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Flood frequency analysis and hydrological modelling are crucial for water resource management and 
flood mitigation, especially in regions vulnerable to extreme weather. This study utilises the HEC-
HMS hydrological model to simulate rainfall-runoff processes and generate design storms for various 
return periods across 24 sub-watersheds of the Jhelum Basin, Kashmir. The model setup includes 
rainfall transformation using the ModClark method, baseflow estimation through the Linear Reservoir 
Method, and flood routing via the Muskingum approach. Satellite-based gridded rainfall data and 
sub-basin-specific hyetographs were used as meteorological inputs to ensure spatially distributed 
precipitation representation. Calibration and validation were performed using discharge data from 
Sangam, Ram Munshibagh, and Asham gauging stations (2020–2023), covering five high-flow events. 
This research marks the first application of event-based design storms at the sub-watershed scale in 
the Kashmir Valley using HEC-HMS, providing high-resolution insights into flood risk patterns. The 
model showed strong agreement with observed hydrographs (R² > 0.78, NSE > 0.56, RSR < 0.6, PBIAS 
within ± 25%). Sensitivity analysis identified curve number, time of concentration, and infiltration 
rates as key parameters influencing performance. Results indicated varied hydrological responses, 
with watersheds like Lower Jhelum, Sindh, Lidder, and Pohru showing higher peak discharges due to 
steep slopes, while low-lying areas such as Wular-II and Anchar exhibited prolonged flood retention. 
Urbanised watersheds like Dal and Wular-I showed moderate to high peaks, highlighting infrastructure 
vulnerability. Design storms for 2–500-year return periods identified critical flood-prone zones, offering 
insights for infrastructure planning and risk management. This research highlights the effectiveness of 
HEC-HMS model as an important non-structural flood mitigation measure in a mountainous region of 
Kashmir.
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Hydrological modelling is an important tool in water resource planning, flood hazard mapping and infrastructure 
design1–3. It simulated the hydrological processes such as precipitation, infiltration, surface runoff, and channel 
flow to predict how the water will flow in a watershed4–6. Hydrologic Engineering Center’s Hydrologic Modelling 
System (HEC-HMS) is the most commonly used model among the commonly used hydrological models to 
analyse flood risks under different hydrological conditions7–9. The integration of these models with remote 
sensing (RS) and geographic information system (GIS) technologies has significantly increased the accuracy of 
these models10.

Event-based rainfall-runoff models simulate the hydrologic responses of individual peak storm events, 
which makes them ideal for flood forecasting and infrastructure design11,12. These models differ from 
continuous models in the aspect that they focus on individual storms, hence eliminating the computational 
needs but capturing peak discharges, which are needed for infrastructure design9. The models prove useful in 
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areas with poor data availability, as in the Kashmir region, where flash flood occurrence and variable rainfalls 
necessitate efficient stormwater management strategies13. Loss (infiltration), transformation (generation of 
runoff), and routing processes form the essential elements, each of which is to be calibrated based according 
to local conditions7,14,15. HEC-HMS is broadly used for event-based modelling. Its modular structure supports 
various methods: SCS Curve Number for losses, Snyder’s Unit Hydrograph for transformation, and Muskingum 
routing16. Many studies globally have employed hydrological models to analyse flood dynamics and develop 
design storms. HEC-HMS was introduced by the U.S. Army Corps of Engineers (USACE) as a successor 
to HEC-1, with capabilities of advanced hydrological simulation16–18. The efficiency of HEC-HMS in the 
assessment of flood peaks and hydrographs at different return periods has been reported by several studies. Early 
studies19–21 showed the reliability of the HEC-HMS model in simulating rainfall runoff processes. Furthermore, 
some studies showed the effect of climate change22 and land-use change analysis23 on flood vulnerability, which 
highlights a rising susceptibility to flood risks. Recent studies have included radar-based rainfall integration for 
urban floods24coupled with HEC-HMS/HEC-RAS modelling for hazard mapping25and transboundary flood 
assessments26. These studies highlight the effectiveness of HEC-HMS for flood risk management under different 
geographical and hydrological conditions.

In India, HEC-HMS has been widely used for flood simulations of major river basins. Mandal and 
Chakrabarty27 used HEC-HMS coupled with HEC-RAS to showcase the utility of the model in mountainous 
basins by simulating flash floods in the Teesta Watershed and delineating flood-prone areas. Koneti et al.28 
estimated the effect of land use changes on runoff processes and found the model to be reliable for long-term 
hydrological modelling. In urban flood studies, Rangari et al.29 applied HEC-HMS to simulate extreme storm 
events in Hyderabad, identifying drainage limitations with a peak discharge of 590.5  m³/s. Natarajan and 
Radhakrishnan17 further focused on the need for an integrated hydrologic and hydraulic modelling approach 
in urban flood studies. Dimri et al.30 modelled streamflows for the Tehri Dam reservoir, showing the capability 
of the model in capturing seasonal variability. Vegad et al.31 highlighted the role of reservoir operations in flood 
management by simulating the historical floods of the Ganga-Brahmputra catchments.

