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Reducing energy intensity (EI) is essential for achieving sustainable human development, and 
technological progress (TP) plays a pivotal role in shaping changes in EI. This study employs inter-
provincial panel data from China covering the period 2006–2021 and utilizes the Spatial Durbin Model 
(SDM) to empirically examine the effects of TP on EI. Furthermore, it explores the mediating roles of 
the energy consumption structure and industrial structure in this relationship. The main findings are as 
follows: (1) EI in China exhibits significant positive spatial autocorrelation, indicating a geographically 
clustered distribution; (2) TP significantly reduces EI, and from a spatial perspective, it generates 
notable spillover effects that also reduce EI in neighboring regions; (3) The energy consumption 
structure serves as a significant mediating pathway through which TP reduces EI, while the industrial 
structure exhibits a masking effect; (4) Heterogeneity analysis indicates that localization disincentives 
are primarily driven by technical efficiency changes, while spatial spillover disincentives are mainly 
caused by technological changes. In addition, TP had an insignificant impact on EI during 2006–2013 
but demonstrated a significant inhibitory effect during 2014–2021. These findings offer valuable 
insights for enhancing energy efficiency and advancing sustainable, low-carbon development.
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With the rapid expansion of the global economy, the surge in energy consumption has not only intensified energy 
shortage but also posed serious challenges to energy security, particularly in developing countries1. According 
to the International Energy Agency (IEA), global energy demand is projected to increase by 25% by 2040, with 
developing nations accounting for over 70% of this growth. This trend exacerbates energy security concerns and 
hinders global efforts to mitigate climate change. In response, many developing countries—including China—
are actively pursuing renewable energy development as a long-term strategy to ensure energy security and meet 
climate targets2. As the world’s largest energy consumer, China still depends on coal for approximately 70% of its 
energy supply3. This coal-intensive energy structure not only undermines energy security but also contributes 
to severe environmental degradation and climate change. Against this backdrop, reducing EI—defined as the 
amount of energy consumed per unit of economic output—has emerged as a critical strategy for enhancing 
energy security, addressing environmental challenges, and promoting sustainable development4,5. EI is not only 
a key indicator of energy efficiency but also serves as a comprehensive metric for evaluating the sustainability 
of socio-economic development6. Lowering EI enables the decoupling of economic growth from energy 
consumption and carbon emissions, which is particularly vital for achieving long-term sustainable development 
in developing economies7.

In the era of the knowledge economy, TP is widely recognized as a key factor influencing EI. Theoretically, 
TP affects EI through several channels. First, it enhances energy efficiency by improving production processes, 
optimizing equipment performance, and promoting the adoption of energy-saving technologies, thereby directly 
reducing energy consumption per unit of output8,9. Second, TP facilitates industrial upgrading by promoting 
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the transition from energy-intensive industries to low-energy, high-value-added sectors, further contributing 
to a decline in overall EI10. However, TP does not always lead to a reduction in EI. Due to the inherent bias in 
technological progress, its effect on EI may not be significantly negative. In fact, TP-driven economic growth 
can trigger a “rebound effect,” where gains in energy efficiency reduce production costs and stimulate higher 
energy consumption, thereby offsetting the intended energy savings. Yang and Zhu (2017) challenged the widely 
held view that technological innovation inherently improves energy efficiency. They argued that the impact of 
technological innovation on energy use remains uncertain, largely due to the biased nature of TP11.

Moreover, the spatial spillover effects of TP cannot be overlooked. Innovation in one region inevitably 
facilitates the flow and diffusion of technological factors across neighboring areas. TP may generate both positive 
and negative externalities in surrounding regions through mechanisms such as technology diffusion, industrial 
relocation, and regional cooperation. For instance, local TP may promote industrial upgrading, leading to the 
relocation of energy-intensive industries to adjacent regions and thereby creating an uneven spatial distribution 
of EI. These complex spatial dynamics underscore the multidimensional and evolving nature of the relationship 
between TP and EI. When TP influences local EI, its impact often extends to neighboring areas through 
mechanisms such as “demonstration effects” and “warning effects”.

In summary, although existing studies have examined the relationship between TP and EI, several important 
gaps remain. First, most research relies on traditional linear econometric models, which often overlook the 
spatial diffusion characteristics of technology. The assumption of spatial homogeneity in these models may lead 
to biased or incomplete conclusions. Second, the majority of studies focus solely on the direct impact of TP on EI, 
without considering the underlying mechanisms through which TP may influence EI from a spatial perspective. 
Third, the heterogeneous effects of different types of technological progress are frequently neglected, limiting the 
depth and accuracy of current findings.

Building on this foundation, this study adopts a productivity improvement perspective to examine how 
technological progress (TP) affects energy intensity (EI). Using provincial panel data from China spanning 
2006 to 2020, this study employ a SDM to examine both the direct and spillover effects of TP on EI. China 
is selected as the study context not only because it is the world’s largest energy consumer, but also due to its 
pronounced regional disparities in economic development and technological capacity—factors that provide 
an ideal setting for exploring spatial spillovers and technological heterogeneity. Furthermore, the study delves 
into the underlying mechanisms and heterogeneity of TP’s effects. This paper makes three key contributions: 
(1) Adopting a productivity improvement perspective, this study offers a comprehensive empirical assessment 
of both the direct and spatial spillover effects of TP on EI, demonstrating that TP significantly reduces local 
EI and exerts positive spillover effects that lower EI in adjacent provinces—an area largely neglected in prior 
research. Notably, spillover effects account for 43–53% of TP’s total impact on EI. (2) It explores the mediating 
pathways through which TP influences EI, identifying energy consumption structure as a significant channel, 
while also uncovering a masking effect through industrial structure adjustments. (3) It provides new evidence on 
the heterogeneity of TP’s impact, revealing that its effect on EI has become more pronounced in the post-2013 
period. The mechanisms vary spatially: local reductions in EI are mainly driven by efficiency improvements, 
whereas spillover effects are more closely linked to technological change.

Literature review and research hypotheses
Technological progress and energy intensity
A large number of studies recognize that TP is the most influential factor affecting EI8,12,13. Although the 
conclusions of existing studies are not entirely consistent, most scholars believe that improvements in 
technological levels will effectively contribute to the decline of EI. For example, Huang et al. (2022) summarized 
that TP is significant in reducing EI, and technological absorptive capacity plays a crucial role in this process14. 
Fan and Zheng (2019) confirmed the positive contribution of TP in reducing EI based on an econometric model 
utilizing the Kalman filter15. Lin and Tan (2017) used a study of six energy-intensive industries in China to 
demonstrate that TP can effectively reduce EI16. Solangi et al. (2024) expanded the research perspective on 
TP from the technology itself to its underlying driving mechanisms, and revealed the multi-dimensional 
implementation pathways of TP in practice17. Imran et al.(2024) demonstrated that the application of green 
innovation technologies signifies a broader transition towards cleaner and more sustainable energy alternatives18. 
These studies provide an important theoretical perspective for understanding the complex relationship between 
TP and EI. Certainly, some scholars have voiced differing opinions. For instance, based on the rebound effect, 
TP can lead to an expansion in the scale of economic growth, which in turn may require higher energy input, 
thereby increasing EI19. Ma et al. (2008) revealed that the increase in the use of technology resulted in increased 
EI20. The presence of rebound effect makes the impact of TP on EI uncertain10.

That is, the impact of TP on EI depends on the magnitude of energy-saving effects and rebound effects, which 
are closely tied to the actual level of energy-saving technologies. Çabaş et al. (2024) pointed out that the share 
of green technologies among all technologies has shown an overall increasing trend21 providing some support 
for our preliminary inclination toward the view that “TP can suppress the growth of EI”. Additionally, it is 
necessary to consider the actual level of technological advancement in China. In China, technological progress 
has demonstrated rapid development in recent years. Significant achievements have been made in areas such as 
new energy technology research and development, as well as improvements in advanced production processes. 
Numerous enterprises have mastered core technologies through independent research and development, 
substantially enhancing energy efficiency. For example, in the steel industry, new smelting technologies have 
significantly reduced energy consumption per unit of product22; in the power sector, efficient power generation 
technologies and smart grid technologies have improved energy conversion and transmission efficiency. These 
signs indicate that, in the context of China, technological innovation (whether through independent research 
and development, technology introduction, or imitation innovation) and technological efficiency can largely 
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promote improvements in production efficiency. Therefore, this paper tentatively posits that, in China, TP can 
suppress the growth of EI.

