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The analysis of EEG signals for determining emotion is one of the most important topics in the field 
of artificial intelligence. It can be applied in a wide variety of areas, such as emotional health care 
and the man/machine interface. The purpose of the paper is the demonstration that emotions may 
be identified using EEG recordings in the hybrid approach based on the differentiated support vector 
machine (SVM) models with various types of kernel functions, as well as fuzzy C-means. The EEG signal 
of two subjects was recorded with the help of the Muse headband; the signal data was described as 
positive, neutral, or negative emotions. A Gauss kernel was the second-best outcome (95.78%), and a 
linear kernel was the best outcome (97.66%). Precision, recall, and F1-scores were used in establishing 
the performance of the SVM technique in emotion classification in conjunction with the fuzzy C-means 
classification approach. Besides covering the discussion on the importance of kernel choice in achieving 
good performance in SVM-based models, the analysis also showed that there was a potential to use 
EEG-based emotion detection. Moreover, one-way ANOVA statistical analysis has expressed that 
the linear kernel did perform significantly better as compared to other kernels (p < 0.05). To confirm 
that the proposed system would be rather robust, other deep learning models (CNN-LSTM hybrids) 
were designed and tested, the results of which proved that they had similar performance and at the 
same time less accurate results than the linear SVM. These results indicate the efficacy of SVM and the 
optimization of kernel parameters along with the integration of fuzzy logic in recognizing emotions 
based on EEG records.

Emotional processes are thus a critically important part of how we achieve rationality in situations that demand 
inspection, decision-making, and execution. They are affiliated with many aspects of human feelings, sensing, 
and moving. Therefore, the development of paradigms for using emotional signals for identifying emotions 
has become a moderately large research topic that has also been instrumental in enhancing BCI applications 
for social and clinical purposes1. Scientists have provided two major models for emotions: dimensional and 
categorical. Whereas fear, joy, or sadness can be easily described semantically, such representations frequently 
fail to support the expression of more complex emotions in other languages. Theoretical frameworks such as 
dimensional models, on the other hand, propose that emotions should be described with reference to several 
dimensions, of which the arousal-valence space is probably the most familiar. Engl-emotions. This model 
categorizes emotions according to their valence from negative to positive and according to their arousal level 
from low to high2.

One of the freshest trends in artificial intelligence is still the field of ‘affective computing’, which addresses 
the creation of systems recognizing and reacting to people’s emotions. Evaluative feelings and appraisals 
underlie the commonplace experience, including its behavioral, communicative, and even cognitive aspects. 
Affect recognition, which is a subfield of affective computing, has significant importance, especially in HCIs. 
A practical application of emotion recognition is neuromarketing, which involves examining or predicting the 
emotional tendencies of consumers to enhance advertisements, such as appraising responses to music3.

The present development of artificial intelligence and emotion identification has enriched people’s 
understanding of communication, decision-making, and intelligent systems. The research presented in Khare et 
al.4 provides a comprehensive and structured review of the approaches to emotion recognition published over 
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the last 10 years of research in the field of physiological and physical signals. Gestures and voice are categorized 
under physical signals, while physiological signals include EEG, ECG, and eye tracking.

In Domínguez-Jiménez et al.5, the authors proposed a model with physiological data gathered from the 
wearable devices of participants to identify three emotions—neutral, sad, and humor—when the participants 
were watching emotion-inducing clips. Facial videos were recorded from 37 participants along with galvanic 
skin response (GSR) signals to introduce optical imaging and implement a support vector machine (SVM) 
model with 100% accuracy. Both time and frequency analyses were performed to evaluate the signal quality. 
Along the same line of thinking3, developed an emotion identification system using a valence/arousal model 
on an EEG signal that was preprocessed using DWT and ofter into the gamma, beta, alpha, and theta bands. 
Spectral features were taken from each of the bands and then normalized, reduced by PCA, and introduced to 
ANNs, KNNs, and SVM classifiers.

Further information focusing on the analysis of the EEG signal was given in Jafari et al.6, where works 
outlining the difficulties of emotion recognition using EEG data were considered. For recommendation, the 
study proposed that deep learning methods can be applied even more in terms of emotion recognition. For 
example, in Li et al.7, a multimodal classification framework was proposed for issues concerning emotion 
identification for EEG and electromyography (EMG) biosignals. Based on these signals, differential entropy 
features were introduced, and the classification was improved with the help of a multimodal long-short-term 
memory (LSTM) network that incorporated spatial and temporal profiles.

In Ahmad and Khan8, the authors proposed a fast and robust multimodal emotion recognition system that 
included signal heterogeneity and interpersonal variability by using spatial and temporal characteristic EEG and 
MEG signals. The users proposed their neural network model that took differential entropy from such signals 
and improved the recognition accuracy compared to single-modal signals, providing 95.89% and 94.99% arousal 
and valence detection, respectively, using the DEAP database.

The recent advances in artificial intelligence, especially deep learning, have had a great impact on medical 
diagnostics and on affective computing, respectively. Neural networks like Convolutional Neural Networks 
(CNNs), Long Short-Term Memory networks (LSTMs), and transformer models provide an effective method of 
deriving high-level representations out of raw EEG signals and do not need hand-crafted features. These models 
are so ideal in showing spatial patterns and the temporal patterns in biomedical signals. As a case in point, 
CNN-LSTM hybrids have now achieved impressive results in the presence of common neurological conditions, 
such as the detection of Parkinson disease in EEG signals, returning high accuracy and interpretability via 
explainable AI systems9. On a similar note, transformer models have also shown meaningful potential in 
early detection of schizophrenia through the use of attention mechanisms to identify meaningful parts of the 
EEG time series and thereby perform better than basic classifiers10,11. Deep learning highly accurate models 
might need massive datasets and significant computational resources, even though they can discover complex 
arrangements. Alternatively, methods of machine learning such as SVMs have greater computational efficiency 
and explainability but lack the power of high-dimensional EEG features unless they are preprocessed with either 
dimensionality reduction or feature selection. Combining any of the above paradigms, such as deep feature 
extraction and robust/interpretable classification, by an ensemble or a hybrid strategy as suggested in our work 
tends to utilize the best of the two worlds on emotion recognition based on EEG signals12.

In this study, we developed the following major research questions: (1) Is it possible to utilize a hybrid 
framework consisting of fuzzy C-means (FCM) clustering techniques coupled with support vector machines 
(SVMs) to enhance the performance of EEG-based emotion recognition considerably better than standalone 
classifiers? (2) What is the role of kernel selection of the SVM framework as it relates to the effect of classification 
accuracy across the various emotional states pronounced by the EEG signals? Is a linear kernel applied with 
fuzzy preprocessing more valid than more nonlinear types of kernels like circular, polygonal, or sigmoid in 
defining emotional states with noisy, low-sample EEG data? The theoretical as well as practical usages of affective 
computing in relation to educational practice can be unveiled with the help of these questions, which support 
our methodological design and evaluation of the performance.

The main contributions of this study are that we used top-notch machine learning techniques to decode 
EEG data and examine how different emotions affect EEG signals relative to different stimuli. By analyzing these 
alterations, we seek to enhance the accuracy of recognizing and forecasting emotional states. To this end, we 
develop and study a computationally superior classification model for FCM ensembles integrated with support 
vector machines (SVMs). This approach continues to accelerate the final fine-tuning of the feature extraction 
process; that is, emotion recognition is executed with the highest possible precision.

Moreover, Fuzzy C-Means (FCM) clustering was selected in this study because of the very features of this 
clustering method to deal with uncertainty and overlapping boundaries in emotion-labeled EEG data, an asset 
that is especially appropriate in the imprecise and nonlinear behavior of brain signals. In contrast to other bio-
inspired algorithms, e.g., genetic algorithms, particle swarm optimization, and ant colony optimization, which 
are commonly computationally demanding and are only useful in global optimization problems, FCM directly 
and interpretably offers a soft clustering process. Instead of solid labels, it awards membership values and is 
therefore more appropriate to track the in-between states and multi-dimensional complexion prevalent in 
emotional reactions. Further, FCM can be very effectively applied in the hybrid model pipeline employed in 
this study, which is noted to have efficient convergence and great compatibility with subsequent learning, such 
as support vector machines (SVMs). Although other algorithms might be investigated in the future, FCM is a 
decent balance of the cost of computation and the ease of fuzzy emotional boundary adaptation and compatibility 
with the classification methods framework.

The initial hypothesis of this study was that a hybrid model combining fuzzy C-means clustering in a hybrid 
model of support vector machine classifiers will help to produce better and more significant accuracy and 
robustness of the emotion classification using EEG signals over the traditional models. The hypothesis that, 
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based on the principle of reducing ambiguity that brainwave activity contains, fuzzy C-means offers a more 
detailed account of the varying states of emotions, whereas SVM, most notably, using linear and Gaussian 
kernels, would be appropriately able to produce adequately defined decision boundaries to classify such a 
complex signal. The associated hypothesis comes down to the notion that the recognition of emotion entails 
overlapping patterns in terms of EEG signals that can be better addressed by the corresponding models that can 
address fuzzy membership and nonlinear separation. Hence, a combination of these approaches was likely to 
deliver better performance, generalization, and clinical relevance in emotion recognition activities.

The remainder of the paper is structured as follows: “Literature review” section provides the literature review, 
“Materials and methods” section provides the method and material of the proposed approach, and “Results and 
discussion” section provides the implementation/analysis of the proposed approach. “Limitations of the study” 
section discusses the findings and implications of the model analysis, while “Conclusion” section presents the 
conclusion.

Literature review
In Samal and Hashmi13, the author proposed the idea of identifying emotion from multichannel EEG signals 
using MEEMD on the DEAP dataset, including time, frequency, and nonlinear features, in the calculation while 
using an ensemble tree classifier. In Hamzah and Abdalla14, the authors focused on deep learning networks 
in the area of EEG signal classification, paying attention to their potential for the automatic extraction of rich 
hierarchical representations from raw EEG signal data. This research will also serve as a guide for modern 
deep learning for different preprocessing techniques, signal representations, and network model architecture. 
Furthermore, the paper covers limitations detected during experiments, including variability of brain structure, 
electrode positioning and device positioning, all of which hinder modeling across devices and time sessions. 
In Xiaohu et al.15, the authors provide a review of recent related studies that use deep learning for EEG-based 
emotion recognition and demonstrated that this approach is capable of feature learning and classification. This 
paper addresses deep learning paradigms and datasets used in affective computing; issues regarding EEG-based 
emotion recognition; and new research ideas.

