Table 2 Model performance on datasets with different magnifications.
From: Enhanced digital pathology image recognition via multi-attention mechanisms: the MACC-Net approach
Model | Accuracy | Recall | DSC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10Ă— | 20Ă— | 40Ă— | 10Ă— | 20Ă— | 40Ă— | 10Ă— | 20Ă— | 40Ă— | ||||
U-Net | 0.932 | 0.955 | 0.968 | 0.791 | 0.846 | 0.889 | 0.698 | 0.750 | 0.783 | |||
Att-Unet | 0.955 | 0.862 | 0.976 | 0.826 | 0.835 | 0.901 | 0.661 | 0.796 | 0.825 | |||
TransUnet | 0.953 | 0.968 | 0.973 | 0.883 | 0.904 | 0.929 | 0.758 | 0787 | 0.809 | |||
Swin-Unet | 0.956 | 0.961 | 0.976 | 0.876 | 0.900 | 0.923 | 0.782 | 0.807 | 0.822 | |||
ChannelNet | 0.951 | 0.966 | 0.979 | 0.878 | 0.899 | 0.921 | 0.801 | 0.819 | 0.841 | |||
MACC-Net (Our) | 0.961 | 0.975 | 0.981 | 0.887 | 0.908 | 0.931 | 0.803 | 0.826 | 0.847 |