In addition, the subjects of economic activities do not exist independently, and some spatial dependency 
is bound to exist among the subjects. Therefore, as one region has an innovative technology or when its 
technological efficiency improves, it will not only have an impact on the EI of that region, but may also affect the 
neighboring regions, i.e., show a spillover effect23,24. From this process, inter-regional socio-economic activities 
can lead to the transfer of technology, management practices, etc., from one region to other regions, and also, the 
region is subject to passive influences from neighboring regions. Therefore, there may be spatial spillover effects 
of TP on EI. Besides, considering the current level of TP, this paper tends to believe that the energy-saving effect 
of TP is more prominent. Hypotheses 1 and hypotheses 2 are proposed.

Hypotheses 1: TP can inhibit the growth of EI.
Hypotheses 2: TP has a significant negative spillover effect on EI.

Technological progress, energy consumption structure and energy intensity
TP inevitably influences the energy consumption structure, and it can even be argued that fundamental 
changes in this structure must rely on TP, which acts as a “catalyst” for its optimization25,26. TP enhances 
energy conversion efficiency, reduces dependence on fossil fuels and coal, and accelerates the adoption of 
renewable energy technologies27. In recent years, the view that optimizing the energy consumption structure 
can significantly reduce EI has gained widespread recognition28,29. Scholars believe that by increasing the share 
of renewable energy and reducing reliance on inefficient fossil fuels, energy efficiency can be improved, thereby 
reducing EI. However, earlier studies suggested that the contribution of energy consumption structure to EI was 
negligible30,31. These studies were often based on older data and economic contexts, where the demand for energy 
conservation was less urgent, and the impetus for structural adjustment through technological innovation was 
limited. As a result, the impact of energy consumption structure on EI was considered insignificant. However, 
as energy resources become increasingly scarce, the concept of sustainable development takes deeper root, and 
the application of renewable energy technologies and changes in resource endowments are being continuously 
realized32. The adjustment of energy consumption structure, especially by increasing the proportion of renewable 
energy, has become an important way to improve energy efficiency. Recent researches have also provided 
support in this regard. For instance, the study by Shi and Yu (2024) demonstrates that renewable energy has 
contributed to the reduction of energy consumption, a contribution that is related to factors such as market 
size and geographical availability33. Jiao et al. (2024) attribute the decline in energy intensity to technological 
advancements and changes in the energy structure, particularly the share of renewable energy34. Utilizing a 
dynamic panel threshold regression model, Yu et al. (2022) have validated the threshold effect of renewable 
energy on national energy intensity, as well as the heterogeneity between developed and developing countries, 
revealing that the higher the level of renewable energy development, the more pronounced its effect on reducing 
energy intensity35. These studies provide robust empirical support for the pivotal role of adjusting the energy 
consumption structure in enhancing energy efficiency.

Therefore, we contend that under the impetus of TP, optimizing the energy consumption structure can make 
a significant contribution to reducing EI. The process by which TP reduces EI through the improvement of 
energy consumption structure can be understood as an enhancement in energy efficiency. While innovations 
in production technologies and improvements in manufacturing processes, such as the adoption of intelligent 
control systems and energy-saving equipment, play a role, the broader significance of TP lies in its ability to 
drive systemic changes9. This includes advancing smart grid technologies, improving energy storage solutions, 
and promoting the widespread use of renewable energy. These developments collectively optimize energy 
consumption patterns and improve overall energy efficiency.

Therefore, hypothesis 3 can be proposed.
Hypotheses 3: The energy consumption structure plays a mediating role between TP and EI.

Technological progress, industrial structure and energy intensity
A large amount of research supports that TP can promote the optimization and upgrading of industrial 
structure. For example, Wang and Li (2022) pointed out that TP has reduced the marginal production quota of 
resources and increased the resource utilization of the secondary and tertiary industries, which has a positive 
effect on promoting the optimization and upgrading of industrial structure36. Shao et al. (2021) stated that TP 
can give rise to the emergence of new industries and formats, affecting the composition and layout of industrial 
structures37. Other scholars have also stated that TP is the key to industrial structural transformation38–40. TP 
breaks through existing technological levels41 improves production efficiency, and gives birth to new industries 
and markets. As a result, both production and consumption structures are reshaped, driving industrial structure 
towards a more advanced and efficient direction. The transformation of industrial structure has had a profound 
impact on energy demand and EI. Li et al. (2017) explained that the industrial structure effect is the main effect 
that suppresses energy demand. The adjustment of industrial structure leads to a reduction in the production 
and supply of electricity, natural gas, and water, that is, a decrease in energy consumption sources42. Some 
studies have confirmed that an increase in the proportion of the secondary industry (e.g., heavy industry, 
manufacturing, and construction) will lead to an increase in EI, and a shift towards the tertiary industry (e.g., 
services, commerce, and high-tech industries) can promote energy conservation43–45. The upgrading and 
optimization of the industrial structure, characterized by a transition from energy-intensive sectors (e.g., heavy 
manufacturing) to less energy-intensive sectors (e.g., high-tech industries), can reduce the inefficient use of 
energy resources. This transformation, from low energy efficiency to high energy efficiency, can significantly 
improve energy efficiency and reduce energy intensity46,47. Undoubtedly, it has become a consensus in the 
academic community that promoting TP and upgrading industrial structure is an effective way to reduce EI48–50.
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In summary, TP has significantly reduced EI and supported sustainable economic development by promoting 
the optimization and transformation of industrial structure, as well as promoting the application of efficient and 
renewable energy technologies. Therefore, Hypothesis 4 can be proposed:

Hypotheses 4: The industrial structure plays a mediating role between TP and EI.

Summary of representative literature
Given the extensive body of literature on the relationship between technological progress and energy intensity, 
we present a condensed summary of selected representative studies in Table 1. Rather than aiming for 
exhaustiveness, this overview highlights different research perspectives and empirical findings that serve as a 
background and contrast to this study.

Table 1 summarizes a carefully selected set of studies examining the relationship between technological 
progress (TP) and energy intensity (EI). Most existing literature supports the view that technological progress 
can reduce energy intensity, although some studies note the presence of rebound effects associated with energy 
savings from technological advances. These studies vary in terms of methodologies, data scopes, and analytical 
depth. Notably, many previous studies have overlooked the spatial interdependencies across regions, while 
energy consumption and technological progress do not occur in isolation, especially in the context of geographic 
and economic diversity. Addressing this gap, this study is the first to introduce the Spatial Durbin Model (SDM) 
into the research framework to systematically reveal the spatial spillover effects of technological progress on 
energy intensity, thereby enriching both theoretical and empirical analyses in this field.

Moreover, this paper innovatively constructs a transmission mechanism in which technological progress 
affects energy intensity through the transformation of energy consumption structure and the upgrading of 
industrial structure, clarifying the key roles of these two mediating pathways in the impact of technological 
progress. Although existing literature has confirmed the influence of technological progress on energy and 
industrial structures, few studies have deeply explored the mediating effects of these factors in the relationship 
between technological progress and energy intensity. By combining spatial econometric methods with mediation 
analysis, this study not only fills a theoretical gap but also provides more targeted empirical evidence for policy-
making, thus enhancing the unique contribution and practical significance of the research.

Based on the above analysis and the introduction section, we present the mechanism diagram of our study 
in Fig. 1.

