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Over the past decades, the use of fiber-reinforced polymers (FRPs) for retrofitting existing structures 
has become a widespread practice. More recently, however, the use of FRP bars as the primary 
reinforcement in new structures—especially concrete columns—has attracted global attention. Various 
equations have been proposed to predict the compressive strength of columns reinforced with FRP 
bars. However, these equations typically estimate axial strength without directly accounting for 
eccentricity. In this study, additional important parameters are considered: eccentricity of axial load, 
types of longitudinal and transverse reinforcement, and column height. To this end, a dataset of 525 
samples is compiled, and machine learning methods—including artificial neural networks (ANN), 
gene expression programming (GEP), the group method of data handling (GMDH), and multiple linear 
regression (MLR)—are employed. Among these, ANN yielded the best predictive performance with an 
R2 value of 0.974. Using the GEP, GMDH, and MLR methods, three predictive equations are proposed. 
Of these, the GMDH and GEP approaches demonstrate relatively high accuracy, with R2 values of 0.966 
and 0.942, respectively. The proposed equations can be used to predict the strength of reinforced 
concrete (RC) columns under axial loading with or without eccentricity, for various cross-sectional 
shapes and different types of longitudinal and transverse reinforcement (steel and FRP).
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With the emergence of FRP bars and their adoption in the construction industry, numerous studies have 
investigated their performance in various structural members. Among these, columns have received particular 
attention as one of the most critical structural elements.

The use of longitudinal and transverse reinforcement made of GFRP in columns, subjected to concentric 
and eccentric loading, has been investigated by numerous researchers 1–4. Hosseini and Sadeghian 5 proposed a 
deformability index by studying different configurations of transverse reinforcement, such as bar diameter and 
overlap length. Hadi et al. 6 examined various loading conditions in these columns and reported that neglecting 
the contribution of FRP bars to compressive strength leads to a significant discrepancy between analytical and 
experimental results. Due to the limited number of studies on the behavior of columns reinforced with BFRP 
bars, various parameters—including the percentage of longitudinal reinforcement, eccentricity, stirrup spacing, 
and stirrup diameter—have been investigated. These were compared with the corresponding parameters in 
similar columns reinforced with GFRP and steel bars 7–10. Researchers have also evaluated the incorporation of 
fibers in concrete for columns reinforced with GFRP bars 11,12. Alanazi et al. 13 further studied the effect of using 
steel tubes in GFRP-reinforced columns.

With numerous experimental studies conducted on columns reinforced with FRP, some researchers have 
proposed design equations to reduce the need for costly and repetitive experimental work 4,14,15. With the rise 
of neural networks and the advancement of machine learning, various models and equations have since been 
developed to predict the behavior of structural elements. Machine learning employs different techniques for data 
classification and prediction and is capable of learning relatively complex relationships from large volumes of 
information and data 16,17. To date, machine learning methods have been used to predict various characteristics 
of columns, including the compressive strength of concrete-filled steel tube (CFST) columns 18–20, columns 
confined with FRP wraps 21–30, the bond strength between FRP bars and concrete 31–33, and the strength of 
columns reinforced with FRP bars 34–39.
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In the context of strength prediction for FRP-reinforced columns using machine learning, Arora et al. 40 
applied an artificial neural network (ANN) to estimate the axial capacity of FRP-reinforced concrete columns 
and compared the results with 14 existing analytical models. All 242 data points used in their study involved 
columns under concentric loading; eccentric loading was not considered. Performance indices indicated that 
the proposed ANN model achieved the highest accuracy among the models, with a correlation coefficient (R) 
of 0.9758. Zhang et al. 41 investigated the behavior of hollow concrete columns (HCCs) using machine learning 
techniques such as light gradient boosting (LGB), extreme gradient boosting (XGB), and categorical gradient 
boosting (CGB). Among these, the CGB model demonstrated the highest accuracy, with all models showing 
less than 10% error compared to experimental results. Cakiroglu et al. 37 compiled 117 experimental data 
points to develop machine learning models including Random Forest, Kernel Ridge Regression, Categorical 
Gradient Boosting, Support Vector Machine, Gradient Boosting Machine, Lasso Regression, Adaptive Boosting, 
and Extreme Gradient Boosting. All columns in their dataset were subjected to concentric loading. Among 
the models tested, Gradient Boosting Machine, Random Forest, and XGBoost delivered the highest predictive 
accuracy. Tarawneh et al. 42 used an artificial neural network to design slender FRP-reinforced columns. Their 
model incorporated a factor to account for slenderness and introduced slenderness curves to support the design 
process. They also proposed a genetic expression programming (GEP)-based equation to predict the slenderness 
ratio, concluding that incorporating this ratio reduced the correlation between axial strength and slenderness. 
Balili et al. 36 proposed neural network and theoretical models to estimate the axial capacity of GFRP-reinforced 
columns incorporating glass fibers, using a dataset of 275 samples. The maximum errors reported for the neural 
network and theoretical models were 1.9% and 3.2%, respectively. Huang et al. 38 used 151 experimental data 
points on FRP-reinforced concrete columns and concluded that the backpropagation artificial neural network 
(BP-ANN) outperformed other mathematical models in terms of accuracy and minimized computational error.

Several equations have been proposed to predict the axial strength of FRP-reinforced concrete columns. 
Some of these are recommended by established design guidelines, while others have been developed by 
individual researchers. Certain equations account for the contribution of FRP bars to the axial strength of 
columns; however, several codes conservatively neglect this contribution. This conservative approach is based on 
experimental findings showing that FRP bars typically sustain only about 5% to 10% of the column’s maximum 
load 3. Table 1 presents a selection of well-known equations reported in the literature.

As can be seen, CSA-S806-12 does not account for the contribution of FRP bars to the axial strength of 
columns, whereas other equations do consider this component. In these equations, Pn is the nominal axial 
strength of column, Ag  is the gross sectional area of columns, AF RP  is sectional area of FRP bars, EF RP  is the 
modulus of elasticity of FRP bars, εfg  and εp are both the ultimate strain of FRP bars and f ′

c is the compressive 
strength of concrete. The structure of these equations is generally similar; the main differences lie in the values 
of the coefficients used.

A review of existing models and equations for estimating the compressive strength of FRP-reinforced 
concrete columns reveals that none directly account for the effects of bending (i.e., load eccentricity), column 
height, or the type and characteristics of the transverse reinforcement. Therefore, this study aims to develop 
more comprehensive equations that incorporate all of these parameters.

