 Hz
DARNN-AM without MIC 0.054 91.72

DARNN-AM + MIC 0.038 94.26

150 Hz
DARNN-AM without MIC 0.069 88.85

DARNN-AM + MIC 0.043 92.97

300 Hz
DARNN-AM without MIC 0.082 84.63

DARNN-AM + MIC 0.050 90.34

Table 14.  Performance of the suggested model in different Doppler spreads.

 

Model Dataset Accuracy (%) MSE (channel Est.) Convergence (epochs)

DARNN-AM + MSGO NYU wireless 97 0.0045 28

DARNN-AM + MSGO COST 2100 94.6 0.0061 34

GRU + PSO COST 2100 89.1 0.0093 47

Table 13.  Preliminary Results of the proposed model on the real-world dataset.

 

Model BER NMSE Training time (per epoch)

DetNet +  3.2 × 10⁻2 0.075 12 s

OAMP-Net2 2.4 × 10⁻2 0.063 15 s

MMNet-V2 2.1 × 10⁻2 0.058 17 s

MSGO-DARNN-AM (proposed) 1.7 × 10⁻2 0.046 13 s

Table 12.  Comparison of the proposed model with strong learning-based SoTA benchmarks.
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performance of the MSGO-DARNN-AM-based channel estimation with MIMO detection was significantly 
superior to conventional techniques and algorithms. To further strengthen the generalization capability and 
real-world applicability of the proposed MSGO-DARNN-AM framework, future work will incorporate more 
diverse and standardized propagation environments in terms of 3GPP-defined scenarios such as Urban Micro 
(UMi) and Urban Macro (UMa) models as specified in 3GPP TR 38.901. These standardized models offer a 
more comprehensive reflection of real-world deployment environments, including non-line-of-sight (NLOS) 
and spatial consistency effects. Although the proposed MSGO-DARNN-AM framework has demonstrated high 
accuracy and convergence efficiency under simulation-based evaluations, future work will focus on validating 
its performance in real-world scenarios. Specifically, we intend to test the framework using publicly available 
measured MIMO channel datasets and over-the-air experimental setups using Software-Defined Radio (SDR) 
platforms such as USRP or NI LabVIEW systems. This will allow us to assess the practical robustness of the model 
under realistic wireless impairments, such as hardware non-linearities, multipath fading, and environmental 
interference.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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