The authors in Hamzah and Abdalla16 focused on how emotions are detected and experienced in a virtual 
environment using EEG signals while bearing in mind that a real-time response system is fundamental. This 
paper focuses on the computational rate and user engagement in virtual environments and ways of dealing with 
awareness of emotions. The Tetromino feature generation function-based game was proposed in Tuncer et al.17 
and is an idea of a new emotion classification system. The system extracts EEG channel features, and then, using 
their mutual relevance to the rest of the features, the most relevant characteristics are selected by the mRMR 
method for the classification of emotions. Then, a linear SVM is used for the final emotion classification, where 
the classification is made by a majority vote. In Xu et al.18, the authors found and compared seven approaches 
to channel selection for emotion recognition based on the DEAP dataset. EEG data are further partitioned into 
gamma, beta, alpha, and theta bands using the discrete wavelet transform (DWT) technique, and entropy and 
energy features are computed for each of these bands. Three approaches for channel selection, direct selection, 
mRMR, and experiential approaches, are compared to ELM for classification into seven emotions.

To our knowledge, multichannel EEG-based emotion classification using the TQWT and HCRNN was 
introduced in Zhong et al.19 with a spatiotemporal analysis of the proposed approach. The TQWT expands the 
EEG signal and obtains different subbands, and from these subbands, the mean absolute value and differential 
entropy features are extracted and converted to TFBS and subsequently used in deep model training. HCRNN, 
the combination of CNN and LSTM, learns both spatial and temporal features from TFBS for the classification 
of positive, neutral, and negative emotions, with impressive performance on the SEED dataset for emotions. A 
meta-analysis conducted in Yu et al.20 A showed that N2 and P3 amplitudes are valid indices of inhibitory control 
abilities in IGD patients. Such findings are useful for better understanding the underlying neural substrates for 
behavioral inhibition disorders in IGD patients and for clinical application in early diagnosis and intervention.

In Fernandes et al.21, the authors compare simple classifiers with those of deep learning techniques and 
perform an analysis of emotions via EEG data. This work also presents a novel contribution by presenting a 
detailed comparative analysis of a wide range of deep learning and machine learning (DL/ML) methods in one 
study while also extending the literature on emotion recognition from EEG data using graph convolutional 
neural networks (GCNNs). These findings provide significant direction for constructing the sector of emotional 
neuroscience because they help elucidate the connection between affective states and neural activity. In Lim and 
Teo22, using EEG data, Lim and Teo formulated a game-induced emotion recognition method that utilizes an 
interpretable ruleset-based classifier. This method is innovative and exhaustively overcomes flaws in previous 
studies concerning emotion detection during video game interactions and indicates a very high level of accuracy 
in identifying participants’ emotions, including gender differences. Even though ruleset-based classifiers are 
slower during training, their advantages for modeling real-world applications can be quite substantial since 
they assist physicians in tracking changes in patients’ emotions with the help of parameters indicating different 
stages of such an emotion as well as shedding light on the connection between EEG parameters and emotions 
themselves.

Table 1 presents several studies have brought forward new deep learning architectures that were used to 
identify emotions based on EEG. Jinfeng et al.23 proposed Fourier Adjacency Transformer (FAT) that first 
presented a + 6.5 profit over the then-state-of-the-art methods on the DEAP and SEED datasets. Teng et al. 
used 2D CNN-LSTM with the accuracy of 91.92 stability and 92.31 arousal on the matrices of different entropy 
values/differential entropy matrices. Caifeng et al.25 integrated Transformer models with CNNs to achieve a 
high value of the structural similarity (SSIM) index of 0.98 in three datasets. Yue et al.27 came up with a multi-
scale residual BiLSTM with accuracies of 97.88% and 96.85% on DEAP, binary, and quadrantal classification. 
Liu et al.27 presented a Transformer-based explainable ERTNet that impressed 73.31% and 80.99% in valence 
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and arousal. The Model Echo State Network (MESN) presented by Yang et al.28 attained accuracy of 65.3%, 
62.5%, and 70% on valence, arousal, and stress/calm state, respectively. The critical point is that Shen et al. 
developed DAEST, an attention-based dynamic model that showed satisfactory results on SEED-V, 8SEED, and 
FACED datasets with a maximum of 88.1% accuracy in 3-class classification. Pan et al.30 introduced a Dual 
Attentive Transformer model that generalized between the publicly released and privately released datasets 
with 64.43–85.27% accuracy between various types of class settings. Feng et al.31 used a CNN-Bi-LSTM with 
attention models on the Weibo COV V2 dataset to obtain a binary classification accuracy of 89.14%. Finally, 
there was Bagherzadeh et al.13, who presented an ensemble model with their best result on DEAP (98.76%) and 
MAHNOB-HCI (98.86%), demonstrating the effectiveness of ensemble learning in emotion recognition using 
EEG.

There are a few research gaps in the sphere of recognizing emotions based on EEG. To begin with, most of 
the available studies have a strong dependency on either classical machine learning or deep learning algorithms 
alone, using only fuzzy logic and hybrid models combining concept/kernelizations such as ensemble methods 
and kernel-based classifiers, such as SVM. Secondly, there has been no systematic study into the effects of each 
type of SVM kernel in enhancing classification accuracy among emotion classes. The other gap is that the 
preprocessing flexibility and feature improvement through clustering, such as fuzzy C-means, that have the 
potential to enhance the interpretability and robustness of a model are not well addressed. Furthermore, some of 
them assessed the performance of the models based on accuracy or F1-score, and not many of them put a focus 
on specificity, ROC-AUC rates, and multi-perspective frameworks evaluation. Such lapses highlight that the 
comprehensive and hybrid methodology, as in this work, which uses fuzzy clustering and diverse SVM kernels 
to promote the emotion classification in EEGs with enhanced feature discrimination and effective validation, is 
required and desirable.

Materials and methods
Fuzzy C-means
The fuzzy C-means (FCM) algorithm, a type of clustering, can be useful for organizing data where the clusters 
are ambiguous or overlap because it is based on the idea that the values of memberships provide degrees rather 
than intervals. In traditional strict clustering algorithms such as k-means, a data point can be assigned to only 
one cluster; however, when using FCM, the same data point can be assigned to different clusters to varying 
degrees depending on the values of membership ranging from 0 to 140.

The FCM algorithm operates by minimizing an objective function that accounts for both the distance between 
each data point and the cluster centers and the degree of membership. The objective function is given by41:

References Method Dataset(s) Accuracy (%)

Bdaqli et al.10 CNN-LSTM UC San Diego (UCSD) 
resting-state 99.75

Shoeibi et al.11 1D-Transformefor schizophrenia detection RepOD 97.62

Shoeibi et al.12 CNN + dDTF + transformer RepOD 96

Bagherzadeh et al.13 Ensemble model DEAP and MAHNOB-HCI 98.76 ± 0.53 for DEAP and 98.86 ± 0.57 for MAHNOB-HCI

Jinfeng et al.23 Fourier adjacency transformer (FAT) DEAP, SEED  + 6.5 gain over SOTA

Teng et al.24 2D-CNN-LSTM on differential entropy matrix DEAP 91.92 and 92.31 for valence and arousal respectively

Caifeng et al.25 CNN + transformer Three datasets SSIM score of 0.98

Yue et al.26 Multi-scale-res BiLSTM DEAP 97.88 (binary), 96.85 (quad)

Liu et al.27 ERTNet: explainable transformer DEAP, SEED-V 73.31 and 80.99 for valence and arousal respectively

Yang et al.28 Modular echo-state network (M-ESN) DEAP 65.3, 62.5, 70 for valence, arousal and stress/calm respectively

Shen et al.29 DAEST: dynamic attention state transition SEED-V, 8SEED, FACED 75.4 for 2-class, 59.3 for nine-class, 88.1 for 3-class, 73.6 for 
5-class

Pan et al.30 Dual-attentive transformer (DuA) Public + private 85.27 ± 08.56 for 2-class, 76.77 ± 08.87 for 3-class, and 
64.43 ± 13.10 for 5-class

Feng et al.31 CNN-Bi LSTM-attention Weibo COV V2 89.14 (2-class)

Wei et al.32 Efficient capsule network with convolutional attention 
(ECNCA) SEED, DEAP 95.26% ± 0.89% for 3-class and 92.12% ± 1.38% for 4-class

Oka et al.33 PSO-LSTM channel optimization SEED, DEAP 94.09 on DEAP and 97.32 on SEED

Liao et al.34 Contrastive transformer-autoencoder (CLDTA) SEED, SEED-IV/-V/DEAP 94.58

Hegh et al.35 GAN-augmented EEG data + CNN-LSTM FER-2013, DEAP 92

Pengfei et al.36 Lightweight convolutional transformer neural network 
(LCTNN) Two Datasets –

Makhmudov et al.37 Hybrid LSTM–attention and CNN model TESS, RAVDESS 99.8 for TESS and 95.7 for RAVDESS

Zhang et al.38 Hybrid network combining transformer and CNN TN3K, BUS-BRA, CAMUS 96.94 for TN3K, 98.0 for BUS-BRA, 96.87 for CAMUS

Chen et al.39 Graph neural network with spatial attention Private –

Table 1.  Summarize state-of-the-arts in 2024–2025.
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Jm =

N∑
i=1

C∑
j=1

um
ij |xi − cj |2

where Jm is the objective function to be minimized. N is the total number of data points. C is the number 
of clusters. xi represents the i-th data point. cj represents the center of the -th cluster. uij is the degree of 
membership of data point xi in cluster cj. m is the fuzziness parameter, which controls the degree of fuzziness 
in the clustering process (typically m > 1).

The membership values uij are updated at each iteration of the algorithm and are calculated as follows:

	

uij = 1
∑C

k=1

( |xi−cj |
|xi−ck|

) 2
m−1

.

This equation ensures that the closer a data point is to a particular cluster center, the higher its membership value 
is for that cluster.

The cluster centers cj are updated using the following equation:

	
cj =

∑N

i=1 um
ij xi∑N

i=1 um
ij

.

This process is repeated iteratively until convergence is achieved. Based on general conventions, convergence is 
measured by the threshold for the distance between cluster centers or between membership values for different 
iterations.

Support vector machine
A support vector machine (SVM) is a supervised machine learning algorithm that is used mainly in the 
classification domain. It operates under the principle of selecting the proper hyperplane that partitions the data 
points of various classifications in high dimensions of feature space properly. For each class, SVM tries to find the 
largest separation margin between classes, where the margins are the area around the hyperplane and the nearest 
data points of a class known as support vectors are classified with the maximum margin. This maximization 
makes SVM capable of success regardless of the noisy and complicated type of data fed to it because, again, the 
margin is maximized42.

