Table 3 Model performance in different tumor pathology images.
From: Enhanced digital pathology image recognition via multi-attention mechanisms: the MACC-Net approach
Model | Accuracy | Recall | DSC | |||
---|---|---|---|---|---|---|
40Ă— | TNBC | 40Ă— | TNBC | 40Ă— | TNBC | |
SegNet | 0.968 | 0.957 | 0.887 | 0.801 | 0.783 | 0.761 |
Swin-Unet | 0.976 | 0.763 | 0.923 | 0.856 | 0.822 | 0.735 |
CE-Net | 0.945 | 0.921 | 0.832 | 0.876 | 0.739 | 0.731 |
MACC-Net | 0.981 | 0.972 | 0.931 | 0.886 | 0.847 | 0.823 |