Table 1 Percentage accuracy given by different techniques for classification.

From: Multiple model visual feature embedding and selection method for an efficient pest classification supporting precision agriculture

Research technique

Dataset

Accuracy (%)

References

CNN and saliency techniques

IP102

92.43

21

Local binary patterns with support vector machine

Self insect image datset

20.01

26

AlexNet

Self insect image datset

94.7

26

ResNet50

Self insect image datset

97.4

26

ResNet34

Self insect image datset

97.7

26

MMAL-Net

IP102

72.2

27

RAN + FPN + MMAL-Net + ResNet50

D0

99.96

27

MMAL-Net

IP102

74.1

27

RAN + FPN + MMAL-Net + ResNet50

D0

99.8

27

Yolov5-S for 10 pest classes

Insect 10

70.5

29

Transfer learning with AlexNet, ResNet, VGGNet

National Bureau of Agricultural Insect Resources

96.75

31

AlexNet for IP102 dataset

IP102

89.6

32

Faster R-CNN ResNet50

IP102, BugWood, Rice knowledge bank

94.00

33

Ensembles of CNNs

Kylberg virus benchmark data set

95.52

34