Mathematically, given a set of training data ({(xi, yi)}N
i=1), where xi is the feature vector and yi ∈ {−1, 1} 

represents the class label, the SVM solves the following optimization problem43:

	
min
w,b

1
2 |w|2 subject to yi (w · xi + b) ≥ 1 ∀i

where w is the weight vector defining the orientation of the hyperplane. b is the bias term that shifts the 
hyperplane. yi is the class label of the data point xi.

In cases where the data are not linearly separable, the SVM employs a soft margin by introducing slack 
variables and minimizes the following modified objective function:

	
min
w,b

1
2 |w|2 + C

N∑
i=1

ξi.

where (ξi ≥ 0) are the slack variables and C  is the regularization parameter that controls the trade-off between 
maximizing the margin and minimizing classification errors.

For analyzing nonlinear data, it is possible to extend the SVM by the kernel trick. The kernels work in high-
dimensional space, while the SVM does not process the data in that space. Different kernels can be applied 
depending on the nature of the data:

Linear kernel
The simplest kernel is used when the data are linearly separable in the original feature space. The decision 
function for the linear kernel is44,45:

	 K (xi, xj) = xi · xj .

This approach is often used for datasets where a linear relationship between features can adequately separate the 
classes.

Polynomial kernel
This kernel allows for polynomial decision boundaries. This approach is useful when the relationship between 
the features and labels can be effectively modeled with higher-order polynomials. The polynomial kernel is 
defined as46,47:
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	 K (xi, xj) = (γxi · xj + r)d

where γ, r, and d are kernel parameters that control the curvature and complexity of the polynomial decision 
surface.

Gaussian kernel
The Gaussian kernel is widely used when the data are not linearly separable. It maps the data points into a higher-
dimensional space where linear separation is possible. The RBF kernel is defined as48,49:

	 K (xi, xj) = exp
(
−γ|xi − xj |2

)

here γ is a parameter that determines the spread of the Gaussian function. A small γ indicates a large influence 
of individual points, while a large γ indicates closer neighbors.

Sigmoid kernel
The sigmoid kernel, which is like the activation function used in neural networks, can model data with a 
nonlinear boundary. It is defined as44:

	 K (xi, xj) = tanh (γxi · xj + r) .

This kernel is particularly useful in binary classification problems where the data follow a nonlinear distribution.

Random Forest
Through ensemble learning, Random Forest produces powerful predictive models by combining multiple 
decision trees for better prediction accuracy. Random sampling produces training subsets for each decision 
tree, which helps the model maintain diversity as well as suppressing overfitting. The combination of results 
through the voting protocol for classification while employing averaging regression methods contributes to 
making the model more robust and generalizable. The system performs excellently in dealing with large datasets 
at an optimal runtime level. The resistance of Random Forest to handling missing information together with 
outliers makes it a dependable solution across different application fields. The model delivers important scores, 
which enable researchers to determine which variables matter most within their dataset. The algorithm speeds 
up training time on extensive datasets through its ability to perform parallel processing. This technique finds 
wide practical use in finance together with healthcare applications and image recognition because it delivers 
remarkable predictive results. Random Forest enables users to deploy it without complex hyperparameter 
adjustments due to its ease of application. This model demonstrates flexibility and performance efficiency when 
used for both categorization and regression work50. The hyperparameters of random forest used in this study are 
presented in Table 2.

Long short-term memory
Long short-term memory (LSTM) functions as a recurrent neural network (RNN) with the special ability to 
process sequential data through solutions for the vanishing gradient issue. The system contains memory cells 
that use three essential gates named input, forget, and output, which control data movement throughout the 
network. The input gate enables new information entry, and the forget gate determines the process of discarding 
data before the output gate decides the final output. The architectural design of LSTM allows it to identify 
extended dependencies in sequential data for applications such as time-series forecasting as well as speech 
recognition and natural language processing. Unlike traditional RNNs, LSTM retains relevant past information 
over extended sequences. The successful implementation of LSTM models depends on the careful adjustment 
of multiple hyperparameters like hidden unit count along with learning rate and batch size values. Dropout 
serves as an overfitting prevention technique that boosts the model’s generalization capabilities. The processing 
capabilities of bidirectional LSTM include moving through information from both beginning to end and end 
to beginning. CPU acceleration stands as a vital tool for executing LSTM network training operations since 
these networks demand intense computational capability. LSTM presents an effective solution for processing 
sequential data analysis problems51. The hyperparameters of LSTM used in this study are presented in Table 3.

Convolutional neural networks
Convolutional neural networks (CNNs) represent deep learning models devoted to analyzing grid-based 
information, which includes images together with videos. These networks utilize convolutional layers to filter data 

Hyperparameter Value example

N estimators 100

Max depth 10

Min samples split 2

Min samples leaf 1

Random state 42

Table 2.  Random Forest hyperparameters.
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patterns in images while pooling layers simultaneously decrease dimensions and computational requirements. 
Activation functions, including the ReLU function, act as tools for introducing non-linearity, which makes 
models better at recognizing complex patterns. The final part of the network includes fully connected layers that 
combine detected features for performing regressive or classificatory operations. CNNs provide superior results 
for computer vision work because they excel at identifying objects, recognizing images, and performing medical 
image processing. To achieve better performance, CNN layers need to find the right combination of depth 
and filter layers. Models achieve better performance through dropout and batch normalization, which act as 
regularizing techniques for overfitting prevention. The training of CNNs depends on extensive labeled datasets, 
which commonly use data augmentation to develop better generalization capacities52. The hyperparameters of 
CNN used in this study are presented in Table 4.

Table 5 provides an extensive overview of mathematical symbols, hyperparameters, and their definitions 
used in this study to promote transparency. Such a recap also makes the interpretation and reproduction easier 
for readers who are less familiar with some variables or tuning parameters.

Proposed approach
Figure 1 illustrates the proposed method for detecting emotions from EEG signals. There is a preprocessing 
stage, which is the initial step where the raw EEG data are first normalized, and the features are encoded to 
the same input. This is followed by using fuzzy C-means clustering in the next stage as a segmentation tool to 
determine the membership level that represents the emotional classes. Finally, another feature set is created with 
both the segmented features and signal features as well as the refined derived emotional sets. Using an SVM 
classifier, emotions are classified into positive, neutral, and negative states once the combined feature set is split 
into training and test data. Finally, several measures are used to confirm the effectiveness of the framework for 
detecting emotions from EEG signals.

Preprocessing layer
In the preprocessing layer, the raw EEG data, along with their corresponding emotion labels, were loaded. The 
features were separated from the labels (positive, neutral, and negative emotions). The emotion labels were then 
encoded into numerical values using label encoding to facilitate processing. The EEG features were standardized 
to scale the data according to the mean (0) and standard deviation (1). This normalization step improves model 
convergence and accuracy by eliminating variations in scale across the features.

Segmentation layer
In the segmentation layer, fuzzy C-means are applied to determine the membership values of the data points 
within the given clusters. C-means clustering fuzzy clustering is an important part of feature segmentation in 
EEGs. Subsequently, the FCM algorithm employs standardized EEG signals to define the degree of membership 
of each data point into one of three clusters: positive emotional state, neutral state, and negative emotional state. 
Fuzzy FCM is designed in such a way that each record can be a member of more than one cluster; therefore, this 
method is different from other methodologies of clustering that make a record a member of only one cluster. 
This results in better segmentation of the EEG data. By using these membership values, the degree of relationship 
between the data points and clusters can be measured, and the resulting set of values can be combined with 

Hyperparameter Value example

Filters 64

Kernel size (3,3)

Activation ReLU

Pool size (1,2)

Batch size 64

Epochs 50

Optimizer Adam

Table 4.  CNN hyperparameters.

 

Hyperparameter Value example

Units 128

Activation ReLU

Recurrent activation SoftMax

Optimizer Adam

Learning rate 0.0001

Batch size 64

Epochs 50

Table 3.  LSTM hyperparameters.
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the original feature set of the collected EEG signals. The segmented patterns seen through the fuzzy clustered 
features are incorporated in this feature space in addition to the original signal features.

Classification layer
A support vector machine (SVM) kernel is used in the classification layer to classify emotional states based on 
the enhanced feature set from the segmentation layer. The enriched features included the raw EEG data and 
the fuzzy membership values generated by fuzzy C-means clustering of the EEG dataset, which should provide 
additional information for classification. SVMs have been found to be effective when applied to problems 
involving high-dimensional data because the use of a hyperplane makes it easy to expand the margin and enhance 
the discrimination between three types of emotions: positive, neutral, and negative. Additionally, the multiple 
kernels used in the model allow for linear and nonlinear decision boundaries for the relationships within the 
data. The classifier is subsequently trained and executed using both feature sets. Adding fuzzy membership 
values to the feature set expands the decision region and leads to increased classification accuracy. This approach 

Fig. 1.  Proposed model architecture.

 

Parameter/symbol Description

xi i-th data point or feature vector

cj Center of the j-th cluster (used in FCM)

uij Membership degree of xix_i in cluster cjc_j (FCM)

m Fuzziness parameter in FCM controlling degree of overlap (typically > 1)

w, b Weight vector and bias term in SVM defining the decision hyperplane

ξi Slack variable to allow soft-margin classification (SVM)

C Regularization parameter in SVM controlling margin vs. error trade-off

γ Parameter in kernel functions controlling spread or influence

Filters Number of learnable filters in CNN convolutional layers

Kernel size Size of convolutional kernel (e.g., (3,3)) in CNN

Pool size Size of pooling window used in MaxPooling layers

Units Number of memory cells or neurons in the LSTM layer

Activation Activation function used in LSTM or CNN (e.g., ReLU, softmax)

Epochs Number of full training passes over the dataset

Batch size Number of training samples processed in each iteration

Optimizer Algorithm used to update model weights (e.g., Adam)

Learning rate Controls the step size in weight updates during training

N estimators Number of decision trees used in Random Forest

Max depth Maximum depth of any individual decision tree in the forest

Table 5.  Summary of parameters and their descriptions.
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is beneficial for SVMs because the emotions associated with each word should not only be distinct from other 
emotions but also be similar to other instances of the same emotion.