Research design
Variable selection
Explained variable: energy intensity (EI)
EI reflects the efficiency with which a region utilizes energy resources in its production processes. This indicator 
is widely used in the literature and serves as a key metric for assessing the impact of technological progress on 
energy consumption51,52. EI is measured by the amount of energy consumed per unit of output5,43,44. The EI 
calculation method is as follows:

Author/Year Research focus Main findings Reference

Aydin & Esen (2018) TP → EI Technological progress is a critical driver of EI reduction. 7

Liu & Liu (2013) TP ↔ EI TP entails both energy-saving and rebound effects; net impact is uncertain. 10

Yang (2017) TP → EI Generally acknowledges a negative effect of TP on EI. 11

Huang et al. (2022) TP → Absorptive Capacity → EI Technological absorptive capacity significantly enhances TP’s impact on EI. 14

Fan & Zheng (2019) TP → EI (Kalman Filter) Dynamic modeling confirms TP reduces EI. 15

Lin & Tan (2017) TP → EI in Energy-Intensive Industries TP significantly lowers EI in heavy industries. 16

Solangi et al. (2024) Mechanisms of TP → EI Highlights multidimensional implementation pathways of TP. 17

Imran et al. (2024) Green Innovation → Clean Energy → EI Green technologies promote the transition toward sustainable energy, lowering EI. 18

Wu et al. (2018) Rebound Effect Perspective TP may increase energy demand via economic scale expansion. 19

Ma et al. (2008) TP →EI In certain contexts, TP has led to increased EI. 20

Çabaş et al. (2024) Share of Green Technologies → EI An increasing share of green technology supports EI reduction. 21

Zhang & Cheng (2009) TP in China (Steel & Power Industries) New technologies improve energy efficiency in practical sectors. 22

Wen et al. (2020) Spatial Spillover of TP → EI TP in one region can spill over to affect others’ EI. 23

Zhang et al. (2024) TP → Energy Consumption Structure TP acts as a catalyst for structural optimization. 25

Lim et al. (2021) TP → Renewable Energy Use → EI TP fosters adoption of renewables, reducing fossil dependence and EI. 27

Shi & Yu (2024) Renewable Energy Share → EI Greater share of RES is associated with lower EI. 33

Jiao et al. (2024) TP + Energy Structure → EI TP and structural shifts jointly lower EI. 34

Yu et al. (2022) Threshold Effects of RES → EI Nonlinear effects of RES on EI, with significant heterogeneity. 35

Wang & Li (2022) TP → Industrial Structure Upgrade → EI TP promotes structural upgrading and resource efficiency. 36

Li et al. (2017) Industrial Structure Adjustment → Energy Supply → EI Adjustments reduce energy supply sources, curbing EI. 42

Table 1.  Summary of key literature.
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EIi,j =

Energyi,j

GDP i,j
� (1)

Where Energyi,j  is total energy consumption of region i in year t. Specifically, energy sources such as coal, 
coke, petroleum, crude oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas (LPG), and natural gas 
are converted into standard coal equivalents for statistical purposes. The total energy amount is then calculated 
and expressed in units of 10,000 tons of standard coal equivalent (10,000 tce). GDP i,j  is the real regional gross 
domestic product in region i in year t.

Figure 2 shows that China’s energy intensity is generally on the rise. From the perspective of spatial 
characteristics, it shows a pattern of “western > central > eastern”. And with the passage of time, the energy 
intensity gap between the three regions is getting larger and larger.

Data sources: China Energy Statistical Yearbook and China Statistical Yearbook.

Explanatory variable: technological progress (TP)
To better capture the multifaceted nature of technological progress (TP) and its influence on energy intensity, 
this study adopts two distinct indicators, referred to as TP1 and TP2. TP1 It covers a comprehensive reflection of 
technological change and technological efficiency, reflecting both the progress of innovation driving production 
frontiers and the improvement of existing technology application effects. TP2 reflects the ability to promote 
technological accumulation through the mobilization of financial resources.

TP1: total factor productivity (TFP)  Refer to existing research53,54 TP not only includes the expansion of the 
production frontier driven by technological innovation but also encompasses improvements in the efficien-
cy of applying existing technologies. In other words, TP is understood as a comprehensive manifestation of 
both technical change and technical efficiency change. This understanding raises higher requirements for the 
choice of indicators used to measure technological progress. While some studies measure technological pro-
gress through R&D input and output metrics, such approaches often fail to capture the intrinsic significance of 
TP, particularly its impacts on production efficiency and output quality55,56 which cannot effectively reflect the 
essential significance of technological progress57. TFP is well suited to measure TP53,58. Unlike indicators such 
as R&D investment and the number of patents, TFP captures the portion of output growth in production activ-
ities that cannot be explained by input factors, thereby revealing the true driving role of technological progress 
in economic growth. In essence, TFP reflects the overall effect brought about by TP. A considerable body of 

Fig. 2.  Temporal characteristics of energy intensity.

 

Fig. 1.  Schematic diagram of the conduction mechanism.
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academic research employs TFP as a proxy for TP. For instance, Cheng et al. (2018), Li & Lin (2016) and Zhang 
et al.(2020) utilized TFP to measure TP in their analyses of the relationship between TP and carbon intensity, 
further decomposing TFP into technical change and technical efficiency change57–59. Xu & Liu (2024) adopted 
green total factor productivity(GTFP) as an indicator of technological progress in their study on its influence 
on fiscal resilience60. Hulten (2000) proposed that TFP can reveal the impact of technological innovation on the 
marginal productivity of production, an effect that is often difficult to fully capture through the quantification 
of individual inputs such as capital or labor61. Thus, using TFP as the core indicator for measuring technological 
progress provides a more accurate economic perspective.

In this study, the Global Malmquist Index method is employed to measure TFP. This method also decomposes 
TFP into technological change (TC) and technical efficiency change (TEC), each reflecting a different type of 
technological progress. TC captures the innovation component of TP, measuring shifts in the production frontier 
resulting from technological innovation. EC reflects the effectiveness of implementing existing technologies, 
indicating the ability to catch up with the current production frontier53,62. Therefore, EC is also considered an 
important manifestation of technological progress.

Referring to the methodology employed by Cheng et al. (2018)57 this study measures TFP by selecting capital 
stock and labor as input variables, and GDP as the output variable. Capital stock is calculated using the perpetual 
inventory method63,64  based on data of total fixed asset formation to estimate the fixed capital stock. Labor 
input is measured by the total employed population in the region. GDP is deflated with 2005 as the base year to 
eliminate the impact of inflation. After determining the input and output variables, Maxdea8 software is used to 
measure total factor productivity through the SBM model and the global Malmquist index method65,66. The SBM 
and global-Malmquist index model is as follows:

	
ρ ∗ = minρ =

1 − 1
m

∑ m

i=1
s−

i
xik

1 + 1
q

∑ q

r=1
s+

r
yrk

� (2)

	
st.

{
Xλ + s− = xk

Y λ − s+ = yk

λ , s−, s+ ≥ 0

	
GMIt,t+1 (

xt+1, yt+1; xt, yt
)

= 1 + DT
G(xt, yt)

1 + DT
G(xt+1, yt+1)

� (3)

Where x and y are input and output, respectively. s− and s+ are input slack value and output slack value, 
respectively. λ is the weight vector. m and q are the number of input and output indicators, respectively. ρ ∗ is 
the efficiency value, which indicates effective when ρ ∗ ≥ 1, and ρ ∗<1 indicates an inefficient state. The GMI 
value greater than 1 indicates an increase in TFP. Conversely, a decrease in TFP.

TP2: local government science and technology expenditure ratio  As an alternative measure, this study also 
utilizes the ratio of local government science and technology expenditure to total general public budget ex-
penditure to reflect regional policy orientation toward technological development. This indicator emphasizes 
the governmental and institutional dimension of TP, capturing the intensity of fiscal support aimed at fostering 
scientific and technological progress. A higher ratio indicates a stronger commitment to promoting innovation, 
industrial upgrading, and potentially cleaner production processes, all of which contribute to lowering energy 
intensity.