Numerous comparative studies have underscored the strengths of HEC-HMS over alternative models such as 
SWAT, MIKE NAM, HBV, and artificial neural networks (ANN), especially for event-based flood modelling. In 
a recent study in the sub-humid tropical Kabini Basin of Kerala, Prakash et al.32 demonstrated that HEC-HMS 
outperformed SWAT in simulating peak discharges, making it more suitable for flood-focused hydrological 
modelling in Indian conditions. Similarly, Tibangayuka et al.33 evaluated HEC-HMS, HBV, and ANN models in 
a high-humidity, data-scarce tropical catchment and found HEC-HMS to be superior, achieving NSE values of 
0.84 during validation, compared to 0.64 for HBV and 0.55 for ANN. These results underscore the robustness of 
HEC-HMS in replicating observed hydrographs under variable data availability and climatic regimes. Vo et al.34 
compared MIKE NAM, MIKE SHE, SWAT, and HEC-HMS in two Vietnamese stations. Their findings showed 
that HEC-HMS and MIKE SHE consistently achieved high correlation coefficients and lower RMSE values 
during both calibration and validation, outperforming both MIKE NAM and SWAT. Recent studies suggest that 
coupling HEC-HMS with machine learning enhances simulation accuracy in data-scarce catchments. Mugume 
et al.35 and Narayana Reddy and Pramada36 demonstrated the effectiveness of HEC-HMS–ANN hybrids for 
improved streamflow and runoff predictions, indicating a promising direction for future hydrologic modelling.

Advances in hybrid methods now couple hydrodynamic models with machinelearning techniques, 
improving the floodhazard susceptibility mapping in a mountainous–urban environment37. Sensitivity 
analysis of 2D flood inundation models, such as the Tous Dam study, has highlighted the importance of 
model parameters in simulating flood extent38. Riskbased design tools built on hydrodynamic simulations can 
visualise how floodprotection dikes redistribute expected annual damages across a floodplain39. In a similar 
context, Tariq et al40. emphasises on selecting measures that align with riskbased floodmanagement principles 
rather than fixed returnperiod practices. Hanif et al41. demonstrated that high-resolution satellite-derived land 
cover classifications, generated using machine learning algorithms, have a significant impact on hydrological 
model outputs, thereby underscoring the necessity of incorporating fine-scale inputs for accurate simulation 
and analysis. In this context, this study is novel in its event-based, sub-watershed-scale simulation using high-
resolution rainfall inputs to derive design storms for multiple return periods across 24 sub-watersheds in the 
Jhelum Basin, an aspect that remains underexplored in the literature.

Lately, the urban centres such as Srinagar, Anantnag and Baramulla of Kashmir Valley have been experiencing 
uncontrolled urbanisation42,43. This unplanned urbanisation, along with changing land-use patterns44 and 
increasing climate variability, has significantly amplified the susceptibility of the Jhelum river and its tributaries 
to disastrous flood events45,46. The past floods, especially the 2014 flood, highlight the growing flood risk in the 
region47,48. Previous studies49–53 have employed various hydrological and hydraulic models—including MIKE 
11 NAM, SWAT, HEC-RAS, and HEC-HMS to examine flood behaviour in the valley. However, most of these 
studies have focused on long-term hydrological trends or large-scale analyses, often overlooking short-duration, 
event-based flood simulations at the sub-watershed level.

Despite existing studies on flood modelling in the Kashmir Valley, there is a lack of comprehensive research 
on design storm development and event-based hydrological analysis for sub-watersheds. The IDF curve study 
by Dar and Maqbool54 was limited to data from only six rainfall gauging stations, which constrains its spatial 
representativeness and leaves many smaller sub-watersheds in the Kashmir Valley inadequately characterised 
in terms of flood risk. However, flood response is highly sensitive to spatial heterogeneity in terrain, soil types, 
and land use patterns, factors that vary considerably across the valley. Addressing this variability requires a 
high-resolution rainfall and finer modelling scale that can reveal localised flood characteristics and inform site-
specific risk management.

The core objective of this study is to generate sub-watershed level design storms in the data-scarce Jhelum 
Basin using an event-based HEC-HMS framework. This is achieved by integrating high-resolution, gridded 

Scientific Reports |        (2025) 15:33358 2| https://doi.org/10.1038/s41598-025-17009-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


satellite rainfall data to construct hyetographs for varying return periods and applying them across 24 delineated 
sub-watersheds. By focusing on sub-watershed scale analysis, this study captures the spatial variability in flood 
behaviour driven by topography, land use, and soil conditions, offering a more precise understanding of flood 
risks and hydrologic responses.