Evaluation layer
In the evaluation layer, several metrics and visualizations are provided to examine the efficiency of the proposed 
framework to obtain a clear understanding of the model’s ability to identify emotions. Hence, to estimate the 
overall accuracy of the predicted emotional states, the classification results are carefully evaluated. The confusion 
matrix of the proposed approach indicates the number of correct and incorrect predictions for each of the major 
emotional categories, positive, neutral, and negative; the results are reviewed along with the overall visualization 
of the results and may be able to identify major misclassification issues. For the accuracy of the model in 
identifying all emotions, the abovementioned classification report further breaks down the performance of 
the model and gives the F1 score, precision, and recall for each category. The area under the curve (AUC) is 
subsequently derived to measure the accuracy of the model in distinguishing between emotional categories, and 
the ROC curve is defined and used to plot the number of true positives versus false positives. This is one of the 
reasons why this proposed framework is presented in a multifaceted manner, as its usefulness and weaknesses 
are well documented to provide a comprehensive picture of the proposed framework.

To provide a clear overview of the evaluation process of the model performance, we caught the key 
measurement parameters carried out in this research, as shown in Table 6. These metrics suggest ideas as to how 
well the classifier can differentiate between the states of emotions and can be used to interpret the usefulness and 
efficiency of the proposed procedure.

To provide the computational efficiency of the proposed models, we provide an estimate of the floating-point 
operations (FLOPs) along with the trainable parameters of each deep learning architecture. FLOPs are one of 
the usual measures of complexity in terms of computing, correlating to the number of arithmetic operations 
to be done in the course of forward inference. The CNN-LSTMs became more complex with the addition of 
both spatial and temporal processing layers, and the GRU type of model is relatively light. The computation 
cost incurred by using fuzzy C-means clustering is quite small because it is used only once in preprocessing. 
Table 7 provides a comparison of the FLOPs count and the number of parameters estimated of all the models 
implemented. Pathway PCA (PPCA) and pathway logistic regression (PL) values were estimated by standard 
profiling tools in 10 s TensorFlow and model summaries assuming an input dimension consistent with our EEG 
data.

Hyperparameters values of hybrid model
The basic hyperparameters employed in our suggested hybrid model are summarized in Table 8, comprising the 
fuzzy C-means, the support vector machine settings, and a neural network (CNN and LSTM). This summary 
perspective enables readers to have a clearer idea of how models behaved and what parameter-adjustment 
strategies were implemented in this work.

Results and discussion
Dataset description
The dataset consists of EEG brainwave data collected from two individuals (male and female) using a Muse EEG 
headband, which captured signals from four positions. The following muscle activations were detected using 
dry electrodes: TP9, AF7, AF8, and TP10. The recordings included three valence categories: positive, neutral, 
and negative for each of the 3-min and 6-min segments of neutral rest data. Figure 2 shows a visualization of 
the EEG brainwave data, which may correspond to signal changes at regular time intervals. These vertical spikes 
are proportional to the change in the amplitude of the EEG signal relative to the electrical activity of the brain, 

Model Total parameters Approx. FLOPs (millions)

CNN-LSTM hybrid  ~ 380,000  ~ 70 M

CNN-LSTM + fuzzy C-means + SVM  ~ 380,000 (CNN-LSTM) +  ~ 0 (FCM/SVM)  ~ 70 M (CNN-LSTM only)

GRU-based flat model  ~ 180,000  ~ 25 M

CNN-LSTM + feature extraction + RF  ~ 380,000  ~ 70 M (CNN-LSTM only)

Table 7.  Computational complexity of proposed models.

 

Metric Definition Purpose in emotion classification

Accuracy Proportion of total correct predictions (TP + TN)/(TP + TN + FP + FN) Measures overall performance across all classes

Precision TP/(TP + FP) Measures correctness of positive predictions

Recall (sensitivity) TP/(TP + FN) Indicates how well the model detects actual positives (emotions)

F1-score Harmonic mean of precision and recall Balances false positives and false negatives

Confusion matrix Matrix showing predicted versus actual class counts Visual representation of model’s classification accuracy by class

AUC-ROC Area under the receiver operating characteristic curve Evaluates the ability to distinguish between emotion classes

Table 6.  Summary of performance evaluation metrics.
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Fig. 2.  Sample features fft_0_b through fft_749_b.

 

Component Hyperparameter Value/description

Fuzzy C-means

Number of clusters (C) 3

Fuzziness coefficient (m) 2

Max iterations 1000

Error tolerance 0.005

SVM

Kernel types Linear, Gaussian, Polynomial, Sigmoid

Regularization (C) Tuned between 0.1 and 10

Gamma (γ) (for RBF/sigmoid) Auto/Tuned

CNN

Filters 32, 64

Kernel size (3, 3)

Activation ReLU

Pool size (1, 2)

Optimizer Adam

Batch size 64

Epochs 50

LSTM

Units 100

Return sequences False

Dropout 0.5

Optimizer Adam

Batch size 64

Epochs 50

Table 8.  Hyperparameters values in the proposed model.
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depending on the electrode. The x-axis generally refers to time, and the y-axis refers to the amplitude or intensity 
of the captured EEG signals. Three of these parameters describe the real-time EEG data of rapid changes in brain 
activity in positive, neutral, or negative states53–55.

Results
In this section, we present classification results obtained from implementing hybrid CNN-LSTM model, CNN-
LSTM with random forest, Hybrid CNN-LSTM with fuzzy c-means and hybrid support vector machine (SVM) 
with fuzzy c-means models using different kernels. The activation functions available are the linear, polynomial, 
Gaussian, and sigmoid activation functions. Moreover, each kernel provides its own approach in the definition 
of decision boundaries, which in turn influences the ability of the constructed emotional interface model to 
differentiate between three emotional states: positive, neutral, and negative.

Experiemnt 1: hybrid CNN-LSTM model
A hybrid model uses Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks 
to identify emotions from EEG signals. The EEG dataset first undergoes loading before feature extraction 
proceeds toward reshaping the information to create a 4D array suitable for CNN operation. The data requires 
label encoding combined with one-hot encoding before it can be used for categorically classifying emotions 
(positive, negative, and neutral). The spatial features within EEG data are captured through CNN layers followed 
by max-pooling layers that lower dimensions while maintaining essential information. Time-dependent 
emotional recognition needs the LSTM layer to process the data array output by CNN layers. The LSTM layer 
requires the array to be reshaped first. Following the LSTM component, the model adds fully connected layers 
to extract additional features, and the output layer applies SoftMax activation for predicting emotional classes.

We use categorical cross-entropy loss to train the processed data while optimizing it with Adam. The test set 
data undergoes performance evaluation for calculating accuracy alongside precision, recall, F1-score, specificity, 
and drawing the ROC curve. Visualizations of the model performance present three elements, including 
a confusion matrix with a classification report and ROC curve plots for thorough assessment. The model 
demonstrates 85% success in test phase emotion detection from EEG signals after obtaining proper training. 
The combination of CNN and LSTM frameworks enables optimal spatial and temporal pattern discovery, which 
makes this approach a favorable method to detect emotions using EEG signals.

Table 9 shows the hybrid CNN-LSTM model demonstrates its performance for classifying three categories, 
namely NEGATIVE, NEUTRAL, and POSITIVE, through evaluation metrics that include precision, recall, and 
F1-score. The model demonstrates exceptional performance on the negative class since it reaches a precision of 
0.81 with a recall of 0.97 and an F1 score of 0.88, thus indicating superior negative instance detection with high 
recall. The NEUTRAL class shows robust performance, getting an F1 score of 0.84 at the same time it meets 
0.79 precision and 0.90 recall scores, which indicates accurate detection of neutral examples yet with limited 
precision. The POSITIVE class achieves the least effective results among all classes because the model has 0.78 
precision yet a very low 0.51 recall, leading to an F1 score of 0.62. The model demonstrates difficulties with 
recognizing positive examples since it tends to classify them as other classification categories. The combined 
precision-recall score across all classes reached a rate of 0.79 alongside 0.80 in recall and 0.78 in F1-score, which 
suggests a decent model execution but needs further improvement, mainly to recognize positive cases accurately. 
Performance improvement for less frequent classes can be achieved through data balancing methods along with 
fine-tuning procedures and class-specific weighting strategies.

Figure 3 depicts the accuracy and loss of the suggested CNN-LSTM of the training and validation performance 
across the epochs. Examining the left plot, it can be observed that the accuracy of training and validation 
increases steadily, whereby the validation accuracy is always at par or just slightly above training accuracy, which 
is a good sign of generalization and overfitting with no or minimal overfitting. In the right plot, the training and 
the validation loss have shown a sharp decline in the first few epochs, and subsequently they have tapered off, 
and there is no notable difference between the training and the validation loss. This conclusion implies that the 
model is convergent and does not sacrifice one aspect of learning and generalization over the other. In general, 
the figure proves the effectiveness and stability of the CNN-LSTM model in identifying emotional states in EEG.

Experiment 2: CNN-LSTM with Random Forest
The model uses deep learning algorithms and machine learning methods to execute effective emotion 
classification of EEG brain signals. The EEG data needs preprocessing before it can fit into a CNN-LSTM 
architecture through feature reshaping and label encoding procedures. The CNN layers extract spatial features 
that exist in EEG signals as the LSTM layer identifies temporal dependencies present in these signals. The 
Random Forest classifier receives extracted features for performing classification after the training process. A 

Class Precision Recall F1-score

NEGATIVE 0.81 0.97 0.88

NEUTRAL 0.79 0.90 0.84

POSITIVE 0.78 0.51 0.62

Average 0.79 0.80 0.78

Table 9.  Classification results for hybrid CNN-LSTM model.
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training process using a three-class emotional dataset with positive, neutral, and negative classification evaluates 
with accuracy, precision, recall, and F1-score assessment metrics.

The optimization process combines Principal Component Analysis (PCA) to extract refined features from 
EEG signals, which reduces their dimensions without losing important details. A Random Forest classifier 
containing 100 decision trees undertakes the learning process of detecting different emotional states. A high 
level of model accuracy becomes evident by analyzing the confusion matrix and classification report that shows 
the results. The fusion of deep learning feature extraction with machine learning classification functions as a 
robust method for EEG-based emotion detection through an efficient equation between predictive efficiency 
and computation speed.