Objectives and outline of the research
An evaluation of the existing studies on FRP-reinforced columns reveals certain ambiguities and important 
limitations. One key limitation is the lack of direct consideration of the effect of eccentricity on the compressive 
strength of FRP-reinforced columns. Furthermore, in the reported studies, FRP bars have typically been used 
simultaneously for both longitudinal and transverse reinforcement. As a result, combinations involving FRP 
bars as transverse reinforcement and steel bars as longitudinal reinforcement—and vice versa—have not been 
thoroughly examined.

This study aims to address these gaps by proposing comprehensive formulas to predict the axial capacity and 
flexural strength of columns reinforced with FRP bars. The proposed formulas account for eccentricity, the shape 
of the column cross-section, and the use of FRP bars in either longitudinal and/or transverse reinforcement.

Figure  1 illustrates the fundamental steps undertaken in this study. First, a dataset of 525 samples was 
compiled, consisting of 12 input parameters and one output. In the next step, Pearson correlation coefficients 
were used to evaluate the relationships between input variables and their correlation with the output parameter. 
Additionally, cumulative frequency plots were generated.

References Formulation Description

CSA- S806-12 43 Pn = α1f ′
c(Ag − AF RP ) α1 = 0.85 − 0.0015f ′

c ≥ 0.67

AS-3600 44 Pn = 0.85f ′
c(Ag − AF RP ) + 0.0025EF RP AF RP

Mohammed et al. (A) 14 Pn = 0.85f ′
c(Ag − AF RP ) + εpEF RP AF RP εp = 0.002

Mohammed et al. (B) 14 Pn = 0.9f ′
c(Ag − AF RP ) + εfgEF RP AF RP εfg = 0.002

Hadhood et al. 15 Pn = α1f ′
c(Ag − AF RP ) + 0.0035EF RP AF RP α1 = 0.85 − 0.0015f ′

c

Tobbi et al. 4 Pn = α1f ′
c(Ag − AF RP ) + αF RP fF RP uAF RP α1 = 0.85, αF RP = 0.35

Table 1.  Equations for axial strength of FRP reinforced concrete columns.
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Four modeling approaches were employed: artificial neural networks (ANN), gene expression programming 
(GEP), the group method of data handling (GMDH), and multiple linear regression (MLR). Among these, 
three methods yielded predictive equations. The performance of the proposed models was then evaluated and 
compared with existing equations using standard efficiency metrics to identify the most accurate approach for 
predicting the axial capacity of FRP-reinforced columns.

Datasets of the study
Collection of experimental data
A total of 525 datasets were collected from 66 reported experimental studies 1,2,4,6,14,15,36,45–103. The data include 
columns with various cross-sectional shapes, such as circular, square, and rectangular sections. These columns 
are reinforced with longitudinal FRP bars, transverse FRP bars, or both. Both concentric and eccentric loading 
conditions are considered, and the transverse reinforcement consists of either ties or spirals. The experimental 
data cover a wide range of parameters, with the maximum axial load (Pmax) serving as the output variable. 
Table 11 summarizes the test references, number of specimens, column shapes, materials of longitudinal and 
transverse reinforcements, and load eccentricity.

A schematic view of the experiment and the parameters considered as inputs are shown in Fig. 2. Twelve 
input parameters are taken into account, which are listed alongside the output variable in Table 2. The predictive 
models in this study were validated using a conventional train/test split approach: 70% of the dataset (367 data 
points) was used for training, while the remaining 30% (158 data points) was reserved for testing.

Table 3 presents the statistical characteristics of the dataset, including the maximum, minimum, mean, 
standard deviation, and coefficient of variation for each parameter, based on 525 selected data points.

Fig. 1.  Outline of the research.
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Figure 3 presents the correlation matrix of the collected datasets, based on the Pearson correlation coefficient 
104. This matrix illustrates the relationships between the various parameters. For the selected dataset, the 
correlation between the input variables and Pmax ranges from –0.48 to 0.65.

The highest correlation is observed between (Ag, Pmax), (Ag, At) , and (Ag, Af ) , with a coefficient of 0.65. 
This indicates that an increase in will have the most significant positive impact on Pmax compared to the other 
parameters. The second most influential parameter is (the cross-sectional area of the stirrup), with a correlation 
coefficient of 0.59. According to the figure, the e/D ratio exhibits the strongest negative correlation with Pmax, 

Parameter

Ag

(mm
2)

H

(mm)
f

′
c

(MP a)

Af

(mm
2)

fyl

(MP a)
El

(GP a)
fyt

(MP a)
Et

(GP a) e/ D

S

(mm)

At

(mm
2) T ype

Pmax

(kN)

Max 160,000 3730 120 4080 2241 209.4 2000 200 1 300 516 2 5670

Min 14,400 400 21.2 78.48 441 38.7 0 0 0 0 0 0 74

Average 59,595.61 1356.58 42.24 1195.17 1194.16 71.48 1113.16 77.29 0.159 103.59 151.09 1.45 1743.68

Standard Deviation 32,146.46 543.4 15.83 674.95 394.82 40.34 401.12 48.41 0.23 54.4 87.76 0.51 1290.71

Coefficient of variation 0.54 0.40 0.37 0.56 0.33 0.56 0.36 0.63 1.48 0.53 0.58 0.35 0.74

Table 3.  Statistical values of selected data.

 

Parameter Description Unit

Pmax Axial capacity of columns kN

Ag Gross cross-sectional area of column mm2

H Height of column mm

f ′
c Compressive strength of concrete MP a

Af Total area of longitudinal bars mm2

fyl Yielding strength (ultimate strength for FRP bars) MP a

El Modulus of elasticity of longitudinal bars GP a

fyt Yielding strength (ultimate strength for FRP bars) MP a

Et Modulus of elasticity of transverse bars GP a

e/ D Ratio of eccentricity to diameter or height of cross section ––

S Space between stirrup ties mm

At Cross sectional area of stirrups mm2

type* Type of stirrups (ties or spiral) ––

Table 2.  Introduction to input and output parameters. *Type of stirrup equal to 0, 1 and 2 means that the 
columns have no, tie and spiral stirrups, respectively

 

Fig. 2.  Schematic view of input parameters in this study.
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at –0.48. This means that as the e/D ratio increases, Pmax decreases, and among all parameters, this ratio has the 
greatest negative influence on the compressive strength of the column.