This research fills a critical gap by demonstrating how high-resolution rainfall inputs and distributed event-
based modelling can be applied effectively in data-limited mountainous basins. The findings aim to support 
improved flood forecasting, localised hazard mapping, and adaptive flood management strategies for the 
Kashmir Valley.

Materials and methods
Study area
This study focuses on the Jhelum River Basin within the Kashmir Valley, extending up to its watershed outlet at 
Uri, a crucial hydrological unit of the larger Jhelum River system, which lies within the northwestern Himalayas. 
The basin is located geographically between the latitudes 33°20′30″N and 34°40′40″N and longitudes 73°42′30″E 
and 75°45′23″E, covering an area of 13,530.8 km2. The valley consists of alluvial plains in the low-lying areas 
and Himalayan peaks surrounding these plains, with elevation ranging from 1,069 m to 5,361 m above sea level, 
leading to different climatic and hydrological conditions. The basin encompasses 24 major watersheds (Fig. 1), 
each possessing unique hydro-geomorphological characteristics that control water movement in the basin55. The 
main soil types in the region include loamy and clay loam textures, which control the groundwater recharge and 
storage56 (Fig. 2) (Fig. S1 of the supplementary appendix). The valley is dominated by forest and horticulture 
land uses (Fig. S2 of the supplementary appendix). The annual temperature in the region varies from a low of 
−10 °C during winter to a high of 35 °C in summer57,58. The region receives precipitation both in the form of 
rainfall and snow59with a mean annual rainfall of approximately 840 mm60 and an average snowfall depth of 
around 30–35 cm, which has shown a declining trend over recent decades61.

Data sets used
The study employed multiple datasets, as listed in Table 1 for model development, calibration, and validation.

Fig. 1.  Geographic and Topographic map of study area.(Source: SRTM DEM, https://earthexplorer.usgs.gov).
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Methodology
The Jhelum Basin and its subwatersheds were delineated using a 30 m spatial resolution SRTM DEM in HECGeo-
HMS. The land use/land cover (LULC) (Fig. 2) and the soil maps were processed in ArcMap 10.8 to derive a 
hydrological soil group map (HSG) and Curve Number (CN) grid (Fig. S3 and Fig. S4 of the supplementary 
appendix) for the study area, which was subsequently incorporated into the parameters file of the HEC-HMS 
model to simulate rainfall-runoff processes at the subbasin level. Spatially distributed rainfall inputs were 
derived from two sources: long-term Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 
gridded rainfall data (1980–2022), (Fig. S5 of supplementary appendix), used to develop watershed-specific 
hyetographs and design storms, and IMD gridded rainfall DSS (Data Storage System) data (August 2020–August 
2023), employed to calibrate the generated runoff hydrographs. Calibration of the model was performed with 
daily streamflow records at Sangam, Ram Munshibagh, and Asham gauging stations. Finally, design storms for 
varying return periods were simulated in the model to calculate peak discharges across the 24 sub-watersheds. 
The methodological workflow is summarised in Fig. 3.

Model development
The basic structure of the model comprises a (i) Basin model, (ii) Meteorological model, (iii) Control 
specification, and (iv) Time series manager. The hydrological model of the Jhelum basin, developed using the 
HEC-HMS program, is shown in Fig. 4.

Development of basin model
The basin model of grid resolution of 2  km x 2  km was developed using terrain pre-processing and basin 
processing in HEC-GeoHMS. Terrain pre-processing involves a series of steps for generating the stream network, 
basin boundary, and drainage outlets62,63. The outlet is defined by a batch point, and then the upstream watershed 
is discretised into sub-basins64. Creating a basin model of the Jhelum basin for adding various watershed 
characteristics and parameters into the model is the first step towards model development. To complete this 
step, a control point was set up at the outlet of the lower Jhelum subbasin51.

Data Type Source Application

DEM SRTM (30 m resolution), USGS Earth Explorer Basin delineation, watershed extraction

Soil map Prepared in SAGA GIS using soil texture data
CN Grid generation

LULC Map Prepared used supervised classification of the Landsat 8 image (USGS Earth 
Explorer)

Satellite-based Gridded Rainfall Data CHIRPS, (4.8 × 4.8 km resolution, 1980–2023, ClimateEngine.org) Hyetograph and Design storm generation for 24 
watersheds

Gridded Rainfall Data IMD (India Meteorological Department), 25*25 km, resolution Generation of Simulated flows at Sangam, Ram 
Munshibagh, Asham for model calibration and validation

Daily Discharge Data Irrigation & Flood Control Department, Kashmir Model calibration and validation at Sangam, Ram 
Munshibagh, Asham

Table 1.  Summary of data sources and applications for hydrological Modelling.