TP2 thus provides a complementary perspective, focusing on the input-side policy efforts that may indirectly 
influence energy performance outcomes. It is particularly useful in capturing interregional variations in the 
prioritization of TP through fiscal instruments.

Trends and spatial characteristics of TP  To further illustrate the dynamics of technological progress over time 
and across regions, this study presents the evolution of TP based on the TFP indicator (TP1), which allows 
for decomposition into technological change (TC) and technical efficiency change (TEC). This decomposition 
provides additional insights into the underlying drivers of TP and their potential effects on energy intensity. 
Therefore, Fig. 3 in this paper is drawn based on TP1.

Fig. 3a shows the trend of TP and its decomposition into technological change and technical efficiency change. 
Overall, there has been technological advancement from 2006 to 2021, with an increasing level of progress. 
Decomposition indicates that TP is a combination of technological change and technical efficiency change, 
with technological change having a stronger driving force. This is because new technologies are more easily 
imitated and learned compared to improvements in efficiency. Figure 3b displays the progress of technology in 
the eastern, central, and western regions. The level of TP is increasing in each region. Interestingly, the rates of 
change in TP across the eastern, central, and western regions are converging, reflecting a strengthening of the 
technology diffusion mechanism nationwide.

Control variables
Drawing on relevant research4,30,67–69  this paper selects level of regional economic development, energy 
consumption structure, industrial structure, energy prices and government intervention as the control variable.
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Data explanation and statistics
To ensure the validity of the study, provinces with missing data were excluded, resulting in the selection of 30 
provinces (municipalities and autonomous regions) in China. The TFP data was calculated over the period 
from 2005 to 2021, with the derived TFP results and empirical analysis focusing on the years 2006 to 2021. 
The calculation data for energy intensity and energy consumption structure are sourced from “China Energy 
Statistical Yearbook”. The data for other control variables are sourced from “China Statistical Yearbook”.

Table 2 presents the descriptive statistics of variables. In order to ensure data stability, logarithmic processing 
was applied to all indicators in the subsequent work.

Model method
All operations of spatial metrology are based on Stata16 software.

Spatial correlation testing model
This paper uses the global Moran’s index and local Moran’s scatterplot to measure the spatial correlation of EI. 
Moran’s I reflects the correlation between observations and the spatially lagged term, i.e., the correlation of a 
variable in one region with the same variable in a neighboring region70. Global Moran’s I index is used to assess 
whether there is spatial autocorrelation across regions, helping identify whether a variable’s values are randomly 
distributed or exhibit spatial clustering71. The calculation of the Global Moran’s I index (Eq. 4) allows us to 
assess whether spatial dependence exists across the study area, while the Local Moran’s I (Eq. 5) identifies spatial 
clusters or outliers at the individual region level72.

Global Moran’s I index calculation model:

	

Moran′ s I =
n

∑
n
i=1

∑
n
j=1wij(Xi−

−
X)(Xj−

−
X)

∑
n
i=1(Xi−

−
X)

2 ∑
n
i=1

∑
n
j=1wij

� (4)

Localized Moran’ s I exponential computational modeling:

	
Moran′ s Ii =

(
Xi−

−
X

) ∑
n
i=1wij

(
Xj−

−
X

)
� (5)

Variables Calculation method unit N Mean Std. Dev. Min Max

lnEI See 3.1.1 10,000 tce/100 million yuan 480 0.649 0.470 −0.412 2.145

lnTP1 See 3.1.2 - 480 −0.013 0.174 −0.635 0.434

lnTP2 See 3.1.2 - 480 −3.823 1.179 −5.550 −2.631

lnPGDP Gdp/Permanent population yuan 480 10.566 0.612 8.663 12.013

lnECS Coal consumption/Total energy consumption - 480 −0.169 0.541 −4.156 0.954

lnIS Value added of the tertiary industry/Value added of the secondary industry - 480 −0.003 0.412 −0.694 1.667

lnEP Fuel price index - 480 0.176 0.105 −0.01 0.47

lnGI Government general budget expenditure/GDP - 480 −1.55 0.398 −2.48 −0.442

Table 2.  Statistical characteristics. Table data source: Stata 16 generated after analysis and processing.

 

Fig. 3.  (a) The degree of TP and its decomposition (technological change (TC) and technical efficiency change 
(EC)); (b) The degree of TP in the eastern, central, and western regions Data sources: The data were calculated 
using DEA-Max8 software.
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Where Xi and Xj  are the lnEI values in region i and region j. 
−
X  means average value of regional lnEI. wij  is 

spatial weight matrix.
A positive Moran’s I implies that the observed variables are spatially correlated and exhibit a spatial 

agglomeration state. The opposite means that the observed variables have heterogeneity in space and are in a 
spatially dispersed condition.

Spatial Durbin model
When examining the impact of technological progress on energy intensity, there exists significant spatial 
correlation and spillover effects among regions. Technological progress in one region not only affects its own 
energy use efficiency but may also influence the energy intensity of neighboring regions through economic 
linkages, industrial transfer, and technology diffusion. Therefore, traditional panel data models fail to capture 
such interregional interactions effectively, which may lead to model misspecification and biased estimation 
results. This necessitates the adoption of spatial econometric models in our analysis. Spatial econometric models 
include the Spatial Lag Model (SAR), the Spatial Error Model (SEM), and the Spatial Durbin Model (SDM), 
which accounts for spatial correlations. In comparison, SDM is particularly suitable for examining both direct 
and indirect effects in spatial data73,74 as it can more accurately capture the interdependencies within spatial 
datasets. Recent studies have also corroborated the effectiveness of the SDM in capturing interregional spillover 
effects75.

Additionally, we applied a series of tests to determine the most suitable model for this study (Table 3). The 
results of the Lagrange Multiplier (LM) tests indicate that the test statistics for both the spatial error term and the 
spatial lag term are significant at the 1% level, suggesting that spatial error variables and spatial lag variables need 
to be incorporated when constructing the panel regression model. The Hausman test results show that the test 
statistic is significant at the 1% level, indicating that the spatial panel model should be specified as a fixed effects 
model. The Likelihood Ratio (LR) test and Wald test statistics are significant at the 1% level, demonstrating that 
the SDM model cannot be simplified to either the SAR or SEM model. Therefore, the comprehensive test results 
suggest that the SDM model with fixed effects should be adopted.

Model as shown in Eq. (6):

	

ln EIit = α + β
∑

j

wij ln EIjt + ρ ln T Pit

+ σ
∑

j

wij ln T Pjt + φConit

+ ω
∑

j

wijConjt + ui + vi + εit

� (6)

Where subscripts i, j, t represent region i, region j, and year t, respectively. EI represents energy intensity. TP 
represents technological progress. Con is control variables. wij  is an element of the spatial weight matrix. ui 
and vi denote regional-fixed and time-fixed effect, respectively. ϵ it means a randomly perturbed error term.

Spatial weight matrix
To capture the spatial interaction mechanisms more comprehensively, this paper adopts two types of spatial 
weight matrices. The spatial adjacency matrix captures pure geographical proximity and assumes that spillover 
effects mainly occur between adjacent regions. This matrix is widely used in spatial econometric studies and 
serves as a benchmark model for measuring regional spillover effects. However, relying solely on geographical 
proximity may not fully reflect the true intensity of spatial interactions, especially in a vast and economically 
diverse country like China. Economic linkages such as trade, technology transfer, and industrial integration 
often occur between non-adjacent regions. To take these practical situations into account, we additionally 
construct a geographical-economic nested spatial weight matrix. This matrix enables us to capture the spatial 
dependence arising from geographical proximity and economic similarity, thus presenting the inter-regional 
connections more realistically and comprehensively.

