Table 6 Performance comparison of LDA-based feature selection with different deep learning classifiers on the pest dataset * Here feature selection methods are DenseNet201–DN201, EfficientNetB3–ENB3, InceptionResNetV2–INV2 and Multi-features–MF.

From: Multiple model visual feature embedding and selection method for an efficient pest classification supporting precision agriculture

Classifiers

BiLSTM

DenseNet

LSTM

Feature selection technique

DN201

ENB3

INV2

MF

DN201

ENB3

INV2

MF

DN201

ENB3

INV2

MF

Accuracy

98.34

99.50

99.04

99.9

89.86

97.44

92.90

99.99

93.71

98.08

94.55

99.97

Validation accuracy

86.80

95.53

89.95

100

86.90

95.84

91.17

100

87.01

94.01

89.14

100

Precision

98.61

99.54

99.13

99.9

97.38

98.84

97.69

99.99

95.39

98.55

96.18

99.97

Validation precision

91.95

96.60

92.31

100

94.45

98.38

95.65

100

91.82

95.72

93.71

100

Recall

97.96

99.36

98.89

99.9

87.22

96.88

91.15

99.99

92.26

97.44

93.16

99.97

Validation recall

84.57

95.43

89.04

100

84.06

94.62

89.65

100

84.47

92.89

87.51

100

Loss

0.05

0.02

0.03

0.00

0.31

0.09

0.22

0.001

0.18

0.07

0.16

0.001

Validation loss

0.40

0.18

0.30

0.00

0.39

0.16

0.27

0.001

0.42

0.29

0.37

0.001