 

Fig. 2.  LULC and Soil maps of Jhelum basin.(Source: generated from data obtained from ​h​t​t​p​s​:​/​/​e​a​r​t​h​e​x​p​l​o​r​e​r​
.​u​s​g​s​.​g​o​v​/​​​​​)​.​​​​​
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Estimation of initial losses
The Soil Conservation Service Curve Number (SCS-CN) method65 was used to calculate the initial losses (Eq. 1), 
due to its suitability for event-based rainfall-runoff modelling and minimal input requirements, which was 
helpful in the data-scarce Jhelum Basin66,67. A spatially distributed CN grid was used to estimate the infiltration 
losses across sub-basins.

	
Q = (P − Ia)2

(P − Ia − S) ; Ia = 02 S; Q = (P − 0.2S)2

(P + 0.8S) ; S = 25400
CN

− 254� (1)

Where, Q = direct runoff; P = precipitation; Ia = Initial abstraction; S = potential maximum retention; CN = Curve 
Number.

Transformation of rainfall to runoff
The ModClark transformation method68 was utilised to convert rainfall into runoff. The ModClark method was 
selected over the Snyder unit hydrograph because it is explicitly designed for gridded precipitation inputs16. This 
method combines a gridded time-area histogram with linear reservoir routing, improving spatial representation 
compared to the lumped time-area approach in the original Clark method16,69. The watershed is discretised into 
grid cells, each assigned a travel time index (Tt, cell​) relative to the watershed’s time of concentration (Tc, watershed) 
and its normalised flow distance:

	 Tt,cell = Tc,watershed (Dcell/Dmax)� (2) 

Where, Dcell = distance from a specific grid cell to the outlet of the basin; Dmax = Longest travel path from grid 
cell to outlet.

The primary input parameters include Tc and storage coefficient, both of which were derived using basin 
geomorphological parameters such as watershed area, longest flow path, and basin slope. The Tc was calculated 
using the using the Kirpich empirical formula proposed by Kirpich70as shown in Eq. (3).

Fig. 3.  Methodology Framework.
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Tc = 0.0195 L0.77

S0.385
� (3)

Where, Tc= time of concentration; L = Basin length and S = basin slope.

Estimation of baseflow
The Linear Reservoir Method was utilised to simulate subsurface flow processes, effectively representing 
baseflow contributions to streamflow in event-based modelling applications71,72. This method employs one to 
three linear reservoirs (layers) to model baseflow recession following a storm event. In this study, two reservoirs 
were employed with initial conditions comprising a baseflow of 1  m³/s, a partition fraction of 0.5, and two 
routing steps per layer. The routing coefficient was set equal to the storage coefficient for each subbasin to ensure 
that the routing time interval aligned with the natural drainage rate of the storage element. This alignment 
preserves the physical behaviour of baseflow recession and minimises numerical damping. The trial-and-error 
method was used to optimise these parameters through calibration.

Channel routing setup
Flood wave propagation was modelled using the Muskingum routing method73,74, which solves the continuity 
equation to calculate outflow (Ot) and storage while accounting for hysteresis effects. The Muskingum method was 
selected due to the limited availability of channel cross-sectional data for the Jhelum River and its demonstrated 
reliability in previous studies of ungauged basins75. The governing equation76 (Eq. 4) is expressed as:

	
Ot =

(
∆t − 2KX

2K (1 − X) + ∆t

)
It +

(
∆t − 2KX

2K (1 − X) + ∆t

)
It−1 +

(
2K (1 − X) − ∆t

2K (1 − X) + ∆t

)
Ot−1� (4)

where Ot and It are the outflow (m³/s) and inflow (m³/s) at time t, respectively; K is the travel time of the flood 
wave (hours); X is a dimensionless weighting factor (0 ≤ X ≤ 0.5); and Δt is the computational time step (hours). 

Fig. 4.  Basin model of the Jhelum basin.(Source: generated in HEC-HMS 4.12 software using data obtained 
from https://earthexplorer.usgs.gov/).
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In this study, the value weighing factor (X) was assigned as 0.2, and the time of travel (K) for all 11 delineated 
reaches was calculated using Kirpich’s formula (Eq. 3).

A constant loss/gain method was used to simulate bidirectional interactions between streamflow and 
subsurface storage, capturing both losses (such as infiltration from the channel into groundwater) and gains 
(such as baseflow contributions from groundwater to the stream). This method was selected due to its minimal 
data requirements and compatibility with all routing techniques available in HEC-HMS16. It operates by applying 
a constant volumetric rate and a fractional adjustment to the routed flow at each reach, thus approximating 
stream–aquifer exchanges. In the absence of spatially distributed groundwater data, this approach offers a 
simplified yet effective means to represent subsurface flow processes. The loss/gain parameters were applied 
uniformly across all delineated reaches. The meteorological model defines the boundary conditions for the 
watershed throughout the simulation period and governs the spatial and temporal distribution of rainfall 
throughout individual sub-basins77,78. In this study, two metrological models were developed, one by using IMD 
gridded rainfall as a precipitation method and the other by specified hyetographs for each subbasin.