TP1 TP2

W1 W2 W1 W2

Hausman test 36.15*** 29.75*** 63.18*** 8.53**

LM error 58.689*** 27.538*** 288.963*** 106.903***

LM lag 108.929*** 6.783*** 246.558*** 43.701***

LR (SAR) 43.23*** 26.84*** 10.51** 10.96***

LR (SEM) 37.23*** 26.76*** 11.84*** 11.44***

WALD (SAR) 45.51*** 27.62*** 10.53** 11.01***

WALD (SEM) 47.46*** 27.84*** 11.64*** 11.55***

Table 3.  Diagnostic tests of Spatial measurement models. Table data source: Stata 16 generated after analysis 
and processing.

 

Scientific Reports |        (2025) 15:32202 8| https://doi.org/10.1038/s41598-025-17235-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


By using these two matrices, we can more reliably test whether the impact of technological progress on 
energy intensity varies under different spatial dependence assumptions. The spatial adjacency matrix and the 
geographical-economic nested spatial weight matrix are shown in Eqs. (7) and (8) respectively:

	
W1ij =

{ 1, if i is adjacent to j
0, if i is not adjacent to j or i = j � (7)

	
W2ij =

{ ∅ 1
dij

+ (1 − ∅) 1∣∣∣ −
GDP i−

−
GDP j

∣∣∣
, if i ≠ j

0, if i = j

� (8)

In the equation, dij  means the nearest highway mileage in provinces i and j. 
−

GDP i and 
−

GDP j  represents the 
annual per capita GDP of province i and province j, respectively. ∅  means the weight, which value is taken as 
0.576.

Results
Spatial correlation of energy intensity
Table 4 displays the global Moran’s I of EI and its average values from 2006 to 2021. The results of W1 matrix 
and W2 matrix are both positively significant. There is a positive correlation in EI among various provinces in 
China, exhibiting spatial agglomeration characteristics. Furthermore, we explored the local spatial correlation 
of EI through Moran scatter plots.

Fig. 4 shows the local spatial correlation of EI with a Moran scatter plot, the first three subplots and the last 
three subplots are derived based on the w1ij  matrix and w2ij  matrix, respectively. The horizontal and vertical 
axes represent the EI and its spatial lag value, respectively. Scattered points are mostly distributed at quadrants 
I and III, and less at quadrants II and IV, which means that EI has obvious spatial agglomeration characteristics 
and a certain degree of stability.

Regression results of spatial econometric models
SDM estimation results
Table 5 presents the test results under the two spatial weight matrices. For local effects, both TP1 and TP2 show 
that TP leads to a significant reduction in EI. Specifically, a 1% increase in TP1 leads to a 0.448% reduction 
in EI under W1 and 0.369% under W2, while TP2 results in a 0.043% reduction in EI under W1 and 0.032% 
under W2, all statistically significant. These negative values indicate that TP can significantly reduce local EI. 
The absolute value of the TP coefficient under W1 is larger than that under W2. This is because the geographic 
proximity of W1 more directly facilitates the localized application of technology, whereas W2 focuses more on 
interregional economic linkages. Although economic linkages can also promote the diffusion and application of 
technology, their influence is relatively indirect.

Turning to the spatial spillover effects, increases in both TP1 and TP2 also contribute to reducing EI in 
neighboring regions. A 1% increase in TP1 leads to a 0.242% and 0.407% reduction in EI under W1 and W2, 
both statistically significant, while TP2 leads to a 0.046% and 0.029% reduction in EI under W1 and W2. Overall, 
the results consistently support the hypotheses that technological progress—measured by either TP1 or TP2—

W1 W2

2006 0.515*** 0.354***

2007 0.517*** 0.351***

2008 0.542*** 0.358***

2009 0.560*** 0.356***

2010 0.551*** 0.341***

2011 0.546*** 0.332***

2012 0.550*** 0.328***

2013 0.512*** 0.318***

2014 0.514*** 0.319***

2015 0.477*** 0.311***

2016 0.483*** 0.297***

2017 0.518*** 0.295***

2018 0.484*** 0.295***

2019 0.460*** 0.250***

2020 0.442*** 0.240**

2021 0.416*** 0.243***

Table 4.  Global Moran Index. *, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01 respectively. Table data source: 
Stata 16 generated after analysis and processing.
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has a significant and negative impact on both local and neighboring regions’ energy intensity. This robustness 
across different technological progress indicators strengthens the reliability of our findings.

Both Hypothesis 1 and Hypothesis 2 are supported.

Marginal effect analysis
Table 6 presents the results of the marginal effect analysis based on TP1. The coefficients of direct influence are 
significantly negative, which indicates that TP has an appreciable inhibitory effect on EI. The indirect impact is 
also significantly negative. This indicates that TP and EI possess significant spillover effects. Due to the combined 
effects of direct and indirect impacts, the overall impact is significantly negative. Notably, the spillover effects 
account for 43% of the total impact of TP on EI under W1, and 53% under W2, emphasizing the substantial 
contribution of spatial effects in the relationship between TP and EI. only the marginal effect results based on 
TP1 are presented. The corresponding results of TP2 are consistent and do not substantially change the overall 
conclusions.

Robustness testing and endogeneity test
Robustness testing
To further test the reliability of this study, the following two methods are employed for robustness checks in 
the subsequent analysis. (1) Artificial intelligence experiments. The LASSO regression method from machine 
learning is utilized to screen the variables involved in the study, extracting variables corresponding to non-
zero coefficients, and reconstructing the research model for re-estimation. (2) Analysis after outlier treatment. 
The data is winsorized at the 1% and 99% percentiles to mitigate the impact of outliers. (3) Changing the 
measurement of the independent variable. TFP is measured using Stochastic Frontier Analysis (SFA) to re-
estimate the model. (4) Use of a dynamic SDM. This method incorporates both the time-lagged term and the 
spatial-time-lagged term of the dependent variable, allowing for a more comprehensive capture of dynamic 
dependencies in both time and space, thereby effectively alleviating endogeneity issues. Methods (1), (2), and (4) 
are specifically conducted based on TP1.

The robustness tests are given in Table 7, indicating that the results in this study are highly robust.

Endogeneity test
To mitigate potential endogeneity concerns, this study adopts 2SLS approach combined with SDM. Specifically, 
the lagged proportion of the population with higher education (L.HEP) is employed as an instrumental variable. 
On the one hand, higher education enhances human capital and innovation capacity, thereby promoting 
technological progress. Using its one-period lag allows us to capture the persistent effect of educational 
investment on technological development while avoiding contemporaneous feedback from energy policies 
on education resource allocation. On the other hand, higher education primarily influences energy intensity 
indirectly through technological progress.

The results of the endogeneity test are presented in Table 8. In the first length regression, the coefficient of the 
instrumental variable is 2.893 and is significant at the 1% level, indicating that the instrumental variable has a 
strong explanatory power for technological progress. The CD Wald F - statistic is greater than the critical value at 

Fig. 4.  Moran scatter plot (Figure data source: Stata 16 generated after analysis and processing).
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W1 W2

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

lnTP1 −0.457*** −0.347** −0.804*** −0.368*** −0.416** −0.783***

(0.061) (0.153) (0.176) (0.062) (0.163) (0.178)

lnPGDP −0.043 0.038 −0.005 −0.121** 0.155 0.033

(0.054) (0.122) (0.130) (0.052) (0.133) (0.135)

lnECS 0.122*** −0.178*** −0.056 0.114*** −0.127*** −0.013

(0.019) (0.045) (0.051) (0.019) (0.035) (0.043)

lnIS −0.076* −0.086 −0.162 −0.136*** 0.035 −0.102

(0.041) (0.109) (0.126) (0.040) (0.096) (0.101)

lnEP −0.536*** 0.582** 0.046 −0.520*** 0.513* −0.007

(0.132) (0.266) (0.300) (0.135) (0.335) (0.452)

lnGI 0.231*** −0.162 0.069 0.234*** 0.196 0.430*

(0.061) (0.132) (0.151) (0.061) (0.170) (0.286)

Table 6.  Decomposition results of Spatial spillover effects. *, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01 
respectively. Table data source: Stata 16 generated after analysis and processing.