Figure 4 presents the distribution of data points across various ranges for each input parameter, along with 
their corresponding cumulative percentages. As shown in Fig. 4a, the majority of columns in the dataset have 
cross-sectional areas smaller than 5000 mm2, and approximately 90% of the columns have areas less than 10,000 
mm2. Beyond this threshold, the number of data points declines sharply.

Figure 4b illustrates that most of the columns have heights ranging between 1000 and 2000 mm, followed by a 
smaller but notable portion with heights under 1000 mm. Columns exceeding 2000 mm in height comprise only 
about 5% of the total dataset. Regarding concrete compressive strength, no column was constructed with strength 
below 20 MPa. Approximately 60% of the columns fall within the 20–40 MPa range. A total of 131 columns have 
compressive strengths between 40 and 80 MPa, and 62 of these fall within the 60–80 MPa subset. Columns 
with compressive strengths above 80 MPa account for only about 3% of the dataset. In terms of longitudinal 
reinforcement, nearly 90% of the columns have reinforcement areas less than 2000 mm2, with only 10% 
exceeding this value. The yield strength of both longitudinal and transverse reinforcement bars shows a similar 
distribution. The majority of samples have reinforcement yield strengths between 500 and 1500 MPa, followed 
by a significant portion in the 1500–2000 MPa range. The elastic modulus of the longitudinal reinforcement is 
less than 50 GPa in approximately 36% of the dataset, whereas most samples fall within the 50–100 GPa range. 
A similar trend is observed for the transverse reinforcement bars. The distribution of load eccentricity, shown 
in Fig. 4i, indicates that about 70% of the samples either have no eccentricity or exhibit eccentricity less than 
0.2 times the section height (a total of 369 samples). The next most frequent group includes samples with an 
e/D ratio between 0.2 and 0.4. Overall, 54% of the samples are subjected to concentric loading, while 46% are 
eccentrically loaded. As shown in Fig.  4j, approximately 70% of the columns have stirrup spacing less than 
100 mm. For 25% of the samples, spacing falls between 100 and 200 mm, while only about 5% have stirrup 
spacing greater than 200 mm. The cross-sectional area of transverse reinforcement bars is less than or equal 
to 200 mm2 in 84% of the dataset. Finally, regarding stirrup type (Fig. 4l), only four columns were constructed 
without stirrups. Conventional stirrups were used in 278 samples, while spiral stirrups were used in 243 samples.

Methodology
Artificial neural network
Neural networks are composed of simple operational elements that work together in parallel. These elements are 
inspired by biological nervous systems. In nature, the functionality of neural networks is determined by the way 
components are connected.

After configuring or training the neural network, applying a specific input to it results in a specific output. As 
shown in the Fig. 5, the network adjusts based on the correspondence and alignment between the input and the 
target until the network’s output matches our desired output (target). Generally, a large number of these input–
output pairs are used in this process, referred to as supervised learning, to train the network.

In the Fig. 6, a model of neuron with a single input is shown. The input p is applied to the neuron and is 
weighted by multiplying it by the weight “w”, resulting in a weighted input that is then fed into the transfer 
function f to produce the final output. By adding a bias to the neuron structure, a biased neuron is created. The 
bias input is a constant value (l), and the bias value is added to the product “w.p”, effectively shifting the function 
to the left.

At least one neuron and sometimes more, make up a network layer. A neural network has at least the input 
layer, the hidden layer and the output layer. All of the layers in the network consist of nodes or neurons that 

Fig. 3.  Correlation matrix of data used in this study.
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work like the ones in the brain. The number of nodes in each layer varies with both how many features there 
are in the input and what the model is expected to do. The input layer takes external data, then sends it to the 
following layer so that various computations can be performed. This layer mainly receives data, moves it forward 
and processes nothing itself. Such a layer is able to receive text, sound and visual data. The hidden layer which 
lies between the input and output layers, is vital for the model. A neural network is built with at least one hidden 
layer and extra ones are included if the problem is more difficult. Putting in extra layers makes the network 
bigger and more complex to calculate. They take care of processing the data that was inputted from the layer 
before. The last layer, known as the output layer, computes the result that the network will give. Basically, it gets 
input from the hidden layers, works on it and produces the output that will be used 106.

Fig. 4.  Frequency distribution of input data. (a) Ag, (b) H, (c) fc, (d) Af, (e) fyl, (f) El, (g) fyt, (h) Et, (i) e/D, (j) 
S, (k) At, (l) type
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In this study, two layers were considered for the network, including the hidden layer and the output layer. In 
order to optimize and select the best network, different neurons from 1 to 20 were selected and trained for the 
hidden layer. The results of mean square error and values of R for networks with various neurons are depicted in 
Figs. 7 and 8. The network type was selected as feed-forward backprop. Training and adaption learning functions 
were selected as TRAINLM and LEARNGDM, respectively. The performance function is also considered MSE. 
Transfer functions for hidden and output layers were considered tan-sigmoid and pure linear, respectively. For 
the selection of the best network, the amounts of MSE and R were considered (the lowest amount of MSE and the 
closest amounts of R to one). As can be seen in Figs. 7 and 8, the network with the number of 12 neurons in the 
hidden layer was considered the optimum network. The schematic view of the best network is shown in Fig. 9.

Fig. 4.  (continued)
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Fig. 7.  MSE values for networks with various neurons.

 

Fig. 6.  The model of a neuron with one input redrawn from 105.

 

Fig. 5.  How neural network works redrawn from 105.
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Fig. 9.  Schematic view of ANN network with optimum neurons.

 

Fig. 8.  R values for networks with various neurons.
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The training process stops if the validation set error increases for six consecutive iterations. In Fig. 10, related 
to the optimized network, it is shown that this stopping occurred at iteration 22. Also, no overfitting occurred 
until iteration 16, where the best performance on the validation set was achieved.

Multiple linear regression
A statistical model known as “linear regression” calculates the linear relationship between a scalar response 
(dependent variable), and one or more explanatory variables (regressors or independent variables). Multiple 
linear regression refers to the procedure where there are more than one explanatory variable while simple linear 
regression deals with just one 107. In multiple linear regression, the parameters of a linear model are estimated 
with the help of an objective function and variable values. In linear regression, the considered model is a linear 
relationship in terms of model parameters. For the calculation of multiple linear regression, the following 
formula is used:

	 yi = β0 + β1xi1 + β2xi2 + .... + βpxip + εi� (1)

For every observation i = 1, 2, ....., n
The number of observations of dependent and independent variables are considered n and p, respectively.
Consequently, yi is the ith observation of dependent variable. The jth independent variable’s ith observation 

is denoted as xij  (j = 1, 2, ....., p). β0 is the constant term (y-intercept), βp is the slope coefficients for each 
explanatory variable, whereas the ith independent identically distributed normal error is denoted by εi. As is 
evident, this is more than just a straightforward line equation. In actuality, it’s a hyperplane Eq. 108.