The control specification is a crucial aspect of the project that manages simulation runs, defining their 
start and end times. Five control specifications were set up for five identified peak events and eight additional 
ones for eight different return periods. The time series data manager assigns daily records of precipitation and 
streamflow, with computations conducted on a daily time step. In order to assign the required data, twenty-four 
(24) precipitation gauges for 24 subbasins and three (3) discharge gauges for three (3) computation points, 
namely Sangam, Ram Munshibagh and Asham, were set up. In addition to the above, a gridded data manager 
was set up to add IMD’s gridded rainfall DSS for the watershed.

Calibration and validation
Calibration systematically fine-tunes watershed parameters to ensure the simulated hydrograph closely aligns 
with the observed hydrograph79,80. In this study, the HEC-HMS model was calibrated and validated using daily 
discharge data from three gauging stations—Sangam, Ram Munshibagh, and Asham—spanning August 2020 
to August 2023. Five significant flood peak events were identified during this period. The first three events 
(2020–2021) were utilised for calibration, while the last two (2022–2023) were used for validation. A manual 
calibration was used, where the initial parameter estimates obtained during hydrologic pre-processing were 
iteratively adjusted through a trial-and-error approach to assess optimal model parameters. Model performance 
was assessed using the coefficient of determination (R²), Nash-Sutcliffe Efficiency (NSE), RMSE-observations 
standard deviation ratio (RSR) and percent bias (PBIAS)81–84. The coefficient of determination (R²) quantifies the 
strength of the linear relationship between observed and simulated values, with values ≥ 0.70 generally reflecting 
good model performance. The Nash–Sutcliffe Efficiency (NSE) assesses the predictive accuracy of the model, 
where values > 0.5 are deemed acceptable. The RMSE–standard deviation ratio (RSR), which normalizes the root 
mean square error by the standard deviation of observed data, is considered indicative of good performance when 
values are ≤ 0.60. Percent bias (PBIAS), which measures the average tendency of the simulated values to over- or 
underpredict observations, is regarded as satisfactory when the absolute value falls within ± 25%16. Sensitivity 
analysis was carried out alongside calibration to identify the critical watershed parameters. The calibrated model 
was then evaluated for its predictive capability and subsequently used to generate flood hydrographs (design 
storms) at the sub-basin level for various return periods.

Results and discussions
Sensitivity analysis
Sensitivity analysis aids in understanding the responsiveness of model outputs to input parameters and 
informs calibration priorities85,86. Given the event-based modelling approach and limited availability of high-
resolution input data, the analysis focused on parameters associated with the SCS-CN loss method, ModClark 
transformation, linear reservoir baseflow, and Muskingum channel routing. Among the tested parameters, the 
Curve Number (CN) exhibited the highest sensitivity, with a ± 5% variation causing up to 12% deviation in peak 
discharge and 9% in runoff volume, which is consistent with findings from earlier studies87. Time of concentration 
(Tc) and storage coefficient from the ModClark method significantly influenced hydrograph timing and 
attenuation. Adjustments to Tc altered the lag between rainfall and runoff response, while the storage coefficient 
modulated peak attenuation. This shows the importance of basin geomorphology in flood simulation and the 
effectiveness of Kirpich’s empirical equation70 for estimating Tc based on slope and flow length. In Muskingum 
routing, the travel time (K) impacted outflow peaks more than the weighting factor (X). Parameters related to 
baseflow (routing coefficient, partition fraction) showed moderate sensitivity, mainly affecting the hydrograph’s 
recession limb. This insight was instrumental in guiding the manual calibration process, emphasising CN, Tc and 
K as the critical parameters and supporting prioritisation of these parameters in future studies and uncertainty 
assessments. Table 2 summarises the relative sensitivity of the key parameters.

Calibration and validation
The model was calibrated at three important gauging sites along the main Jhelum River using three observed 
events to ensure the model’s reliability for simulating storm runoff in the Jhelum Basin (Table S1 of the 
supplementary appendix). During the calibration phase (Events 1–3), the model exhibited strong agreement 
with observed discharge (Figs. 5, 6 and 7), with R² ranging from 0.78 to 0.98, NSE values between 0.568 and 
0.894 and RSR values of 0.3 to 0.6. PBIAS values largely fell within the acceptable range of ± 25% (Table 3). The 
slightly higher negative biases during Event 2 at RM Bagh (–20.44%) and Asham (–17.98%) suggest localised 
overestimation. These deviations may be attributed to spatial variability in rainfall, antecedent soil moisture 
conditions, or limitations in capturing urbanised flow dynamics88,89. These results confirm the model’s capability 
to simulate event-based runoff across spatially diverse catchments88.
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In the validation phase (Events 4–5) (Table S2 of the supplementary appendix), model performance 
remained consistent or improved, reinforcing the robustness of the calibrated parameters (Figs. 8 and 9). R² 
values exceeded 0.80 across all sites, reaching as high as 0.97 at RM Bagh in Event 5. NSE values also remained 
strong (≥ 0.70 at all locations), with the highest efficiency (0.92) observed at Sangam. Although PBIAS values 
were slightly negative during validation (ranging from − 17.68% to − 10.97% in most cases), they remained well 
within acceptable thresholds, indicating moderate overprediction but no systematic bias (Table 4).