Table 10 shows the hybrid CNN-LSTM with Random Forest obtained high success rates for determining 
NEGATIVE and NEUTRAL samples but demonstrated lower success on POSITIVE classes. The model 
demonstrates its best results in NEGATIVE class classification at a precision of 0.81, recall of 0.90, and F1 
score of 0.85, which ensures high negative instance recognition. The NEUTRAL class demonstrates balanced 
performance across all metrics because it achieves 0.82 precision, F1 score, and recall metrics, which indicate 
precisely regulated classification accuracy. The model exhibits the lowest performance among the classes for the 
POSITIVE category since it obtains a precision of 0.68 and a recall of 0.60 with an F1 score of 0.63. This evidenced 
the challenge of correctly evaluating positive data points. The combination of CNN-LSTM with Random Forest 
achieved an overall balanced performance (0.77 Precision, 0.78 Recall, 0.77 F1-score), though the Random Forest 
addition succeeded in improving NEGATIVE class recall but did not significantly advance POSITIVE class 
identification. Performance enhancement demands class-specific weighting and data enhancement techniques 
as well as hyperparameter modification to optimize results, particularly for minority classes.

The training and validation performance of the CNN-LSTM model with the combination of a random forest 
classifier can be seen in Fig. 4. Training and validation accuracy curves with epochs are exhibited in the left 
subplot. The two curves show a steady monotonic increase, meaning that the model is learning and generalizing 
well on unseen data. According to several epochs, the validation accuracy is a little bit higher than the training 
accuracy, which indicates a good generalization and no overfitting. The appropriate loss curves are depicted by 
means of the right subplot. The loss of training converges steadily, and the loss of validation converges in the 
early epochs, but it starts to grow slightly in later epochs, showing some signs of mild overfitting or variance 
caused by ensemble decision boundaries of Random Forest. In general, the model has a good capacity to classify, 
and the accuracy and loss on the training and the validation sets are also good, which signifies the effectiveness 
of temporal-spatial features of deep and enhanced CNN-LSTM and robust decision of Random Forest.

Class Precision Recall F1-score

NEGATIVE 0.81 0.90 0.85

NEUTRAL 0.82 0.82 0.82

POSITIVE 0.68 0.60 0.63

Average 0.77 0.78 0.77

Table 10.  Classification results for hybrid CNN-LSTM with random forest model.

 

Fig. 3.  Accuracy and loss for CNN-LSTM model.
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Experiment 3: hybrid CNN-LSTM model with fuzzy C-means
A combination method applies Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 
networks together with Fuzzy C-Means clustering during data preprocessing when classifying emotions through 
EEG signals. Data preprocessing begins with the model through loading and preparing the EEG information, 
during which it utilizes label encoding and one-hot encoding on the target variable. Fuzzy C-Means clustering 
detects similarities between EEG features to establish three clusters that correspond to the emotions of positive, 
neutral, and negative. The clustering process enhances the precision level of data handling by allowing greater 
flexibility for underlying variations while improving classification performance. The data division into training 
and test groups diagnoses the CNN-LSTM hybrid architecture that identifies spatial characteristics and temporal 
patterns within the EEG signal waveforms for feature compatibility.

This model contains spatial-feature-extracting CNN layers that precede temporal-dependency-detecting 
LSTM layers built to handle inherent EEG signal patterns. The neural network contains two convolutional 
components together with max-pooling and dropout layers to prevent overfitting during training. The data 
undergoes reshaping after the CNN layers to enable passage into an LSTM layer, which processes the temporal 
sequences. Equipped with fully connected layers, the model reaches its output point where the emotional 
categories are classified through a SoftMax output layer. Performance evaluation of the model happens through 
accuracy, confusion matrix, and classification report metrics, while training occurs with categorical cross-
entropy loss and Adam optimizer. The model achieves enhanced performance by adding a Support Vector 
Machine (SVM) classifier to the feature extraction processes of CNN-LSTM, which enhances the predictive 
abilities. The end-to-end process for the combined model consisting of training and evaluation followed by 
visualization generates highly accurate results for EEG signal emotion detection.

According to the results presented in Table 11, the hybrid CNN-LSTM with the fuzzy logic model successfully 
distinguishes NEGATIVE and NEUTRAL classes but possesses difficulties with POSITIVE classification accuracy. 
Most negative instances are precisely classified by the NEGATIVE class with the highest achievable designation 
values consisting of 0.81 precision alongside 0.94 recall and 0.87 F1-score. The NEUTRAL class demonstrates 
successful classification through model accuracy indicators that reach 0.73 precision and 0.89 recall, together 
with an F1 score of 0.80. The POSITIVE class demonstrates the most challenging performance metrics since it 
produces 0.72 precision, 0.43 recall, and 0.53 F1-score, respectively. This difficulty suggests incorrect positive 
sample detection frequently labels data as different classes. This model’s average performance measures show 

Class Precision Recall F1-score

NEGATIVE 0.81 0.94 0.87

NEUTRAL 0.73 0.89 0.80

POSITIVE 0.72 0.43 0.53

Average 0.75 0.76 0.74

Table 11.  Classification results for hybrid CNN-LSTM with Fuzzy logict model.

 

Fig. 4.  Accuracy and loss for CNN-LSTM with Random Forest.
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0.75 precision, 0.76 recall, and 0.74 F1-score, thus demonstrating that fuzzy logic improves negative and neutral 
instance detection while facing challenges with positive class recognition. The general classification performance 
can probably be improved through better adjustments of fuzzy membership functions or utilization of class 
balancing approaches.

Figure  5 shows the training and validation performance of the hybrid CNN-LSTM model with Fuzzy 
C-Means clustering. The left subplot depicts the gradual and consistent rise in both accuracy in training and 
accuracy in validation, where the accuracy of the validation was a bit better than that of training in most epochs. 
This implies that the model should be generalizing appropriately to unobserved data, and it is not overfitting. 
The training and validation loss graphs on the right side indicate that the results are good; the curves sharply 
drop at the first stages of training and smooth out to a minimal point, which means that training is effective, 
and the process of optimization is stable. The fact that validation loss is lower and more stable than the training 
loss indicates that before being passed to the classification step, the quality of features was improved by the 
fuzzy C-means clustering, which leads to better differentiation between the classes of emotions. In sum, this 
number shows the strength and effectiveness of the hybrid technique of learning discriminative EEG patterns to 
recognize the emotional states.

Experiment 4: linear SVM with fuzzy C-means
Table 12, which shows the classification results of SVM with a linear kernel, indicates that the model has very 
high accuracy for all three emotional classes. Again, the precision for the negative and positive classes of events 
is 0.97, and for the neutral class, it is 0.99, which is almost perfect and represents a very low false positive rate. 
The same is true for the recall values, which are very high: negative (0.98), neutral (0.99), and positive (0.96), 
i.e., great recall for the actual instances of each class. For the negative and positive classes, the F1 score was 0.97, 
while for the neutral class, it was 0.99. The model is very good in terms of both precision and recall. However, 
the average precision, recall, and F1 score are 0.98, and the average test accuracy is 97.66%, which indicates that 
an SVM with a linear kernel is well suited for distinguishing between the three emotional states with a negligible 
error rate.

Class Precision Recall F1-score

NEGATIVE 0.97 0.98 0.97

NEUTRAL 0.99 0.99 0.99

POSITIVE 0.97 0.96 0.97

Average 0.98 0.98 0.98

Table 12.  Classification results for the linear SVM.

 

Fig. 5.  Accuracy and loss for hybrid CNN-LSTM model with fuzzy C-means.
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Experiment 5: polynomial SVM with fuzzy C-means
Table 13, which depicts the class distribution of the selected SVMs with a polynomial kernel, indicates that the 
classification performance varies between the three emotional classes. The precision, recall, and F1-score of 
the neutral class were 0.97, 0.96, and 0.97, respectively, which is evidence that the model does equally well in 
recognizing this emotional state. The negative class was observed to have a slightly lower recall score of 0.83 for 
this property; this may mean that there are some instances where the class is negative, but the model fails to put 
them right under this category. On the positive side, the high precision (0.95) indicates that the tendency of the 
model to correctly classify an instance that is of the positive class is (0.81); however, a recall of (0.93) was achieved, 
meaning that there are few instances of false positives, but all positive cases are recovered. All three metrics are 
quite low, with average values of 0.91 for all the classes and an average test accuracy of 90.87%, indicating that the 
polynomial kernel is reasonably good but not as perfect as the linear kernel in previous outcomes. The relative 
performance within classes is shown by the polynomial kernel, where increases in accuracy are met with some 
decline in both precision and recall of classes by the classifier.

Experiment 6: Gaussian SVM with fuzzy C-means
Table 14 shows that the SVM classifier with a Gaussian kernel can classify the emotional data with high accuracy 
for each of the emotional classes. For the negative class, the model achieves 95% precision in distinguishing 
between negative instances and 5% precision in distinguishing false alarms out of all nonpositive instances. The 
recall of 098 reveals that the model is indeed extremely precise at identifying almost all actual negative cases 
in the data; hence, an F1-score of 096 stably pluses the strength of the developed model in terms of precision 
without sacrificing the recall of negative cases too much, that is, 098. For the Neutral class, the precision is 
outstanding at 0.99, so it is almost perfect at identifying objects in the neutral class. The recall of the model 
is 0.97; it can categorize nearly all true neutral data points. It has an F1-score of 0.98. In the Positive class, 
the performances for precision, recall and F1-score are 0.94 and 0.93, respectively, indicating that the model 
performs equally well in classifying positive emotion states. Therefore, on average, the precision, recall and F1-
score are 0.96, and the average test accuracy is 95.78%, emphasizing the robustness of the model with all classes 
of emotions in the dataset.

Experiment 7: sigmoid SVM with fuzzy C-means
Table 15 describes the classification results for the SVM with the sigmoid kernel. For the negative class, the 
resulting model yields a precision of 0.81, a recall of 0.92, and an F1 score of 0.86, revealing that although 
the model captures most of the negative samples, the precision decreases slightly. For the Neutral class, the 
performance is almost flawless, with a precision of approximately 0.98 and the same recall, leading to an 
impressive F1-score of 0.98, showing that the model developed in this paper provides excellent predictions in 
identifying the absence of any specific emotion for the individual. The precision of the class positive is 0.89, 
whereas the recall is 0.76, which gives an F1-score of 0.82. This indicates that the model appears to forget all the 

Class Precision Recall F1-score

NEGATIVE 0.81 0.92 0.86

NEUTRAL 0.98 0.98 0.98

POSITIVE 0.89 0.76 0.82

Average 0.89 0.89 0.89

Table 15.  Classification results for the sigmoid SVM.

 

Class Precision Recall F1-score

NEGATIVE 0.95 0.98 0.96

NEUTRAL 0.99 0.97 0.98

POSITIVE 0.94 0.93 0.93

Average 0.96 0.96 0.96

Table 14.  Classification results for the Gaussian SVM.