In this study, the training and testing data consist of 70 and 30 percent of the whole data, respectively. After 
training the model, the coefficient of each input parameter and value of intercept were determined and the final 
equation for estimation of columns strength based on the MLR method is as follow:

	

Pmax = 204.5 + 0.015Ag − 0.085H + 14.37f ′
c + 0.23Af + 0.24fyl + 4.18El − 0.14fyt + 0.59Et

−2942 (e/D) − 3.32S + 3.44At − 244(type)

Evaluation metrics for MLR for training and testing data are computed and presented in Table 4.

Group method of data handling
Group method of data handling (GMDH) was invented by Professor Alexey G. Ivakhnenko in 1968 109. An external 
test criterion is used by these GMDH algorithms to search for and choose the fittest polynomial equation. With 
a second-order polynomial, the ANN-GMDH method builds a group of neurons. The approximate function 

∧
f  

with the output 
∧
y produced by combining the second-order polynominals of all neurons, is proposed for a set 

of inputs x = {x1, x2, x3, ....} in order to make the least error with the real output (y). So y can be described as 
follows for M experimental data with n output and one target:

	 yi = f (xi1,xi2,xi3, . . . ,xin) (i = 1,2, . . . ,M)� (2)

Metric Train Test

Mean absolute error (MAE) 433.44 460.41

Root mean square error (RMSE) 610.92 615.02
Coefficient of determinations 

(
R2

)
0.81 0.75

Table 4.  Evaluation metrics for MLR model.

 

Fig. 10.  Training process in the selected network.
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The output variables which are predicted by GMDH can be described for any input vector of 
X = (xi1, xi2, xi3, ...., xin), as follows:

	

∧
y
i

=
∧
f (xi1,xi2,xi3, . . . ,xin) (i = 1,2, . . . ,M)� (3)

Minimizing the square of error between y and 
∧
y should be done by the ANN-GMDH method, Put differently:

	

M∑
i=1

[
∧
f (xi1, xi2, xi3, ...., xin) − yi

]2

→ min� (4)

The connection between the variables that are input and output which is known as the polynomial Ivakhnenko, 
can be represented in the following way using the polynomial function:

	
y = a0 +

1∑
n

aixi +
1∑
n

1∑
n

aijxixj +
1∑
n

1∑
n

1∑
n

aijkxixjxk + . . .� (5)

This polynomial with two variables can be presented as follows:

	
∧
y = G (xi,xj) = a0 + a1xi + a2xj + a3xixj + a4x2

i + a5x2
j

� (6)

Regression techniques are used to identify the unknown coefficients ai in order to minimize the discrepancy 
between the computed values and the actual output for each input variable xi and xj . It is possible to adapt 
the inputs to all pairings of input–output sets optimally by obtaining coefficients for each function G (i.e., each 
created neuron) that minimize the total neuron error.

	
E =

∑M

i=1(yi − Gi)2

M
→ min� (7)

In this study, with the aim of using the GMDH method to predict data, GMDH Shell software (GMDH Shell 
DS 3.8.9) 110 was used. Furthermore, this software drastically cuts down on computation time by not requiring 
any prior data standardization. Using neural networks, it can create a candidate model with high prediction 
strength by identifying and considering non-linear interactions and connections between data. Additionally, it 
can provide a useful equation to predict desirable outputs. After running the software with the input and output 
data, the computed parameters of the software are presented in Table 5. In Fig. 11, the predicted values by the 
GMDH shell and their distance from the actual values are shown. The proposed formula by GMDH Shell is 
presented in Eq. 8.

The parameters defined as model inputs, which are listed in Table 3, are also considered as inputs for the 
formula. To use Eq. 8, the input parameters are substituted into the formula, and the mathematical operations 
are performed in the following order: exponentiation, square root, multiplication, division, addition, and 
subtraction. To simplify the formula, Eq.  8 is divided into four parts, which are then summed together. 
Accordingly, the parameters f1, f2, f3 and f4 are first calculated in sequence and finally added together to 
obtain the desired compressive strength. f1, f2, f3 and f4 are defined in the appendix.

In Fig. 12, the effect of each input parameter on output can be seen. Gross area of cross section, area of 
transverse reinforcement, and area of longitudinal bars are the most effective parameters with direct effect, so 
increasing these parameters will increase the compressive strength of the column, while the “e/D” parameter has 
the most negative effect on the output, so by increasing this parameter, the compressive strength of the column 
will decrease. This figure also shows that fyl, Et, and S are other parameters with adverse impacts on the axial 
capacity of the column.

	 Pmax = f(f1, f2, f3, f4) = f1 + f2 + f3 + f4� (8)

Post processed results Model fit Predictions

Number of observations 367 158

Max. error 480% 290%

Mean absolute percentage error (MAPE) 16.1 19.2

Root mean square percentage error (RMSPE) 209.34% 296.85%

Standard deviation of residuals 209.63% 297.78%

Coefficient of determinations 0.973 0.949

Table 5.  The measured parameters by GMDH Shell.
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Gene expression programming
Gene Expression Programming is an algorithm for creating mathematical models and computer programs 
that are based on evolutionary computations and drawn from the principles of natural evolution. Ferreira 
created this technique in 1999, and it was formally unveiled in 2001 111. To address the shortcomings of the 
first two genetic algorithms, the GEP algorithm really combines the dominant viewpoints of the two. In this 
method, the chromosomes’ phenotype—a tree structure with varying length and size—is similar to the genetic 
programming algorithm, while their genotype has a linear structure similar to the genetic algorithm. Therefore, 
the GEP algorithm, by overcoming the limitation of the dual role of chromosomes in the previous algorithms, 
provides the possibility of applying multiple genetic operators with the guarantee of the permanent health of 
the child chromosomes, and with a speed faster than genetic programming (GP) due to the higher structural 
diversity than genetic algorithm (GA), it expands the space of possible answers to search more thoroughly. From 

Fig. 12.  Impact of each input parameter on output.

 

Fig. 11.  Difference between actual and predicted data by GMDH.
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this perspective, GEP has really been successful in surpassing the first and second thresholds—the replicator 
threshold and the phenotype threshold—assumed in natural evolution processes.