The model’s consistent performance in both calibration and validation phases, especially in achieving R² 
> 0.79, NSE > 0.56, RSR < 0.6 and |PBIAS| < 25% across varied events, underscores its suitability for flood risk 

Fig. 6.  Plot of Observed vs. simulated flow at three stations for Event 2 (19-Mar-21 to 29-Mar-21).

 

Fig. 5.  Plot of Observed vs. Simulated flow at three stations for Event 1 (19-Aug-2020 to 04-Sep-2020).

 

Parameter Method Sensitivity Type Impact on Output Rank

CN SCS-CN Loss ± 12% peak flow 1

Tc ModClark Routing ± 2 h peak shift 2

K Muskingum Routing ± 9% flow volume 3

Storage Coefficient ModClark Routing Moderate hydrograph shape 4

Routing Coefficient Linear Reservoir Baseflow Recession limb 5

Table 2.  Summary of the relative sensitivity of the key parameters.
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assessment and design storm estimation in the study area. The inclusion of spatially distributed soil, land use, 
and rainfall data likely contributed to this high level of predictive accuracy89,90.

Design storms for different return periods
The calibrated hydrological model simulated runoff across 24 watersheds of the Jhelum Basin for eight return 
periods (e.g., 2, 5, 10, 25, 50, 100, 200, 500 years). Results indicate a clear upward trend in design storm intensities 

Fig. 8.  Plot of Observed vs. simulated flow at three stations for Event 4 (17-June-2022 to 29-June-2022).

 

Sangam RM Bagh Asham

R2 NSE RSR PBIAS R2 NSE RSR PBIAS R2 NSE RSR PBIAS

Event 1 0.83 0.78 0.50 13.65 0.78 0.70 0.50 9.80 0.79 0.72 0.50 9.13

Event 2 0.93 0.81 0.40 0.97 0.96 0.57 0.60 −20.44 0.92 0.57 0.50 −17.98

Event 3 0.91 0.82 0.40 −14.47 0.98 0.89 0.30 −5.97 0.89 0.76 0.50 −9.09

Table 3.  Calibration statistics for storm events at selected Jhelum basin Stations.

 

Fig. 7.  Plot of Observed vs. simulated flow at three stations for Event 3 (27-Jul-2021 to 08-Aug-2021).
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(peak discharge in m³/s) with increasing return period (Figs. 10, 11 and 12), reflecting the non-linear escalation 
of extreme rainfall and runoff responses91,92. Table 5 lists peak discharges for each watershed at different return 
periods, highlighting variability across sub-basins.

Among the watersheds analyzed, upstream watersheds such as Lower Jhelum, Sindh, Lidder and Pohru showed 
the highest peak discharges at all return periods (Fig. 13), which could be attributed to their larger drainage 
areas, steep slopes, higher runoff coefficients and orographic precipitation, further supporting their tendency 
to generate higher peak flows52,93. On the contrary, watersheds such as Gundar, Garzan, and Wular II showed 
lower intensities at all return periods, which could be due to their small catchment areas, larger perviousness 
or topographic shielding against heavy rainfall events94. Surprisingly, watersheds such as Dal, Doodhganga, 
and Wular I, which are situated in low-lying and comparatively flat regions, reveal moderate to high design 
storm intensities, particularly over high return periods. This observation is critical, as these watersheds are over 
the major urban and peri-urban regions of the Kashmir Valley, including Srinagar city and other surrounding 
settlements, which host dense populations and critical infrastructure95. The higher runoff potential witnessed in 
these basins can be related to larger imperviousness due to urbanisation, land-use changes, and encroachment 
of natural floodplains96–98. Although these urban low-lying areas lack steep slopes, these areas often experience 
compounded flood risks due to the combined effects of poor drainage, modified hydrological connectivity, 
and human intervention on natural water bodies5,99. The non-linear rise in peak discharge with return period 
implies that infrastructure designed for moderate events may be increasingly vulnerable under more extreme 
conditions. This risk is further exacerbated by climate change, which is expected to intensify the hydrological 
cycle, leading to more frequent and severe rainfall events and accelerating glacier melt100,101. The latter may shift 
flood seasonality in upstream basins, triggering earlier and larger flood peaks beyond the traditional monsoon 
period.