 

Class Precision Recall F1-score

NEGATIVE 0.95 0.83 0.89

NEUTRAL 0.97 0.96 0.97

POSITIVE 0.81 0.93 0.87

Average 0.91 0.91 0.91

Table 13.  Classification results for the polynomial SVM.
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positive samples slightly but is good at it when it does so. On average, the precision is 0.89, as are the recall and 
F1-score, suggesting that the average test accuracy is 88.99%, while the classifier is performing reasonably well 
and does not optimize performance across all classes with weakness in the positive emotional state.

Discussion
The Linear SVM with Fuzzy C-Means (FCM) model performed best according to Table 16 because it reached 0.98 
precision, recall, and F1 score along with 97.66% accuracy, which proved superior to other models (p = 0.0003). 
The CNN + LSTM + FCM hybrid model achieves 0.75 precision, 0.76 recall, and 0.74 F1-score, but its accuracy 
of 76% indicates there is potential for improvement (p = 0.0152). When FCM is removed from the CNN + LSTM 
model, its performance increases slightly to achieve 0.79 precision, 0.80 recall, 0.78 F1-score, and 80% accuracy 
(p = 0.0098). The performance of the LSTM model acting independently produces the lowest results, including 
0.63 precision and recall alongside an F1 score together with an accuracy level of 64%, as indicated by statistical 
analysis (**p = 0.0325**). When applied as a hybrid model with CNN, LSTM, and Random Forest, the ensemble 
method delivers balanced performance through 0.77 precision, 0.77 recall, and 0.77 F1-score combined with 
78% accuracy (p = 0.0126), indicating ensemble techniques produce effective outcomes. ANOVA tests confirm 
Linear SVM + FCM provides superior performance to other models, while LSTM achieves the most inferior 
results. Fuzzy clustering and ensemble methods add value to model accuracy, but further optimizations probably 
could enhance results even more.

Multiple classification models apply to Fig.  6, which displays confusion matrices that demonstrate their 
success in predicting class labels. The hybrid CNN-LSTM model maintains a balanced approach toward class 
identification yet displays several misdiagnosis points when processing particular cases. The hybrid CNN-
LSTM with the random forest model reaches enhanced classification precision for selected categories, although 
it maintains specific areas where misclassification occurs. The Hybrid CNN-LSTM with Fuzzy C-Means (FCM) 
model presents enhanced classification accuracy because it improves the ability to differentiate between classes 
and reduces overall misclassification errors. The linear SVM with the FCM model becomes the top-performing 
model among SVM-based methods since it demonstrates robust correct classification together with minimal 
misclassification errors through its clear diagonal dominance pattern. When applied with FCM, the polynomial 
SVM delivers moderate results, yet the Gaussian SVM with FCM generates a well-organized diagonal distribution 
for accurate prediction. Among the examined model sets, the sigmoid SVM with FCM demonstrates the most 
classification errors as its off-diagonal values reach a maximum point. Tests indicate that the linear SVM with 
FCM demonstrates optimal results, which produce both superior precision rates and recall values across all 
classes through balanced performance metrics.

Figure 7 displays ROC curves for different models through the TPR and FPR axes to demonstrate classification 
accuracy. The hybrid CNN-LSTM model delivers outstanding discrimination abilities as indicated by its AUC 
values of 0.95 for Class 0 and 0.93 for Class 1 while measuring a slightly lower 0.77 AUC for Class 2. FCM 
clustering improves CNN-LSTM model performance to a small degree when implemented. When combined 
with FCM, the Polynomial Linear Gaussian and Sigmoid SVM models exhibit nearly flawless classification 
outcomes, resulting in Linear and Gaussian SVM having an AUC value of 1.00. The superiority of SVM models 
combined with FCM becomes evident as they succeed in achieving better classification results than CNN-LSTM 
approaches show.

The performances of emotion recognition techniques on different datasets of EEG data are compared in 
Table 17. The ensemble-optimal average empirical mode analysis proposed by Samal and Hashemi achieved an 
accuracy of 78% on the same dataset, while the authors of Qi Li et al. successfully achieved 95.89% on the DEAP 
dataset by cross-modal access. While DEAP was classified with an accuracy of 80.83% using direct channel 
selection by H. Xu et al., Turker et al. achieved an accuracy of nearly 99% using weightless majority voting, 
Tetromino, mRMR, and both methods. Using the TQWT feature extraction method, Mei-yu et al. achieved 
95.33% accuracy on the SEED dataset, while Fernandes et al. achieved 89.97% accuracy using GCNN. Using the 
same dataset collected by the authors, Lim and Teo achieved an overall accuracy of 90% using both SVM and 
association rules. However, compared to other methods, the proposed strategy, which combines fuzzy C-means 
clustering (FCM) with support vector machines (SVMs), yields a high accuracy of 97.66% on the aggregated 
dataset.

In this paper, a new hybrid architecture of emotion recognition using the EEG signal employing fuzzy 
C-means clustering and support vector machine (SVM) as a classifier is considered with a variety of kernel 
functions being used. The fundamental observations include the fact that the linear SVM kernel had the 
best classification rate of 97.66%, followed by the Gaussian kernel rate of 95.78%, which was better than the 
classical nonlinear kernels such as the polynomial and sigmoid. Such accuracy using a small sample size of two 
subjects and three emotion classes proves the competency and generalization power of the proposed approach. 

Model Precision Recall F1-score Accuracy (%) p-value (ANOVA)

Linear SVM + FCM 0.98 0.98 0.98 97.66 0.0003

CNN + LSTM + FCM 0.75 0.76 0.74 76.00 0.0152

CNN + LSTM 0.79 0.8 0.78 80.00 0.0098

LSTM 0.63 0.64 0.63 64.00 0.0325

CNN + LSTM + RF 0.77 0.77 0.77 78.00 0.0126

Table 16.  Performance metrics for the proposed approach.
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This is the novelty of the approach since unsupervised fuzzy clustering and supervised SVM learning can be 
combined to facilitate the addressing of ambiguous or overlapping emotional states in EEG data. Compared to 
the conventional approaches of implementing SVM or clustering as isolated datasets, the hybrid architecture 
can aid in making the decision boundary much more visible and the models simplified. Furthermore, those 

Fig. 6.  Confusion matrices for all models.
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findings support the clinical importance of the model, and it may be used in brain-computer interfaces (BCIs), 
mental health assessment tools, and emotion-aware computing systems. Another area of contribution that the 
study makes to the industry is that it contrasts its performance with more than 25 new models that have been 
released in 2024–2025 and takes an in-depth examination of computational efficiency, practical applicability, 
and potential real-time deployment.

In alignment with our initial hypothesis, our results provided strong empirical support. The linear kernel SVM 
had reached an accuracy of 97.66%, confirming the postulation that a simpler decision boundary with the help 
of fuzzy-clustered preprocessing can give high accuracy in classification. The Gaussian kernel also performed 
well (95.78%), meaning that smoothness in nonlinear separability can even work with some data distributions. 
Such results support our hypothesis that the combination of fuzzy logic and classical ML techniques is the most 
effective method of detecting emotions because it is able to identify the overlapping emotional conditions in the 
EEG signals. Nevertheless, decreasing performance shown with sigmoid and polynomial kernels indicates that 
too complex boundaries are not easily generalizable on small or difficult-to-learn EEG data. This critical view 
validates the power of our hybrid paradigm as well as documenting its shortcomings and the requirement of the 
contextual selection of kernel.

Limitations of the study
As the hybrid method of fuzzy C-means and support vector machines (SVMs) gave encouraging outcomes in a 
model that classified EEG-based states of emotion, certain limitations should be mentioned. First of all, the data 
was limited to EEG records of only two subjects. The limited number of sample sizes does not allow extending 
the results to large samples because individual differences in the patterns of brain activity can have a great 
influence on the performance levels of emotion recognition models.

In addition to that, there were only three broad categories or classes of the emotional state, such as positive, 
neutral, and negative. This stuff does not account for the variations and multitudes in human feelings of fear or 
anger or surprise, which all may have unique EEG marks. The other limitation includes the fact that the EEG 
data collection projects are rather static; emotion recognition in real time or dynamically was not provided, 
and this aspect is essential to perform the practical employment. There is also the fact that though the fuzzy 
C-means clustering was used, due to its ease of interpretation and soft-labeling, the experiment did not test 
or compare other bio-inspired algorithms that could have done better in terms of exploration of the feature 
space or performance under noisy conditions, e.g., in testing either the particle swarm optimization or genetic 
algorithms. Lastly, the analysis of computational complexity was performed only at the aggregate level; it would 
be suggested to perform more detailed analysis of the resource requirements of sustained embedded/mobile 
systems in the future.

Conclusion
This paper proposed a hybrid architecture of emotion recognition based on electroencephalography (EEG) 
based on the combination of fuzzy C-means clustering and multiple kernel-based support vector machines 
(SVMs). The idea was to better characterize emotional states (positive, neutral, and negative) with the help of 
EEG measurements acquired with a consumer-graded Muse headset on two subjects. SVM with the linear kernel 
obtained the best classification accuracy of 97.66%, which was better when compared to the accurate match of 
95.78% established using the Gaussian kernel and much better when compared to the results obtained with the 
polynomial kernel and sigmoid kernel. It was evaluated by precision and recall, F1-score, specificity, and ROC-
AUC, proving the soundness of the suggested approach. Comparative experiments were also used to show that 
fuzzy C-means increased the discriminative abilities of SVMs by constructing the feature space.

Fig. 6.  (continued)
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Although the study has a great performance, the study has some limitations,, such as a small sample, resulting 
in a small number of emotion categories. Nevertheless, the present work is the basis of scalable and generalizable 
systems. Compared to 25 other recent studies that have been published between 2024 and 2025 thereafter (see 
Table 1), our model is one of the best-performing approaches in racy, computing time,, and interpretability 
(particularly with the use of linear kernels and fuzzy-based preprocessing).

The clinical implications of the present research in the sphere of mental health and emotional well-being 
are encouraging. The potential to sufficiently identify and categorize emotional conditions with non-invasive, 
low-cost portable EEG technologies, including the Muse headset, will provide a range of new opportunities to 
reach early diagnosis and constant monitoring of affective disorders, including depression, anxiety, and bipolar 
conditions. Combining fuzzy clustering with decision borders by using SVM, the system provides the ability to 
attain interpretability and reliability in real-world clinical practice. Moreover, these emotion-sensitive systems 

Fig. 7.  ROC-curve for all models.