With this approach, a collection of functions and terminals are used to model different phenomena. The 
primary arithmetic functions (division, multiplication, addition, and subtraction), trigonometric functions, and 
other mathematical functions (sin, cos, x2, exp, etc.) or functions defined by user that may be appropriate for 
the model’s elucidation typically make up a set of functions. Constant values and the independent variables in 
the problem make up the set of terminals. This approach typically relies on a genetic algorithm to select data 
points based on the merit function, using the population of data as a source. Certain operators (genes) are also 
used to perform genetic variations. Unlike GA and GP, GEP uses multiple genetic operators to replicate data 
simultaneously. The renowned Roulette wheel is used to choose the data. The purpose of duplication is to store 
multiple relevant pieces of data from one generation to the next. The mutation operator aims to optimize the 
targeted chromosomes internally through random optimization.

A chromosome, which may include one or more genes, represents an individual in GEP. A single-gene 
chromosome is referred to as a monogenic chromosome, while a chromosome made up of several genes is called 
a multigenic chromosome. A multigenic chromosome is particularly helpful for breaking down difficult problems 
into smaller, more manageable components, each of which is encoded by a different gene. This allows for the 
modular creation of intricate, hierarchical structures. Every gene in a multigenic chromosome is translated into 
a sub-ET (expressed tree), and the sub-ETs are usually combined into one by a linking function, also known as a 
linker 112,113. For modeling, some parameters such as the number of chromosomes, head size, number of genes, 
and linking function that are considered in this study are presented in Table 6. In this table, all the parameters 
are considered default except head size, chromosomes, and genes. Head size and genes should be determined 
before modeling, but the number of chromosomes can be changed during training to improve the accuracy of 
the model. After modeling with different head sizes and chromosomes, these parameters are selected as 14 and 
4, respectively. The number of chromosomes is also changed between 50 and 500 to improve the accuracy of the 
model. Root mean square error (RMSE) is also considered for the type of fitness function of error.

After modeling, the values predicted by GEP along with their experimental values are presented in Figs. 13a 
and b for training and testing data, respectively. In these figures, the difference between the actual and estimated 
values of each data is relatively small. Figures 13a and b confirm the accuracy and capability of this model in 
predicting the results. So based on this conclusion, the equation based on GEP, which is presented in Eq. (9), can 
be used reliably to predict the axial capacity of FRP-reinforced RC columns in the coming applications.

A tree diagram of the model proposed by GEP is illustrated in Fig. 14. As can be seen, this model consists of 
four sub-ETs, which represent the number of chromosomes. For the equation, these sub-ETs should be appended 
together by a linking function, which is considered multiplication in this study.

By multiplying sub-ETs, the final equation for predicting the axial capacity of FRP-reinforced columns is 
presented in Eq. (9). Regarding Eq. 9, first, the input parameters are inserted, and the values of g1, g2, g3 and g4 are 
calculated. Finally, the compressive strength is obtained by multiplying these four parameters. g1, g2, g3 and g4 
are defined in the appendix.

	 Pmax = g(g1, g2, g3, g4) = g1 × g2 × g3 × g4� (9)

The sensitivity analysis done by the software is presented in Fig. 15. As the figure shows, the most important 
parameter that can affect the compressive strength of the column is e/D, with a percentage effect of 34.54. The 
second and third positions of effect are for Ag and fc, with a percentage of 26.54 and 17.37, respectively. The 
figure also shows that fyl and El had no effect on the axial capacity of the column.

Comparison of the proposed formulas
Following the modeling process, the performance of each algorithm was evaluated using standard error metrics 
and efficiency criteria, including mean absolute percentage error (MAPE), coefficient of determination (R2), root 

Parameters Value

Head Size 14

Chromosomes 50–500

Genes 4

Mutation 0.00138

One-Point Recombination Ratio 0.00277

Two-Point Recombination Ratio 0.00277

Gene Recombination Ratio 0.00277

IS Transposition Ratio 0.00546

RIS Transposition Rate 0.00546

Gene Transposition Ratio 0.00277

Fitness Function Error Type RMSE

Linking Function Multiplication

Table 6.  Modeling parameters in GEP.
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Fig. 13.  Experimental versus predicted data in GEP for (a) training data, (b) testing data.
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Fig. 15.  Importance of different variables on output in equation proposed by GEP.

 

Fig. 14.  Four sub-ETs from GEP.
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mean square error (RMSE), and mean absolute error (MAE), as recommended in 23 reference. These metrics are 
defined by the following expressions:

	
MAE = 1

n

n∑
i=1

∣∣P(model) − P(actual)
∣∣� (10)

	

RMSE =

√√√√ 1
n

N∑
i=1

(P(model) − P(actual))2� (11)

	

MAP E = 1
n




M∑
i=1

∣∣P( mod el) − P(actual)
∣∣

M∑
i=1

P(actual)

× 100


� (12)

	

R2 = 1 −

N∑
i=1

(
P(actual) − P(model)

)2

N∑
i=1

(
P(actual)

)2
� (13)

In these equations, n denotes the number of data points—in this study, 525—and Pmodel and Pactual represent 
the axial capacity predicted by the machine learning model and the experimentally measured capacity, 
respectively. Lower values of MAE, MAPE, and RMSE, along with R2 values approaching 1, indicate higher 
predictive accuracy. The performance metrics for the different models are summarized in Table 7. Among the 
four evaluated machine learning algorithms—artificial neural networks (ANN), multiple linear regression 
(MLR), the group method of data handling (GMDH), and gene expression programming (GEP)—the ANN 
model demonstrated the highest predictive performance. On the test dataset, it achieved the lowest MAE 
(130.13), RMSE (211.45), and MAPE (11.05%), along with a high R2 value of 0.96.

In contrast, the MLR model exhibited the weakest performance, suggesting a highly nonlinear relationship 
between the input parameters and the target variable. Both the GMDH and GEP models also showed strong 
predictive capabilities, as reflected in their error metrics.

Furthermore, the mean and standard deviation of prediction errors, also presented in Table 7, were lowest for 
the ANN, GMDH, and GEP models. This further confirms their robustness and reliability in predicting the axial 
capacity of FRP-reinforced columns. In comparison, the average and standard deviation of errors for the MLR 
model were approximately six and sixteen times higher than those of the ANN model, respectively, reinforcing 
its relative inadequacy for modeling complex nonlinear behavior in this context.