 

W1 W2 W1 W2

lnTP1 −0.448*** −0.369***

(0.058) (0.061)

lnTP2 −0.043** −0.032*

(0.020) (0.018)

lnPGDP −0.042 −0.119* −0.101* −0.289***

(0.056) (0.053) (0.055) (0.047)

lnECS 0.126*** 0.112*** 0.179*** 0.167***

(0.019) (0.019) (0.020) (0.020)

lnIS −0.071* −0.135** −0.013 −0.093**

(0.042) (0.042) (0.037) (0.041)

lnEP −0.558*** −0.525*** −0.258* −0.169

(0.133) (0.135) (0.137) (0.149)

lnGI 0.235*** 0.223*** 0.355*** 0.443***

(0.061) (0.061) (0.058) (0.066)

W*lnTP −0.242* −0.407** −0.046** −0.029**

(0.136) (0.162) (0.020) (0.013)

W*lnPGDP 0.045 0.161 0.037 0.146**

(0.119) (0.137) (0.064) (0.069)

W*lnECS −0.178*** −0.130*** −0.194*** −0.170***

(0.040) (0.035) (0.039) (0.033)

W*lnIS −0.063 0.038 0.132*** 0.293***

(0.095) (0.092) (0.047) (0.048)

W*lnEP 0.588** 0.501 0.676*** 1.329***

(0.242) (0.242) (0.191) (0.294)

W*lnGI −0.180 0.186 −0.042 −0.058

(0.115) (0.161) (0.080) (0.110)

W*lnEI 0.154** 0.087** 0.308*** 0.303***

(0.068) (0.027) (0.060) (0.070)

N 480 480 480 480

R2 0.485 0.617 0.647 0.530

FE YES YES YES YES

Table 5.  Regression results of Spatial econometric models. *, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01 
respectively. Table data source: Stata 16 generated after analysis and processing.
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the 15% level of Stock - Yogo. The P - value of the Kleibergen - Paap rk LM statistic is 0.0000, suggesting that the test 
for “under - identification of instrumental variables” is passed. Evidently, the instrumental variable constructed 
in this paper is reasonable and valid in a statistical sense. In the second length regression, the coefficient of lnTP1 
is − 0.244 and is significant at the 5% level. This indicates that after accounting for endogeneity, the effect of 
technological progress in reducing energy intensity still holds.

Overall, the introduction of instrumental variables has effectively mitigated the potential endogeneity of the 
technological progress variable, enhancing the robustness and explanatory power of the empirical results.

The intermediary effect test of energy consumption structure and industrial structure
It is clear from the above analysis that TP can inhibit EI. In addition, further discussion is needed on the possible 
pathways through which TP affects EI. According to the analysis in Chap. 2, this paper conducts mediation 
effect tests using energy consumption structure and industrial structure as mediating variables. The results of the 
mediation effect experiment are shown in Table 9 (model experiment based on W1 matrix. Energy consumption 
structure and industrial structure are excluded from the control variables).

IV method

First length Second length

lnTP1 lnEI

IV 2.893***

(0.429)

LnTP1 −0.244**

(0.098)

lnPGDP 0.329*** 0.154***

(0.050) (0.040)

lnECS −0.104*** 0.356***

(0.025) (0.037)

lnIS −0.429*** −0.269***

(0.042) (0.057)

lnEP −0.768*** 1.644***

(0.184) (0.248)

lnGI 0.446*** 0.823***

(0.043) (0.080)

_cons 2.543*** 0.377

(0.414) (0.322)

N 480 480

R2 0.751

CD Wald F 47.88
[8.96]

47.88
[8.96]

Kleibergen-Paap rk LM S 28.85 28.847

Kleibergen-Paap P-val 0.0000 0.0000

Table 8.  Endogeneity test. Note: *, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01 respectively. Table data 
source: Stata 16 generated after analysis and processing.

 

Variables SDM_Lasso Outlier handling SFA_TFP Dynamic SDM

lnEIt−1 0.752***

(0.030)

lnTP −0.320*** −0.429*** −0.571*** −0.236***

(0.070) (0.059) (0.051) (0.042)

W*lnTP −0.151* −0.252** −0.176* −0.005

(0.083) (0.130) (0.098) (0.075)

Control YES YES YES YES

N 480 480 480 450

R2 0.396 0.459 0.228 0.975

FE YES YES YES YES

Table 7.  Robustness tests. *, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01 respectively. Table data source: 
Stata 16 generated after analysis and processing.
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The regression coefficient of lnTP1 in column (1) is −0.903 (at the 1% significance test level), indicating that 
a 1% increase in TP leads to a 0.903% reduction in EI. Due to the fact that the energy consumption structure 
measurement method used in this article is the share of coal in total energy consumption, the magnitude of the 
energy consumption structure value is inversely proportional to the energy consumption structure optimization 
status, i.e., the smaller the energy consumption structure value, the more optimized the energy consumption 
structure. Therefore, this regression result indicates that TP has significantly improved energy consumption 
structure. Regression coefficients of lnTP1 and lnECS in column (2) are significantly negative and significantly 
positive, respectively. This indicates that the energy consumption structure plays a mediating role, that is, there 
exists a transmission mechanism whereby TP facilitates the reduction of EI by promoting energy consumption 
structure. Hypothesis 3 gets certified. In terms of spatial effect, both the W*lnTP1 and W*lnECS coefficients 
are negatively significant, which reveals that energy consumption structure has a positive spillover effect on EI.

The lnIS coefficient in column (3) is significantly negative, indicating that TP inhibits industrial structure 
upgrading, which is inconsistent with our hypothesis 4. There is academic research showing that the effect of 
TP on industrial structure presents an inverted “U” shape77. Therefore, the result that TP inhibits industrial 
structure up-grading of this study may be in the latter half of the inverted “U” shape. The coefficients of IS and 
TP in column (4) are significantly negative, meaning that there is a masking effect of industrial structure. In 
terms of spatial effects, the insignificance of coefficients indicates the absence of mediating effects.

Heterogeneity analysis
Heterogeneity analysis of technological progress categories
According to the measurement and analysis of TP mentioned above, TP can be decomposed into technological 
change and technical efficiency change. It is undeniable that there is heterogeneity in the effect of TP on EI in 
different forms of TP12,78.

The outcomes of the test for heterogeneity in technology dimensions are presented in Table 10 (based on the 
model test results using the W1 matrix), where the SDM model results show a significant negative coefficient 
of technical efficiency change, while that of technological change has no statistical significance. It follows that 
the direct effect of TP on EI is mainly transmitted through technical efficiency change. As for indirect effects, 
the coefficient of w*lnTEC is significantly positive, while the coefficient of w*lnTC is significantly negative. 
Technological change has a significant negative spillover effect on EI, that is, a 1% increase in technological 
change results in a 0.134% decrease in EI, while technical efficiency change has a significant positive spillover 
effect on EI, with a 1% increase in technical efficiency change leading to a 0.183% increase in EI. Combined with 
analysis above, the extent of negative spillovers from technological change is greater than the extent of positive 
spillovers from technical efficiency change.