 

Scientific Reports |        (2025) 15:31956 19| https://doi.org/10.1038/s41598-025-17220-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


may be integrated into mobile health (mHealth) technologies and assist in individual interventions, emotional 
feedback during a therapy session, and the enhancement of communication between doctors and patients. 
The resulting framework presents one practical way of achieving clinically relevant, scalable, and potentially 
transformative affective brain-computer interfaces (BCIs) both diagnostically and in terms of therapy.

In the future, one might expect more thorough affective states and bigger, more varied subject samples, 
as well as complex neural structures. Models based on transformers are especially exciting, as they enable 
long-range temporal patterns and channel attention across EEG sensors and self-attention mechanisms (e.g., 
CNN-Transformer-SVM pipelines) in general. The result of these enhancements will be the ability to develop 
viable and precise emotion recognition systems where such technology can be used in the fields of healthcare, 
neuromarketing, and human–computer interaction functions.

Data availability
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or ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​K​O​k​a​b​​2​0​2​0​/​​E​E​G​-​B​r​​a​i​n​w​a​v​​e​-​D​a​t​a​​s​e​t​/​b​l​o​b​/​m​a​i​n​/​a​r​c​h​i​v​e​%​2​0​(​4​)​.​z​i​p.

Received: 27 February 2025; Accepted: 21 August 2025

References
	 1.	 Soleymani, M., Asghari-Esfeden, S., Pantic, M. & Fu, Y. Continuous emotion detection using EEG signals and facial expressions. 

In 2014 IEEE International Conference on Multimedia and Expo (ICME) 1–6 (IEEE, Chengdu). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​C​M​E​.​2​0​1​
4​.​6​8​9​0​3​0​1​​​​​​​

	 2.	 Bhatti, A. M., Majid, M., Anwar, S. M. & Khan, B. Human emotion recognition and analysis in response to audio music using brain 
signals. Comput. Hum. Behav. 65, 267–275 (2016).

	 3.	 Bazgir, O., Mohammadi, Z. & Habibi, S. A. H. Emotion recognition with machine learning using EEG signals. In 2018 25th 
National and 3rd International Iranian Conference on Biomedical Engineering (ICBME) 1–5 (IEEE, Qom) (2018).

	 4.	 Khare, S. K., Blanes-Vidal, V., Nadimi, E. S. & Acharya, U. R. Emotion recognition and artificial intelligence: A systematic review 
(2014–2023) and research recommendations. Inf. Fus. 102, 102019 (2024).

	 5.	 Domínguez-Jiménez, J. A., Campo-Landines, K. C., Martínez-Santos, J. C., Delahoz, E. J. & Contreras-Ortiz, S. H. A machine 
learning model for emotion recognition from physiological signals. Biomed. Signal Process. Control 55, 101646 (2020).

Fig. 7.  (continued)

References Methodology Performance Datasets

Li et al.7 Heterogeneity and correlation between multimodal signals Accuracy: 95.89% DEAP dataset

Samal and Hashmi9 Ensemble median empirical mode decomposition Accuracy: 78% DEAP dataset

Turker et al.13 Tetromino, DWT, mRMR, and weightless majority voting methods Accuracy:99% DEAP dataset

Xu et al.14 Direct channel selection method based on the mRMR feature selection algorithm Accuracy: 80.83% DEAP dataset

Mei-yu et al.15 TQWT-feature extraction method with machine learning Accuracy: 95.33% SEED dataset

Fernandes et al.17 Graph convolutional neural networks Accuracy: 89.97% SEED dataset

Lim and Teo18 SVM and association rule Accuracy: 90% Collected dataset

Proposed approach FCM and SVM Accuracy: 97.66% Collected dataset

Table 17.  Comparison between the proposed approach and state-of-the art methods in this area with different 
datasets.

 

 

Scientific Reports |        (2025) 15:31956 20| https://doi.org/10.1038/s41598-025-17220-w

www.nature.com/scientificreports/

https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions/data
https://github.com/KOkab2020/EEG-Brainwave-Dataset/blob/main/archive%20(4).zip
https://doi.org/10.1109/ICME.2014.6890301
https://doi.org/10.1109/ICME.2014.6890301
http://www.nature.com/scientificreports


	 6.	 Jafari, M. et al. Emotion recognition in EEG signals using deep learning methods: A review. Comput. Biol. Med. 165, 107450 
(2023).

	 7.	 Li, Q., Liu, Y., Yan, F., Zhang, Q. & Liu, C. Emotion recognition based on multiple physiological signals. Biomed. Signal Process. 
Control 85, 104989 (2023).

	 8.	 Ahmad, Z. & Khan, N. A survey on physiological signal-based emotion recognition. Bioengineering 9, 688. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​
0​/​b​i​o​e​n​g​i​n​e​e​r​i​n​g​9​1​1​0​6​8​8​​​​ (2022).

	 9.	 Bdaqli, M. et al. Diagnosis of Parkinson disease from EEG signals using a CNN-LSTM model and explainable AI. In Artificial 
intelligence for neuroscience and emotional systems. Lecture notes in computer science Vol. 14674 (eds Ferrández Vicente, J. M. et al.) 
(Springer, Cham, 2024). https://doi.org/10.1007/978-3-031-61140-7_13.

	10.	 Shoeibi, A., Jafari, M., Sadeghi, D., Alizadehsani, R., Alinejad-Rokny, H., Beheshti, A. & Gorriz, J. M. Early diagnosis of 
schizophrenia in EEG signals using one dimensional transformer model. In Artificial Intelligence for Neuroscience and Emotional 
Systems, IWINAC 2024, Olhão, Portugal, June 4–7, 2024, Proceedings, Part I 139–149. Springer, Berlin. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​
8​-​3​-​0​3​1​-​6​1​1​4​0​-​7​_​1​4​​​​​.​​​

	11.	 Shoeibi, A. et al. Diagnosis of schizophrenia in EEG signals using dDTF effective connectivity and new pretrained CNN and 
transformer models. In Artificial Intelligence for Neuroscience and Emotional Systems. IWINAC 2024. Lecture Notes in Computer 
Science Vol. 14 (eds Ferrández Vicente, J. M. et al.) (Springer, Cham, 2024). https://doi.org/10.1007/978-3-031-61140-7_15.

	12.	 Bagherzadeh, S. et al. Developing an EEG-based emotion recognition using ensemble deep learning methods and fusion of brain 
effective connectivity maps. IEEE Access 12, 50949–50965. https://doi.org/10.1109/ACCESS.2024.3384303 (2024).

	13.	 Samal, P. & Hashmi, M. F. Ensemble median empirical mode decomposition for emotion recognition using EEG signal. IEEE Sens. 
Lett. 7(5), 1–4 (2023).

	14.	 Hamzah, H. A. & Abdalla, K. K. EEG-based emotion recognition systems; comprehensive study. Heliyon 10(10), e31485 (2024).
	15.	 Xiaohu, W. et al. Deep learning-based EEG emotion recognition: Current trends and future perspectives. Front. Psychol. 14, 

1126994 (2023).
	16.	 Hamzah, H. A. & Abdalla, K. K. EEG-based emotion recognition datasets for virtual environments: A survey. Appl. Comput. Intell. 

Soft Comput. 2024, 6091523 (2024).
	17.	 Tuncer, T., Dogan, S., Baygin, M. & Acharya, U. R. Tetromino pattern based accurate EEG emotion classification model. Artif. 

Intell. Med. 123, 102210 (2022).
	18.	 Xu, H., Wang, X., Li, W., Wang, H. & Bi, Q. Research on EEG channel selection method for emotion recognition. In 2019 IEEE 

International Conference on Robotics and Biomimetics (ROBIO), Dali, China 2528–2535 (2019)
	19.	 Zhong, M. et al. EEG emotion recognition based on TQWT-features and hybrid convolutional recurrent neural network. Biomed. 

Signal Process. Control 79(2), 104211 (2023).
	20.	 Yu, J., Abdullah, M. F. I. L. & Mansor, N. S. EEG components of inhibitory control ability in internet gaming disorder: A systematic 

review and meta-analysis of randomized controlled trials. Brain Behav. 14(1), e3388 (2024).
	21.	 Fernandes, J. V. M. R. et al. Emotion detection from EEG signals using machine deep learning models. Bioengineering 11, 782 

(2024).
	22.	 Lim, M. X. & Teo, J. Predicting game-induced emotions using EEG, data mining and machine learning. Bull. Natl. Res. Cent. 48, 

57. https://doi.org/10.1186/s42269-024-01200-7 (2024).
	23.	 Wang, J., Huang, Y., Song, S., Wang, B., Su, J. & Ding, J. A novel Fourier Adjacency Transformer for advanced EEG emotion 

recognition. https://doi.org/10.48550/arXiv.2503.13465 (2025).
	24.	 Wang, T., Huang, X., Xiao, Z., Cai, W. & Yonghang, T. EEG emotion recognition based on differential entropy feature matrix 

through 2D-CNN-LSTM network. EURASIP J. Adv. Signal Process. https://doi.org/10.1186/s13634-024-01146-y (2024).
	25.	 Xia, C., Gao, H., Yang, W. & Yu, J. MSDT: Multiscale diffusion transformer for multimodality image fusion. IEEE Trans. Emerg. 

Top. Comput. Intell. https://doi.org/10.1109/TETCI.2025.3542146 (2025).
	26.	 Xu, Y., Gao, Y., Zhang, Z. & Du, S. Emotional recognition of EEG signals utilizing residual structure fusion in bi-directional LSTM. 

Complex Intell. Syst. https://doi.org/10.1007/s40747-024-01682-y (2024).
	27.	 Liu, R. et al. ERTNet: an interpretable transformer-based framework for EEG emotion recognition. Front. Neurosci. 18, 1320645. 

https://doi.org/10.3389/fnins.2024.1320645 (2024).
	28.	 Yang, L. et al. Brain-inspired modular echo state network for EEG-based emotion recognition. Front. Neurosci. 18, 1305284. 

https://doi.org/10.3389/fnins.2024.1305284 (2024).
	29.	 Shen, X., Gan, R., Wang, K., Yang, S., Zhang, Q., Liu, Q., Zhang, D. & Song, S. Dynamic-attention-based EEG state transition 

modeling for emotion recognition. https://doi.org/10.48550/arXiv.2411.04568 (2024).
	30.	 Pan, Y., Liu, Q., Liu, Q., Li, Z., Huang, G., Chen, X., Li, F., Xu, P. & Liang, Z. (2024). DuA: Dual Attentive Transformer in Long-Term 

Continuous EEG Emotion Analysis. https://doi.org/10.48550/arXiv.2407.20519.
	31.	 Feng, X., Angkawisittpan, N. & Yang, X. A CNN-BiLSTM algorithm for Weibo emotion classification with attention mechanism. 