In Figs. 16 and 17, the performance of the models in predicting different data points is shown for the training 
and testing datasets, respectively. Each point represents one data sample, and based on its location, the accuracy 
of the models can be assessed. In general, the closer the points are to the 45-degree line (green line), the more 
accurate the model’s predictions. If all points lie exactly on this line, it indicates that the predicted values are 
identical to the experimental values.

Figures  16 and 17 demonstrate that the ANN model has the best performance, as most of its points are 
clustered near the 45-degree line. Overall, the ANN, GMDH, and GEP algorithms show the best predictive 

Method ANN MLR GMDH GEP

MAE_train 118.13 433.44 153.42 195.70

MAE_test 130.13 460.41 208.32 241.43

MAE- All data 121.54 440.89 169.94 209.010

RMSE_train 195.51 610.93 209.34 280.73

RMSE_test 211.45 615.02 296.85 368.67

RMSE- All data 206.61 611.59 239.07 309.417

MAPE_train 8.59 51.95 16.1 16.53

MAPE_test 11.05 52.68 19.2 23.23

MAPE- All data 9.32 52.41 17.01 18.505

R2 − train 0.981 0.754 0.973 0.949

R2 − test 0.960 0.810 0.949 0.934

R2- All data 0.974 0.775 0.966 0.942

Average of errors 9.32 59.22 17.01 18.51

Standard deviation of errors 10.22 166.38 31.05 41.55

Table 7.  Efficiency criteria for various models.
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performance for both the training and testing datasets. In contrast, MLR delivers the weakest results among the 
evaluated models, with many of its outputs falling beyond the 40% error line.

As shown in Table 8, only four data points have errors greater than 60% for the ANN model, and the majority 
of its predictions (89.7% of the data) have errors below 20%. For GMDH and GEP, 76% and 73% of the data, 
respectively, fall within the same error range. The number of data points across different error intervals is nearly 
identical for GMDH and GEP, but GMDH performs slightly better, as it has more data points with errors under 
40% (481 compared to 479).

MLR, on the other hand, has the highest number of predictions with errors greater than 60% among all 
models, confirming its comparatively lower accuracy.

In order to better understand the formulas presented in this study, a column with various eccentricities 
from the study by Hadhood et al. 2 is selected in this section, and the compressive strengths and moments are 
estimated using the proposed formulas. The results obtained from each equation, alongside their corresponding 
experimental values, are presented in Table 9. The axial load–moment diagram from the experiment, as well as 
the results of each method, are illustrated in Fig. 18. As shown, the results from the GMDH and GEP formulas 
are very close to the experimental data, while the MLR results show a relatively significant discrepancy. This 
example demonstrates the acceptable accuracy of the formulas proposed in this study.

Comparison of different formulas
As mentioned earlier, all existing equations (some of which are presented in Table 1) predict only the 
sectional capacity of columns under axial load without directly considering eccentricity. The performance 
of these equations is compared using various metrics, including MAE, MAPE, RMSE, and R2, with the 
results shown in Table 10. It can be seen that the equations developed by Mohammad et al. (B), Tobbi et 
al., and AS-3600 are more accurate than the others, with R2 values of 0.9, 0.883, and 0.883, respectively. 
Among these, the equation by Mohammad et al. (B) performs best due to its lower MAE, RMSE, and MAPE 
values. Table 10 also shows that the equations proposed in this study not only account for eccentricity but 
also exhibit higher accuracy compared to the existing equations in predicting the axial capacity of columns.

The performance of these equations is also compared to a machine learning model developed by Arora et al. 
40 using ANN. As can be seen, the ANN model done by Arora et al. 40 demonstrates the best performance among 

Fig. 16.  Performance of models in prediction of each training data. (a) ANN, (b) MLR, (c) GMDH, (d) GEP
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Experiment GMDH GEP MLR

Name of specimen e
Pmax
(kN)

M
(kN.m)

Pmax
(kN)

M
(kN.m)

Pmax
(kN)

M
(kN.m)

Pmax
(kN)

M
(kN.m)

HC-B-0 0 4716 0 4584.28 0 4256.28 0 2890.84 0

HC-B-25 25 3380 97 3469.67 86.74 3316.54 82.91 2649.69 66.24

HC-B-50 50 2339 128 2609.60 130.48 2524.85 126.24 2408.54 120.42

HC-B-100 100 1135 122 1383.02 138.30 1519.19 151.91 1745.33 174.53

HC-B-200 200 513 108 363.86 72.77 506.15 101.23 780.73 156.14

Table 9.  Axial load and moment of columns predicted by equations.

 

Range of Error (%) ANN MLR GMDH GEP

0–20 471 243 399 385

20–40 47 134 82 94

40–60 3 54 20 22

 > 60 4 94 24 24

Table 8.  Number of data in different ranges of errors for all models.

 

Fig. 17.  Performance of models in prediction of each testing data. (a) ANN, (b) MLR, (c) GMDH, (d) GEP
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the existing equations, owing to its higher R2 value. When compared with the models proposed in this study 40 , 
the ANN and GMDH models show greater accuracy in prediction, while the GEP model performs comparably. 
Overall, given that all models have R2 values above 0.9, it can be concluded that they all demonstrate strong 
performance in predicting the compressive strength of columns reinforced with FRP bars under concentric 
loading.

In Fig. 19, the dispersion of predicted data from both the existing equations and the proposed equations 
(GMDH and GEP) is compared. In this figure, each point represents the prediction error for a given data sample. 
As mentioned earlier, the error range for the proposed equations is within ± 20%, indicating relatively high 
accuracy in estimating the axial capacity of the columns. In contrast, for the existing equations, most points lie 
far from the 45-degree line. Even for the most accurate among them—Mohammad et al. (B)—the error range is 
generally between ± 40% and ± 60%.

The Taylor diagram for the models employed in this study is presented in Fig. 20. This diagram provides a 
comprehensive visual summary of model performance by simultaneously illustrating the correlation coefficient, 
standard deviation, and root-mean-square error (RMSE). The horizontal and vertical axes represent the standard 
deviation of the predicted values, while the black dashed lines denote the Pearson correlation coefficient. 
Additionally, the blue contours correspond to RMSE values, as outlined by references 114,115.

The accuracy of each model is indicated by its proximity to the reference point on the diagram. Models that 
lie closer to the origin and along higher correlation coefficient lines (i.e., smaller angular deviation from the 
x-axis) demonstrate superior predictive performance.