Heterogeneity analysis of different time periods
The heterogeneous analysis results of TP’s impact on EI across different periods are presented in Table 11. During 
the period of 2006–2013, the effects of TP on EI, including both local direct effects and spatial spillover effects, 
were not significant, indicating that TP did not have a notable impact on energy intensity during this phase. 
However, in the 2014–2021 period, TP significantly reduced EI, with a 1% increase in TP leading to a 0.178% 
reduction in EI. Additionally, TP exhibited significant spatial spillover effects, with a 1% increase in TP leading 
to a 0.264% reduction in EI in surrounding regions. This finding aligns with the dual nature of TP’s impact on 

(1)ECS (2)EI (3)IS (4)EI

lnTP1 −0.903*** −0.438*** −0.188** −0.551***

(0.137) (0.058) (0.063) (0.059)

lnECS 0.126***

(0.019)

lnIS −0.082*

(0.044)

W*lnTP1 −1.226*** −0.246* −0.027 −0.212

(0.301) (0.136) (0.133) (0.134)

W*lnECS −0.187***

(0.039)

W*lnIS −0.028

(0.100)

Control YES YES YES YES

Log-L 93.238 499.99 436.622 473.983

N 480 480 480 480

R2 0.163 0.671 0.428 0.381

FE YES YES YES YES

Table 9.  Mediation effect test. *, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01 respectively. Table data source: 
Stata 16 generated after analysis and processing. And the table results are derived based on TP1.
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energy intensity discussed in our research hypothesis analysis, which is closely related to the development stages 
of technology.

Discussion
This section is based on TP1, as the heterogeneity analysis employs the decomposition indicators of TFP, which 
corresponds to the TP1 measurement. Therefore, to maintain consistency and interpretability, only the results 
derived from TP1 are discussed.

Variables 2006–2013 2014–2021

lnTP1 −0.022 −0.178***

(0.060) (0.055)

lnPGDP 0.087 −0.792***

(0.057) (0.103)

lnECS 0.089** −0.023

(0.039) (0.024)

lnIS −0.040 −0.100**

(0.042) (0.052)

lnEP −0.187* 0.075

(0.112) (0.218)

lnGI 0.235*** 0.030

(0.061) (0.078)

W*lnTP1 −0.131 −0.264**

(0.132) (0.131)

W*lnPGDP −0.121 0.611***

(0.116) (0.120)

W*lnECS 0.071 −0.012

(0.091) (0.046)

W*lnIS 0.024 0.148

(0.102) (0.110)

W*lnEP 0.056 −0.375

(0.194) (0.478)

W*lnGI −0.297** 0.042

(0.129) (0.147)

N 240 240

R2 0.291 0.266

FE YES YES

Table 11.  Heterogeneity analysis of different time periods. Note: *, ** and *** indicate p < 0.1, p < 0.05 and 
p < 0.01 respectively. Table data source: Stata 16 generated after analysis and processing. And the table results 
are derived based on TP1.

 

Variables SDM Variables SDM

lnTEC −0.105*** lnTC −0.00304

(0.031) (0.028)

W*lnTEC 0.183*** W*lnTC −0.134**

(0.066) (0.065)

W*v W*v

W*lnEI 0.247*** W*lnEI 0.219***

(0.065) (0.065)

Control YES Control YES

N 480 N 480

R2 0.689 R2 0.718

FE YES FE YES

Table 10.  Heterogeneity analysis of technology types. *, ** and *** indicate p < 0.1, p < 0.05 and p < 0.01 
respectively. Table data source: Stata 16 generated after analysis and processing.
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Spatial econometric analysis shows that TP has a significant suppressive effect on EI, along with notable 
spillover effects. Further marginal effect analysis indicates that both the direct effect of TP on local EI and 
the indirect effect on neighboring regions are significantly negative. The energy-saving impact of TP is not 
limited to the local region but also generates broader influence through interregional technology diffusion. This 
finding not only confirms existing studies on the direct effect of TP in reducing EI79,80 but more importantly, 
unveils the spatial spillover pathways of TP and its external energy-saving effects. It extends the current research 
frontier on the relationship between TP and energy efficiency, demonstrating notable originality and theoretical 
significance. These insights also offer valuable policy implications for promoting regional collaborative energy 
conservation and optimizing resource allocation. Local technological progress can influence energy intensity 
through multiple channels, thereby reducing EI. First, TP enables more efficient energy extraction, refining, 
and utilization, resulting in higher output value under the same energy consumption. Second, TP can affect 
energy intensity by promoting the development of new energy sources and improving the structure of energy 
consumption and supply. Third, TP enhances regional innovation capacity, reducing energy use under constant 
output levels. Given the frequent information exchange and the existence of imitation and learning among 
regions, the spatial spillover effects of technology are particularly evident. Technological advancements often 
diffuse from central to surrounding areas, thus affecting the EI of neighboring regions, which constitutes the 
indirect effect. This finding also suggests that, at the national level in China, the energy-saving effect induced 
by TP significantly outweighs the rebound effect, providing solid support for achieving the “dual carbon” goals.

The mediation effect analysis shows that the energy consumption structure has a significant mediating effect 
between TP and EI, both in the local and spatial spillover categories. In this study, the energy consumption 
structure is calculated based on the proportion of coal consumption in total energy consumption. TP can enhance 
the efficiency of renewable energy utilization and reduce coal consumption intensity, thereby optimizing the 
energy consumption structure. Due to the low efficiency of coal usage, replacing coal with other types of energy 
can improve energy efficiency and achieve the goal of reducing EI. However, it is noteworthy that in earlier 
studies, the impact of the energy consumption structure on energy intensity was not given sufficient attention30,31. 
This was mainly because energy conservation and emission reduction had not yet become a research priority, 
and the public’s awareness of the need to adjust the energy consumption structure was relatively low. With the 
increasing scarcity of energy resources, mounting environmental pressures, and the deepening awareness of 
sustainable development, adjustments in the energy consumption structure have gradually become an important 
factor influencing changes in energy intensity. The continuous advancement of technological innovation has 
also profoundly transformed energy production and consumption patterns, providing greater possibilities 
for optimizing the energy structure. Against this backdrop, the energy consumption structure has gradually 
emerged as a crucial transmission pathway through which technological progress affects energy intensity. This 
study further confirms and extends existing findings33–35 by emphasizing the intrinsic mechanism through 
which technological progress reduces energy intensity via optimizing the energy structure—particularly by 
lowering the share of coal and increasing the proportion of renewable energy. Moreover, the study finds that 
the impact of technological progress on the energy structure is significantly constrained by regional resource 
endowments25. Therefore, as China’s “coal reduction” strategy advances, the role of technological progress in 
optimizing the energy structure will become increasingly prominent. This indicates that our study not only 
aligns with current energy transition trends but also offers a forward-looking perspective on the mechanisms 
through which technological progress influences energy intensity.

In contrast, the industrial structure exhibits a masking effect, which is an intriguing finding of this study. In 
the initial stages, TP can promote the development of the tertiary sector, thereby achieving industrial upgrading. 
However, in the later stages, the development of the secondary and tertiary industries tends to stabilize. At 
this point, if TP does not reach the corresponding level, it may actually limit further industrial upgrading45. 
Therefore, it is reasonable to conclude that TP can have an inhibitory effect on industrial structure. However, in 
the context of socio-economic development, the constraints of industrial structure are very unfavorable for the 
reduction of EI. Thus, industrial structure plays a masking role in the impact of TP on EI. In terms of space, the 
industrial structure has not played a mediating role. This is related to the characteristics of industrial structure. 
The formation and evolution of industrial structure are of-ten constrained by various local specific factors, such 
as local resource endowment, policy environment, market demand, and historical development foundation. In 
the spatial domain, there are significant differences in the factors that affect industrial structure among different 
regions, and the development of industrial structure in each region lacks sufficient synergy, making it difficult to 
transmit and play an inter-mediary role in space.