Due to the data-scarce nature of the Kashmir Valley, particularly in terms of long-term glacier mass balance 
and snow cover monitoring, the precise influence of changing meltwater regimes on flood return periods 
remains uncertain and merits further investigation using physically-based models and expanded observational 
networks102,103. These observations highlight the importance of integrated urban flood management and climate-
resilient drainage planning in these watersheds.

Statistical spread
The statistical comparison of design storm intensities over return periods (Fig. 14) indicates extreme spatial 
variability and dispersion increase with growing recurrence intervals104. The mean design storms increase from 
198.44 mm at the 2-year return period to 1378.25 mm at the 500-year return period, and the increasingly worsening 
nature of extreme precipitation events in the region is highlighted. The standard deviation also increases from 
164.61 mm at the 2-year return period to 1251.01 mm at the 500-year return period, which indicates increasing 

Sangam RM Bagh Asham

R2 NSE RSR PBIAS R2 NSE RSR PBIAS R2 NSE RSR PBIAS

Event 4 0.91 0.89 0.30 −13.61 0.88 0.84 0.40 7.35 0.81 0.71 0.50 −12.51

Event 5 0.95 0.92 0.30 −17.68 0.97 0.85 0.40 −17.41 0.94 0.71 0.50 −10.97

Table 4.  Validation statistics for storm events at selected Jhelum basin Stations.

 

Fig. 9.  Plot of Observed vs. simulated flow at three stations for Event 5 (15-Apr-2023 to 25-Apr-2023).
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variability in storm intensities among watersheds during rare and extreme events—an event often attributed 
to different physiographic characteristics, storm tracks, and orographic influences. The interquartile range 
(IQR), calculated as the difference between Q3 and Q1, also increases with the return period—from 124.26 mm 
at 2 years to 779.07 mm at 500 years—thus supporting the argument that the behaviour of storms becomes 
increasingly variable and uncertain under conditions of extreme climate105. The maximum design storm at 500-
year RP (4750.3 mm in Lower Jhelum) starkly contrasts with the minimum (383.5 mm in Gundar), emphasising 
the importance of localised flood design and region-specific adaptation strategies, particularly for high-risk 

Fig. 10.  Design storms at different return periods for the lower subwatersheds of Jhelum basin.
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watersheds. These findings underscore the necessity of incorporating spatially resolved hydrometeorological 
data into regional planning to enhance resilience under changing climate regimes.

Recommendations and future scope
The results of this study implies that watersheds such as Lower Jhelum, Lidder and Sindh which show peak 
discharge from design storms (> 4000 m3/s at 500 return period) require infrastructure designed to withstand 
such hydrological extremes, which implies that conventional drainage systems, culverts, and bridges often 

Fig. 11.  Design storms at different return periods for the central subwatersheds of Jhelum basin.
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designed for lower thresholds are likely to be overwhelmed, especially in downstream or low-lying areas. 
Practical adaptation measures include adaptive culvert and bridge sizing based on updated return period 
analyses, installation of overflow or retention basins in urban areas, and implementation of threshold-based 
flood alert systems to enable timely evacuations. In urban areas like Doodhganga and Dal which show moderate 
to high peak discharge from design storms, integrating effective drainage systems with land use planning is 
essential to mitigate flood risks. The observed increase in variability at higher return periods indicates a growing 
threat from climate change, highlighting the necessity for comprehensive modelling and adaptive planning. To 

Fig. 12.  Design storms at different return periods for the upper subwatersheds of Jhelum basin.
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Fig. 13.  Peak magnitude design storm for 24 watersheds.

 