Load type
Model and equation 
considering eccentric load Equations considering concentric load

Machine 
learning 
model

Method ANN

Proposed 
equation 
(GMDH)

Proposed 
equation 
(GEP) CSA- S806-12 AS-3600

Mohammed et 
al. (A)

Mohammed et 
al. (B)

Hadhood 
et al Tobbi et al

Arora 
et al

MAE 121.539 169.941 209.010 536.84 280.32 302.89 245.61 316.62 309.26 232.04

RMSE 206.612 239.070 309.417 695.68 439.25 461.27 407.22 475.28 440.10 346.73

MAPE 9.325 17.011 18.505 23.44 13.11 13.88 12.13 14.05 16.09 29.22

R2 0.974 0.966 0.942 0.708 0.883 0.871 0.90 0.863 0.883 0.951

Table 10.  Performance checking variables for different equations and models.

 

Fig. 18.  Comparison of the interaction diagrams of a tested column with the proposed equations.
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Among the models analyzed, the artificial neural network (ANN) exhibited the highest overall accuracy, with 
a correlation coefficient exceeding 0.97, a well-aligned standard deviation, and minimal RMSE—indicating its 
strong reliability in predicting the axial load capacity of FRP-reinforced columns.

The GMDH and GEP models also showed commendable performance, with correlation coefficients of 
approximately 0.96 and 0.94, respectively. These models strike a favorable balance between predictive accuracy 
and model interpretability, making them viable for practical engineering applications.

Fig. 20.  Taylor diagrams for proposed models.

 

Fig. 19.  Comparison of the proposed model with other studies.
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In contrast, the multiple linear regression (MLR) model showed the weakest performance, with a correlation 
coefficient of roughly 0.6 and a comparatively larger standard deviation. This suggests a limited ability to capture 
the complex behavior of FRP-reinforced columns under axial loading.

Overall, the Taylor diagram corroborates the results obtained from other statistical metrics and visually 
reinforces the superior performance of the ANN model, along with the strong predictive capability of the 
GMDH and GEP models.

Summary and conclusions
This study employs machine learning techniques to develop predictive models for estimating the 
compressive strength of concrete columns reinforced with fiber-reinforced polymer (FRP) bars. To achieve 
this, experimental data from multiple sources were compiled, resulting in a curated dataset of 525 data 
points. Twelve input parameters were selected for model development. Notably, several critical variables—
such as the ratio of eccentricity to the diameter or height of the cross-section (e/D), the column height (H), 
and the mechanical properties, type, and spacing of transverse reinforcement—were incorporated. These 
variables have not been explicitly addressed in previously published empirical equations.

The relationships between the input variables and their influence on the output were examined using a 
correlation matrix. The analysis revealed that column cross-sectional area had the strongest positive correlation 
with compressive strength, while eccentricity exhibited the most significant negative effect. The distribution of 
input variables across various intervals was also analyzed, both numerically and as percentages.

Four machine learning algorithms were applied: Artificial Neural Network (ANN), Multiple Linear 
Regression (MLR), Group Method of Data Handling (GMDH), and Gene Expression Programming (GEP). The 
models were trained and tested using standard performance metrics. Among them, ANN and GMDH yielded 
the most accurate predictions, with R2 values of 0.981 and 0.973 for the training set and 0.960 and 0.949 for the 
test set, respectively. The GEP model also demonstrated satisfactory performance, achieving R2 values above 
0.93 for both datasets. In contrast, the MLR model exhibited the weakest predictive capability. Further analysis 
of error distribution and standard deviation showed that the ANN model achieved the highest overall accuracy, 
with an R2 of 0.974 and a standard deviation of 10.22. Notably, approximately 90% of the predictions generated 
by the ANN model fell within an error range of 0–20%.

In addition, several existing empirical formulas for estimating the compressive strength of FRP-reinforced 
columns were reviewed. Since most of these equations do not directly consider the effect of eccentricity, only the 
subset of data involving concentric loading was used for comparison. The compressive strength values obtained 
from both the existing formulas and the proposed models were compared for this subset.

To develop generalized prediction equations, the GMDH, GEP, and MLR methods were employed. Among 
these, the equations derived from the GMDH and GEP methods demonstrated relatively high accuracy, with 
R2 values of 0.966 and 0.942, respectively. These proposed equations were benchmarked against those available 
in existing design codes and published studies. The comparison confirmed that the GMDH- and GEP-based 
equations outperformed all other existing formulas in terms of predictive accuracy. Importantly, these models are 
capable of estimating both axial load capacity and moment strength for a wide range of input parameters, offering 
a substantial improvement over current empirical equations. The proposed equations are also straightforward to 
implement in engineering practice.

Given that the models were trained on 525 data points within defined parameter ranges, future work can 
improve their generalizability and precision by expanding the dataset and broadening the scope of the input 
variables. As one of the first studies to directly incorporate eccentricity effects in modeling the compressive 
strength of FRP-reinforced columns, this work provides a valuable reference for researchers aiming to develop 
more advanced models—not only for FRP-reinforced members but also for those reinforced with conventional 
steel.

Data availability
The datasets used and/or analyzed during the current study are available from Mohammad Haji (haji.moham-
mad@ut.ac.ir), upon reasonable request.

Appendix
Parameters f1, f2, f3 and f4 in the equation proposed by the GMDH method (Eq. 8) for calculating the com-
pressive strength of FRP-reinforced columns are presented below.

	

f1 = −1478.07 + Ag × 3
√

e/D × (−0.0406968) + Af × s × (−0.00191868)

+ s × 3
√

e/D × 6.03829 + fc × Af × 0.00216336 + fc × 3
√

e/D × (−80.6323)

+ 3
√

fc × 3
√

e/D × 2842.38 + Ag × 3
√

fc × 0.0196142 + H × 3
√

Ag × (−0.39438)

+ H × 3√
H × 0.683272 + Ag × 3√

H × 0.0259654 + (At)2 × 0.0198679
+ fyl × type × 0.236942 + H × 3√Et × (−0.3863)

� (14)
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Reference No. of specimens Shape* Material of longitudinal bar Material of transversal bar Type of transverse reinforcement Eccentricity