Math. Models Eng. 10(2), 87–97. https://doi.org/10.21595/mme.2024.24076 (2024).
	32.	 Tang, W., Fan, L., Lin, X. & Gu, Y. EEG emotion recognition based on efficient-capsule network with convolutional attention. 

Biomed. Signal Process. Control 103, 107473 (2025).
	33.	 Oka, H., Ono, K. & Panagiotis, A. Attention-based PSO-LSTM for emotion estimation using EEG. Sensors 24, 8174. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​

g​/​1​0​.​3​3​9​0​/​s​2​4​2​4​8​1​7​4​​​​ (2024).
	34.	 Liao, Y., Zhang, Y., Wang, S., Zhang, X., Zhang, Y., Chen, W., Gu, Y. & Huang, L. CLDTA: Contrastive learning based on diagonal 

transformer autoencoder for cross-dataset EEG emotion recognition. https://doi.org/10.48550/arXiv.2406.08081 (2024).
	35.	 Hegh, A., Adeyelu, A., Iorliam, A. & Otor, S. Multi-modal emotion recognition model using generative adversarial networks 

(GANs) for augmenting facial expressions and physiological signals. FUDMA J. Sci. 9, 277–290. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​0​0​3​/​f​j​s​-​2​0​2​
5​-​0​9​0​5​-​3​4​1​2​​​​ (2025).

	36.	 Hou, P., Li, X., Zhu, J. & Hu, B. A lightweight convolutional transformer neural network for EEG-based depression recognition. 
Biomed. Signal Process. Control 100(A), 107112 (2025).

	37.	 Makhmudov, F., Kutlimuratov, A. & Cho, Y.-I. Hybrid LSTM–attention and CNN model for enhanced speech emotion recognition. 
Appl. Sci. 14, 11342. https://doi.org/10.3390/app142311342 (2024).

	38.	 Zhang, C., Wang, L., Wei, G., Kong, Z. & Qiu, M. A dual-branch and dual attention transformer and CNN hybrid network for 
ultrasound image segmentation. Front. Physiol. 15, 1432987. https://doi.org/10.3389/fphys.2024.1432987 (2024).

	39.	 Chen, T., Li, L. & Yuan, X. A graph neural network with spatial attention for emotion analysis. Cogn. Comput. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
0​0​7​/​s​1​2​5​5​9​-​0​2​4​-​1​0​3​5​8​-​1​​​​ (2024).

	40.	 Bezdek, J. C., Ehrlich, R. & Full, W. FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984).
	41.	 Höppner, F., Klawonn, F., Kruse, R. & Runkler, T. Fuzzy cluster analysis: Methods for classification. Data Anal. Image Recogn. J. 

Oper. Res. Soc. 51 (2000).
	42.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
	43.	 Ben-Hur, A., Ong, C. S., Sonnenburg, S., Schölkopf, B. & Rätsch, G. Support vector machines and kernels for computational 

biology. PLoS Comput. Biol. 4(10), e1000173 (2008).
	44.	 Cristianini, N. & Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods 

(Cambridge University Press, 2000).
	45.	 Fan, R.-E., Chen, P.-H. & Lin, C.-J. Working set selection using second order information for training support vector machines. J. 

Mach. Learn. Res. 6, 1889–1918 (2005).

Scientific Reports |        (2025) 15:31956 21| https://doi.org/10.1038/s41598-025-17220-w

www.nature.com/scientificreports/

https://doi.org/10.3390/bioengineering9110688
https://doi.org/10.3390/bioengineering9110688
https://doi.org/10.1007/978-3-031-61140-7_13
https://doi.org/10.1007/978-3-031-61140-7_14
https://doi.org/10.1007/978-3-031-61140-7_14
https://doi.org/10.1007/978-3-031-61140-7_15
https://doi.org/10.1109/ACCESS.2024.3384303
https://doi.org/10.1186/s42269-024-01200-7
https://doi.org/10.48550/arXiv.2503.13465
https://doi.org/10.1186/s13634-024-01146-y
https://doi.org/10.1109/TETCI.2025.3542146
https://doi.org/10.1007/s40747-024-01682-y
https://doi.org/10.3389/fnins.2024.1320645
https://doi.org/10.3389/fnins.2024.1305284
https://doi.org/10.48550/arXiv.2411.04568
https://doi.org/10.48550/arXiv.2407.20519
https://doi.org/10.21595/mme.2024.24076
https://doi.org/10.3390/s24248174
https://doi.org/10.3390/s24248174
https://doi.org/10.48550/arXiv.2406.08081
https://doi.org/10.33003/fjs-2025-0905-3412
https://doi.org/10.33003/fjs-2025-0905-3412
https://doi.org/10.3390/app142311342
https://doi.org/10.3389/fphys.2024.1432987
https://doi.org/10.1007/s12559-024-10358-1
https://doi.org/10.1007/s12559-024-10358-1
http://www.nature.com/scientificreports


	46.	 Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27. ​h​t​t​p​s​:​/​/​d​o​i​
.​o​r​g​/​1​0​.​1​1​4​5​/​1​9​6​1​1​8​9​.​1​9​6​1​1​9​9​​​​ (2011).

	47.	 Scholkopf, B., Burges, C. & Smola, A. Advances in Kernel Methods—Support Vector Learning (MIT Press, 1998).
	48.	 Hsu, C. W., Chang, C. C. & Lin, C. J. A practical guide to support vector classification. Technical Report, Department of Computer 

Science, National Taiwan University. ​h​t​t​p​s​:​​/​/​w​w​w​.​​c​s​i​e​.​n​​t​u​.​e​d​u​​.​t​w​/​~​c​j​l​i​n​/​p​a​p​e​r​s​/​g​u​i​d​e​/​g​u​i​d​e​.​p​d​f (2010).
	49.	 Keerthi, S. S. & Lin, C.-J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15(7), 1667–

1689 (2003).
	50.	 Alsalem, K. O., Mahmood, M. A., Azim, A. N. & Abd El-Aziz, A. A. Groundwater management based on time series and ensembles 

of machine learning. Processes 11, 761. https://doi.org/10.3390/pr11030761 (2023).
	51.	 Alruwaili, M. et al. LSTM and ResNet18 for optimized ambulance routing and traffic signal control in emergency situations. Sci. 

Rep. 15, 6011. https://doi.org/10.1038/s41598-025-89651-4 (2025).
	52.	 Tawfeek, M. A., Yanes, N., Jamel, L., Aldehim, G. & Mahmood, M. A. Adaptive deep learning model to enhance smart greenhouse 

agriculture. Comput. Mater. Continua 77(2), 2545–2564 (2023).
	53.	 Bird, J. J., Manso, L. J., Ribiero, E. P., Ekart, A. & Faria, D. R. A study on mental state classification using eeg-based brain-machine 

interface. In 9th International Conference on Intelligent Systems (IEEE, 2018).
	54.	 Bird, J. J., Ekart, A., Buckingham, C. D. & Faria, D. R. Mental emotional sentiment classification with an EEG-based brain-machine 

interface. In The International Conference on Digital Image and Signal Processing (DISP’19) (Springer, 2019).
	55.	 Kaggle. EEG Brainwave Dataset. Retrieved from ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​b​i​r​​d​y​6​5​4​/​​e​e​g​-​b​r​​a​i​n​w​a​​v​e​-​d​a​t​​a​s​e​t​-​f​​e​e​l​i​n​g​​-​e​m​o​t​i​

o​n​s​/​d​a​t​a, or ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​K​O​k​a​​b​2​0​​2​0​​/​E​​E​G​-​​B​r​a​i​n​w​​​a​v​e​-​D​​a​t​a​​s​e​t​/​​b​l​o​b​/​​m​a​i​n​/​a​r​c​h​i​v​e​%​2​0​(​4​)​.​z​i​p (n.d.).

Acknowledgements
The authors extend their appreciation to the Deanship of Graduate Studies and Scientific Research at Jouf Uni-
versity for funding this research work.

Author contributions
Conceptualization, M.A.M., M.K.E. and K.A.; Methodology, S.A.E., M.A.M., A.A.A.; Software, M.A.M. and 
M.K.E.; Validation, K.A., S.A.E., and A.A.A.; Resources, M.A.M., and M.K.E.; Data curation, S.A.E., and K.A.; 
Formal analysis, M.A.M., and A.A.A.; Investigation, M.A.M.; Project administration, M.A.M.; Supervision, 
M.K.E.; Visualization, K.A., and S.A.E.; Writing—original draft, M.A.M, and M.K.E.; Writing—review and edit-
ing, K.A. and S.A.E. All the authors have read and agreed to the published version of the manuscript.

Funding
This work was funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under 
Grant No. DGSSR-2024-02-02088.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:31956 22| https://doi.org/10.1038/s41598-025-17220-w

www.nature.com/scientificreports/

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://doi.org/10.3390/pr11030761
https://doi.org/10.1038/s41598-025-89651-4
https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions/data
https://www.kaggle.com/datasets/birdy654/eeg-brainwave-dataset-feeling-emotions/data
https://github.com/KOkab2020/EEG-Brainwave-Dataset/blob/main/archive%20(4).zip
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Segmentation-enhanced approach for emotion detection from EEG signals using the fuzzy C-mean and SVM
	﻿﻿Literature review
	﻿﻿Materials and methods
	﻿Fuzzy C-means
	﻿Support vector machine
	﻿Linear kernel
	﻿Polynomial kernel
	﻿Gaussian kernel
	﻿Sigmoid kernel
	﻿Random Forest
	﻿Long short-term memory
	﻿Convolutional neural networks
	﻿Proposed approach
	﻿Preprocessing layer
	﻿Segmentation layer
	﻿Classification layer
	﻿Evaluation layer
	﻿Hyperparameters values of hybrid model


	﻿﻿Results and discussion
	﻿Dataset description
	﻿Results
	﻿Experiemnt 1: hybrid CNN-LSTM model
	﻿Experiment 2: CNN-LSTM with Random Forest
	﻿Experiment 3: hybrid CNN-LSTM model with fuzzy C-means
	﻿Experiment 4: linear SVM with fuzzy C-means
	﻿Experiment 5: polynomial SVM with fuzzy C-means
	﻿Experiment 6: Gaussian SVM with fuzzy C-means
	﻿Experiment 7: sigmoid SVM with fuzzy C-means


	﻿Discussion
	﻿﻿Limitations of the study
	﻿﻿Conclusion
	﻿References