S.No Name of Watershed
2 Year Return 
period

5 Year Return 
period

10 Year Return 
period

25 Year Return 
period

50 Year Return 
period

100 Year 
Return period

200 Year 
Return period

500 Year 
Return 
period

1 Pohru 459.8 777.1 1042.5 1400.4 1703.8 2033.2 2365.0 2843.2

2 Madhumati 126.5 211.8 284.5 383.7 468.8 561.9 655.7 792.2

3 Arin 96.0 168.3 227.0 315.3 385.6 464.2 547.1 664.6

4 Lower Jhelum 403.6 954.9 1416.3 2093.4 2649.8 3243.0 3864.7 4750.3

5 Wular I 128.8 266.6 377.9 533.2 661.8 796.6 932.3 1122.3

6 Wular II 71.1 163.2 237.5 341.1 421.9 508.7 597.2 719.9

7 Viji Dhakil 96.8 154.3 197.9 260.9 308.3 360.0 413.5 488.0

8 Ningal 110.1 192.0 254.3 344.1 415.4 491.5 569.8 678.6

9 Gundar 66.1 115.3 151.9 202.3 242.4 283.8 325.5 383.5

10 Ferozpur 134.1 236.6 317.9 431.3 525.5 624.0 726.8 871.3

11 Sindh 428.3 913.7 1310.6 1882.5 2333.5 2815.5 3316.2 4028.0

12 Anchar 82.4 164.4 232.6 329.5 408.2 492.3 578.2 702.0

13 Sukhnag 130.9 203.0 261.5 342.0 406.4 474.6 544.8 646.1

14 Doodhganga 281.7 518.8 699.9 940.9 1135.4 1333.1 1537.0 1810.6

15 Dal 148.4 297.3 421.5 601.1 747.4 904.5 1070.7 1298.4

16 Garzan 66.2 114.5 154.8 210.7 256.4 303.1 354.2 422.5

17 Romshi 165.3 287.5 384.3 516.2 628.6 746.9 866.0 1038.4

18 Arapal 96.7 153.7 207.1 281.8 345.0 412.0 484.9 589.7

19 Rambiara 158.8 268.8 356.1 487.1 587.1 697.6 814.5 979.1

20 Vishaw 156.3 229.4 285.9 363.2 423.4 490.3 557.3 647.8

21 Lidder 745.2 1187.3 1551.6 2067.0 2474.2 2923.8 3391.2 4036.4

22 Kuthar 93.2 142.9 183.6 249.1 303.5 358.0 423.9 512.3

23 Bringi 315.8 530.6 690.2 927.1 1125.6 1325.4 1537.1 1832.9

24 Sandran 200.5 342.8 449.9 605.8 734.0 869.4 1014.8 1219.9

Table 5.  Peak magnitude of design storm in m3/s for different return periods for 24 Watersheds.
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enhance emergency preparedness, authorities should prioritise the installation of automated rainfall gauging 
systems in high-risk watersheds to validate model data and improve flood forecasting accuracy. Conducting 
climate resilience assessments using the design storm data can inform watershed development and disaster 
mitigation programs. Additionally, involving local communities in participatory watershed management will 
strengthen flood preparedness and facilitate effective dissemination of early warning information.

Due to limited existing studies in the region, the plausibility of design storms at the sub-watershed level 
could not be validated directly. However, a comparative analysis with regional IDF curves (e.g., from IMD or 
CWC) is recommended in future work to assess their representativeness and improve reliability for engineering 
applications. Furthermore, the current study did not extend into flood inundation mapping or infrastructure 
stress testing; however, this forms a vital scope for future research. The design storms derived herein can serve 
as critical boundary conditions for flood modelling in HEC-RAS to simulate inundation extents at the sub-
watershed level. Such applications will be instrumental in infrastructure vulnerability assessment, optimising 
dam and reservoir operations, and establishing early warning systems tailored to specific return period scenarios.

Conclusion
This study presents a novel application of HEC-HMS with GIS-based spatial data and gridded satellite rainfall 
inputs for high-resolution, event-based storm modeling at the sub-watershed scale in the Jhelum Basin, offering 
a valuable tool for flood risk assessment. The model’s strong performance in calibration and validation phases 
highlights its reliability for hydrological studies in this region. Design storm simulations revealed significant 
spatial variability in peak discharges across the 24 sub-watersheds. Notably, high-altitude watersheds with larger 
catchment areas, such as Lower Jhelum, Sindh, Lidder, and Pohru, exhibited higher peak discharges, likely due to 
their larger drainage areas and steeper slopes. Conversely, urbanized and low-lying areas like Dal, Doodhganga, 
and Wular I also showed moderate to high peak discharges, underscoring the compounded flood risks from 
urbanization and reduced infiltration.​ These findings underscore the necessity for targeted flood mitigation 
strategies that consider both natural watershed characteristics and anthropogenic influences. Integrating 
detailed soil, land use, and rainfall data into hydrological models enhances the accuracy of flood predictions and 
supports the development of effective, region-specific flood management plans. To enhance forecasting accuracy 
and flood preparedness, agencies are encouraged to install additional rain gauges in data-scarce sub-watersheds 
of the Jhelum basin, and to integrate real-time hydrometeorological monitoring systems in urban flood-prone 
zones like Doodhganga and Dal. Sharing basin-scale hydrologic data through open-access repositories would 
facilitate reproducibility, support policy decisions, and promote collaborative research. Moreover, replicating this 
modeling framework in other data-scarce Himalayan basins would help develop basin-wide, climate-resilient 

Fig. 14.  Design storms Statistics across Return Periods.
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flood preparedness strategies. Strengthening data infrastructure and continuously updating land use inputs will 
further improve the utility of such models for early warning systems and adaptive flood management planning.

Data availability
All the data can be made available upon reasonable request and with appropriate permission from the corre-
sponding author [Mohmmad Idrees Attar]. Additional information and supporting datasets are provided in the 
Supplementary appendix and in the public GitHub repository: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​a​t​t​a​​r​i​d​r​e​e​s​/​s​i​m​u​l​a​t​i​o​n​-​d​a​t​a​-​f​
o​r​-​J​h​e​l​u​m​-​b​a​s​i​n​.​​
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