Raza and Zaman Khan 45 9 C Steel/GFRP GFRP Hoop Yes

Salah-Eldin 46 4 S Steel/GFRP GFRP Hoop Yes

Salah-Eldin 47 4 S BFRP BFRP Hoop Yes

Rafique 48 5 C GFRP GFRP Spiral-Hoop No

Hadhood 49 25 C GFRP/CFRP GFRP Spiral-Hoop Yes

Hadi 50 3 C Steel/GFRP Steel/GFRP spiral No

AlAjarmeh 51 5 C Steel/GFRP GFRP spiral No

Elchalakani 52 13 C Steel/GFRP GFRP spiral Yes

Hadhood 53 10 C GFRP GFRP spiral Yes

Elchalakani 54 9 R GFRP GFRP Hoop Yes

Othman 55 15 S Steel/CFRP Steel/CFRP Hoop Yes

Ahmad 56 7 C GFRP GFRP Spiral Yes

Tobbi 4 4 S Steel/GFRP Steel/GFRP Hoop No

Tobbi 57 11 S Steel/GFRP/CFRP GFRP/CFRP Hoop No

Tobbi 58 1 S Steel/GFRP/CFRP GFRP/CFRP Hoop No

Afifi 59 11 C Steel/CFRP Steel/CFRP Spiral No

Afifi 60 9 C Steel/GFRP Steel/GFRP Spiral No

Afifi 61 3 C CFRP CFRP Hoop No

AlAjarmeh 62 6 C GFRP GFRP Spiral No

Tu 63 8 S GFRP GFRP Spiral No

Phan Duy 64 10 S GFRP GFRP Hoop No

A. Alwash 65 7 S CFRP Steel Hoop Yes

Ahmad 66 5 C Steel/GFRP GFRP Spiral No

Elchalakani 1 7 R Steel/GFRP Steel/GFRP Hoop Yes

Elchalakani 68 16 R GFRP GFRP

Hamid 69 8 R BFRP/Steel BFRP/Steel Hoop Yes

Hadhood 2 10 C GFRP GFRP Spiral Yes

Hadhood 70 5 C CFRP/Steel CFRP/Steel Spiral Yes

Hadhood 15 5 C CFRP/Steel CFRP/Steel Spiral Yes

Hadhood 71 8 C GFRP GFRP Hoop Yes

Hadhood 72 40 C Steel/GFRP/CFRP Steel/GFRP Spiral/Hoop Yes

Hadi 6 6 C Steel/GFRP Steel/GFRP Spiral Yes

Hales 73 4 C Steel/GFRP GFRP Spiral Yes

Hasan 74 3 C Steel/GFRP Steel/GFRP Spiral Yes

Hasan 75 6 C Steel/GFRP Steel Spiral No

Baili 36 9 C Steel/GFRP Steel/GFRP Hoop Yes

Ahmed 76 2 C Steel Steel Spiral No

Zhou 77 3 S GFRP GFRP Spiral No

Xu 78 3 S GFRP GFRP Hoop No

Zeng 79 10 C GFRP GFRP Spiral No

Khorramian 80 4 S GFRP – – Yes

Maranan 81 7 C GFRP GFRP Spiral/Hoop No

Mohamed 14 12 C Steel/GFRP/CFRP Steel/GFRP/CFRP Spiral/Hoop No

Gouda 82 10 C GFRP GFRP Spiral Yes

Pantelides 83 4 C Steel/GFRP GFRP Spiral No

Erfan 84 2 S Basalt Basalt Hoop No

Li 85 9 C,S BFRP BFRP Spiral/Hoop No

Raza 86 9 C GFRP GFRP Hoop No

Rashedi 87 9 C Steel/GFRP Steel/GFRP Hoop Yes

El‑Sayed 88 4 S Steel/Basalt Steel Hoop No

Karim 89 2 C Steel/GFRP Steel/GFRP Spiral No

Tabatabaei 90 1 C GFRP GFRP Spiral No

Zhang 91 8 S GFRP GFRP Hoop No

Xiong 92 8 S BFRP BFRP Hoop No

Brown 93 4 S GFRP GFRP Hoop No

Elmesalami 94 9 S Steel/GFRP/BFRP Steel/BFRP Hoop Yes

Continued
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f2 = ( 3
√

e/D)2 × (−12478.1) + (e/D) × 3
√

fc × (−2539.04) + s × type × (−4.14823)

+ s × 3
√

Af × 0.770686 + Ag × 3
√

Ag × (−0.00400809) + H × 3
√

type × 1.65192 + 3√
H

× 3
√

e/D × 145.924 + (e/D) × s × (−5.90649) + Et × type × 1.18174 + 3√
H × 3√At

×65.8121 + s × 3
√

Ag × (−0.0480759) + 3√
H × 3

√
fyt × (−10.4182) + H × 3

√
fc

×(−0.270154) + (e/D) × 3
√

e/D × 18086

� (15)

	

f3 = (e/D) × 3√At × (−416.407) + At × 3
√

Ag × (−0.667748) + H × Et × 0.0111384

+ Ag × Af × 1.29916e − 06 + Ag × fyl × 4.56253e − 06 + At × 3
√

type × 12.9976

+ At × 3
√

fyl × (−0.994755) + type × 3
√

Ag × (−22.5939) + Et × 3√
H × (−1.06045)

+ Ag × At × 9.56043e − 05 + fc × s × (−0.0390729) + Af × 3
√

e/D × (−0.145516)

+ 3
√

Ag × 3
√

fc × 17.5869

� (16)

	

f4 = 3
√

e/D × 3
√

type × (−3386.99) + Et × 3
√

Af × 0.336775 + Ag × 3
√

fyt

×0.000669166 + (e/D) × 3
√

type × 5221.75 + 3
√

e/D × 3√At × 130.836

+(e/D) × 3
√

fyt × (−181.683) + 3
√

fyt × 3
√

e/D × 159.025 + (e/D)2

×(−5039.15) + fc × At × 0.0234283

� (17)

Parameters g1, g2, g3 and g4 in the equation proposed by the GEP method (Eq. 9) for calculating the com-
pressive strength of FRP-reinforced columns are presented below.

	
g1 = tan (1 − ((e/D) − ( 1

( 1−type×H
7.561 ) + ((At + 4.857) + sin(fyt))

)2))� (18)

	 g2 =
√

((1.5 × 10−4) × (Ag + (tan(S) − (At − 87.25))2)) − S� (19)

	
g3 =

exp( Af
(157.31−0.16At) ) ×

√
(2(e/D) +

√
Af

exp(e/D)
� (20)

	 g4 = ((tan((((Ag + At) + (7.936 + Et)) × ((At − (e/D)) × 7.936)) × Et)) + (1 − fc)2)
1/3� (21)

In the following, references used for data collection, the number of samples from each reference, and the 
general characteristics of the columns, including cross-sectional shape, materials of longitudinal and transverse 
reinforcements, type of stirrups, and loading eccentricity are provided (Table 11).
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