Finally, on the analysis of technological heterogeneity, we found that the direct effect of local TP on EI is 
mainly transmitted via technical efficiency change, while spillover effect has different results. Technological 
change has significant negative spillover effects on EI, while technical efficiency change exhibit significant 
positive spatial effects. There are the following possible explanations for this. Innovative technologies are easily 
imitated and learned, largely based on neighboring geographical distances. Therefore, technological change 
exhibits negative spillover effect on EI. Technical efficiency change refers to the effect achieved on the original 
technology, which depends on the level of technical management and is difficult to imitate. The siphon effect 
of TP caused by efficiency improvement promotes local industrial structure upgrading. Industrial adjustment 
has forced some of the more sub-industrial grade firms to relocate to surrounding areas, thus increasing the EI 
of surrounding areas. In addition, TP did not have a significant effect on EI during the period of 2006–2013, 
while it showed a significant inhibitory effect during the period of 2014–2021. In the early stages, clean energy 
and energy-saving technologies were not yet mature, their adoption was limited, and policy support and market 
mechanisms were insufficient, resulting in an insignificant reduction in energy intensity due to TP. In contrast, 
during the later stages, as technologies matured and were applied on a larger scale, coupled with strengthened 
policy support (e.g., subsidies, carbon trading mechanisms) and enhanced regional collaboration and knowledge 
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sharing, the role of TP in improving energy efficiency became more pronounced, and its spatial spillover effects 
contributed to the enhancement of energy efficiency in surrounding regions. This mirrors findings by Lin and 
Huang (2023). Their study focused on digital technology. It found digital technologies reduced energy intensity 
only after reaching a certain development stage81.

Conclusions, policy recommendations and research limitations
Conclusions and policy recommendations
The whole paper is centered on EI. Methodologically, the spatial econometric modeling approach is adopted 
for the empirical evidence examining the effect of TP on EI, which bridges the ignorance of geospatial spillover 
effects of EI in other researches. Specifically, this paper presents three aspects. Firstly, it introduces the spatial 
distribution state as well as spatial autocorrelation of EI in China. Secondly, it adopts spatial measurement model 
to explore the effect of TP on EI. Lastly, it analyzes the heterogeneous effect of TP on EI in terms of the type of TP. 
Following main conclusions were drawn: (1) The analysis using Moran’s I index reveals that China’s EI exhibits 
significant positive spatial autocorrelation, indicating a spatially clustered distribution pattern. This suggests 
that EI is not randomly distributed across space but demonstrates clear regional interdependencies. Regions 
with high EI tend to be adjacent to other high-energy-intensity areas, while low-energy-intensity regions also 
show similar clustering characteristics. (2) TP has a significant inhibitory effect on China’s EI and demonstrates 
a negative spatial spillover effect. This implies that TP not only reduces EI in the local region but also enhances 
energy efficiency in neighboring areas through technology diffusion and knowledge spillovers. This conclusion 
underscores the critical role of TP in promoting the coordinated improvement of regional energy efficiency. (3) 
The energy consumption structure plays a significant mediating role between TP and EI, which is evident in both 
local effects and spatial spillover effects. This indicates that TP significantly reduces EI by optimizing the energy 
consumption structure, such as increasing the share of clean energy. However, the industrial structure only 
exhibits a masking effect locally and does not show a mediating role in spatial spillover effects. The adjustment 
of the industrial structure relies more on local policies and economic conditions, making its influence difficult to 
transmit to other regions through spatial spillovers. (4) The effect of TP on EI is heterogeneous. The inhibitory 
effect on localized areas is mainly played by efficiency improvement, and the inhibitory effect of spatial spillover 
is mainly caused by technology improvement. In addition, TP did not have a significant effect on EI during the 
period of 2006–2013, while it showed a significant inhibitory effect during the period of 2014–2021.

With the findings of this paper, we put forward three suggestions to provide some reference for reducing EI.

Strengthen regional collaborative governance to unleash spatial spillover effects
Given the significant spatial clustering of energy intensity and the cross-regional spillover effects of TP, it is 
recommended that governments incorporate the concept of spatial collaborative governance into energy 
policy formulation and promote the establishment of integrated regional coordination mechanisms. Based on 
economically interconnected regional units such as urban agglomerations and economic zones, a coordinated 
mechanism for improving energy efficiency should be established to achieve the cross-regional allocation and 
sharing of information, technologies, and policy resources. A regional green technology collaboration platform 
can be established to break down geographical barriers and facilitate the free flow of key energy-saving and 
carbon-reducing technologies across regions—particularly directing low-carbon technologies to high energy-
consuming areas, enabling a better match between “technology supply areas” and “energy efficiency improvement 
areas”. Meanwhile, it is crucial to strengthen regional energy intensity monitoring and early warning systems. 
This can be achieved by developing dynamic monitoring platforms based on big data and remote sensing 
technologies, thereby enhancing transparency and evaluability of energy use efficiency. On the policy side, the 
development of inter-provincial carbon trading markets should be encouraged to optimize the allocation of 
energy efficiency resources through market mechanisms. In addition, fiscal incentive mechanisms based on 
energy performance should be established to support regions that achieve coordinated energy reduction targets 
through transfer payments.

Increase investment in R&D and absorptive capacity to enhance the energy efficiency potential of TP
Given that TP significantly reduces EI and exhibits spatial spillover effects, it is essential to enhance both R&D 
and the capacity to absorb and apply advanced technologies, thereby maximizing its role in energy efficiency 
improvement. On one hand, investment in green and low-carbon technologies should be continuously 
increased, with a focus on key areas such as energy-saving equipment, green manufacturing, and renewable 
energy substitution. This will promote self-reliance in core technologies and reduce dependency on high-energy-
consumption development paths. On the other hand, the effectiveness of TP also depends on local capacities to 
absorb and transform technologies. Therefore, it is particularly important to enhance the technological absorptive 
and re-innovation capacity in central and western regions, as well as in traditional energy-intensive industries. It 
is suggested to establish special public funds to support the development of regional technology incubators and 
demonstration zones for energy technologies, and to deepen the integration of industry, academia, research, and 
application to build a complete chain for green technology diffusion and adoption. Moreover, tax incentives and 
green finance tools such as preferential loans can be employed to encourage especially small and medium-sized 
enterprises to accelerate the upgrading of equipment and technologies, effectively translating TP into tangible 
energy efficiency gains.

Advance energy structure transformation and reinforce market-based mechanisms
The study finds that the energy consumption structure plays a significant mediating role in the relationship 
between TP and EI. To fully leverage the energy efficiency potential of technological advancement, efforts must be 
made to simultaneously promote the optimization of the energy structure and increase the share of clean energy 
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in end-use consumption. Under the framework of the “dual carbon” goals, it is recommended that the country 
further improve the policy system for clean energy development and increase the penetration of renewable 
energy in both supply and consumption. Specifically, financial subsidies and green pricing mechanisms can be 
used to lower the cost of renewable energy adoption and enhance the willingness of enterprises and households 
to adopt clean energy. Meanwhile, it is important to accelerate the development of a flexible and efficient power 
system to improve the grid integration capacity of new energy sources and eliminate institutional bottlenecks 
that prevent available technologies from being effectively utilized. Enterprises across various sectors should 
be encouraged to comprehensively promote clean energy substitution in their production processes, such as 
adopting models like “renewable energy + production” or “green electricity + industrial parks”, which promote 
deep integration of green energy with daily operations. Local governments should also promote green energy 
infrastructure based on local conditions, such as developing integrated systems of generation, grid, load, and 
storage, to improve energy efficiency and system resilience. In this way, the optimization of the energy structure 
can become a key lever through which TP reduces EI.

Research limitations
This study uses TFP as the primary indicator of TP, drawing on its widespread application and practical feasibility 
in existing literature. However, we acknowledge that the concept of TP may be understood in both broad and 
narrow senses, and using TFP as a measure of TP may lead to some conceptual ambiguity. The measurement 
based on TFP may still involve a degree of conceptual generalization. Future research could consider employing 
more detailed or multidimensional indicators to more accurately align with the theoretical connotation of TP.

Regarding endogeneity, this study adopts the classical two-stage least squares (2SLS) instrumental variable 
regression approach to ensure robustness of the estimation results. However, this method does not fully account 
for spatial dependence and spatial spillover effects, which may lead to insufficient capturing of spatial correlations 
and thus affect the explanatory power of the results. Therefore, the endogeneity test results have certain limitations. 
Future research should explore more advanced econometric methods that can simultaneously address spatial 
effects and endogeneity, thereby improving the accuracy and comprehensiveness of causal inference.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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