Table 3 Performance comparison of different prediction models.
Model | AUC (95%CI) | Accuracy | Sensitivity | Specificity | PPV | NPV | F1-Score | |
---|---|---|---|---|---|---|---|---|
BRAIN score | Training | 0.729(0.681–0.772) | 0.712 | 0.254 | 0.911 | 0.556 | 0.737 | 0.349 |
Internal-testing | 0.655(0.577–0.727) | 0.695 | 0.294 | 0.871 | 0.500 | 0.737 | 0.370 | |
External-testing | 0.658(0.591–0.720) | 0.685 | 0.350 | 0.878 | 0.622 | 0.701 | 0.448 | |
Clinical-radiologic | Training | 0.782(0.737–0.822) | 0.756 | 0.407 | 0.908 | 0.658 | 0.778 | 0.503 |
Internal-testing | 0.688(0.612–0.757) | 0.689 | 0.451 | 0.793 | 0.489 | 0.767 | 0.469 | |
External-testing | 0.690(0.625–0.751) | 0.662 | 0.463 | 0.777 | 0.544 | 0.715 | 0.500 | |
Combined-logistic | Training | 0.788(0.744–0.828) | 0.761 | 0.407 | 0.915 | 0.676 | 0.780 | 0.508 |
Internal-testing | 0.682(0.605–0.752) | 0.689 | 0.530 | 0.759 | 0.491 | 0.786 | 0.509 | |
External-testing | 0.694(0.629–0.755) | 0.630 | 0.488 | 0.712 | 0.494 | 0.707 | 0.490 | |
Combined-SVM | Training | 0.855(0.846–0.912) | 0.784 | 0.398 | 0.952 | 0.783 | 0.784 | 0.528 |
Internal-testing | 0.692(0.616–0.761) | 0.701 | 0.412 | 0.827 | 0.512 | 0.762 | 0.457 | |
External-testing | 0.703(0.638–0.763) | 0.671 | 0.338 | 0.863 | 0.587 | 0.694 | 0.429 | |
2D-ResNet-101 | Training | 0.882(0.843–0.910) | 0.802 | 0.746 | 0.827 | 0.652 | 0.882 | 0.696 |
Internal-testing | 0.782(0.712–0.842) | 0.766 | 0.667 | 0.810 | 0.607 | 0.847 | 0.636 | |
External-testing | 0.777(0.716–0.830) | 0.767 | 0.637 | 0.842 | 0.699 | 0.801 | 0.667 | |
2D-ResNet-152 | Training | 0.879(0.843–0.910) | 0.802 | 0.661 | 0.863 | 0.678 | 0.854 | 0.670 |
Internal-testing | 0.795(0.726–0.854) | 0.731 | 0.667 | 0.759 | 0.548 | 0.838 | 0.602 | |
External-testing | 0.759(0.696–0.814) | 0.717 | 0.700 | 0.727 | 0.596 | 0.808 | 0.644 | |
2D-DenseNet-121 | Training | 0.868(0.830–0.900) | 0.830 | 0.627 | 0.923 | 0.779 | 0.850 | 0.695 |
Internal-testing | 0.721(0.646–0.787) | 0.683 | 0.627 | 0.707 | 0.485 | 0.812 | 0.547 | |
External-testing | 0.735(0.671–0.792) | 0.689 | 0.650 | 0.712 | 0.565 | 0.780 | 0.604 | |
2D-DenseNet-201 | Training | 0.902(0.868–0.929) | 0.823 | 0.763 | 0.849 | 0.687 | 0.891 | 0.723 |
Internal-testing | 0.759(0.687–0.822) | 0.737 | 0.647 | 0.776 | 0.559 | 0.833 | 0.600 | |
External-testing | 0.740(0.677–0.797) | 0.703 | 0.662 | 0.727 | 0.582 | 0.789 | 0.620 | |
3D-ResNet-101 | Training | 0.945(0.902–0.955) | 0.882 | 0.771 | 0.930 | 0.827 | 0.903 | 0.798 |
Internal-testing | 0.644(0.567–0.717) | 0.605 | 0.608 | 0.603 | 0.403 | 0.778 | 0.484 | |
External-testing | 0.615(0.547–0.680) | 0.616 | 0.525 | 0.669 | 0.477 | 0.710 | 0.500 | |
3D-ResNet-152 | Training | 0.932(0.902–0.955) | 0.851 | 0.831 | 0.860 | 0.721 | 0.921 | 0.772 |
Internal-testing | 0.644(0.566–0.716) | 0.623 | 0.647 | 0.612 | 0.423 | 0.798 | 0.512 | |
External-testing | 0.577(0.509–0.643) | 0.589 | 0.500 | 0.641 | 0.444 | 0.690 | 0.471 | |
3D-DenseNet-121 | Training | 0.952(0.926–0.971) | 0.913 | 0.881 | 0.926 | 0.839 | 0.947 | 0.860 |
Internal-testing | 0.645(0.567–0.717) | 0.641 | 0.510 | 0.698 | 0.426 | 0.764 | 0.464 | |
External-testing | 0.619(0.551–0.683) | 0.635 | 0.537 | 0.691 | 0.500 | 0.722 | 0.518 | |
3D-DenseNet-201 | Training | 0.938(0.909–0.959) | 0.869 | 0.822 | 0.889 | 0.764 | 0.920 | 0.792 |
Internal-testing | 0.665(0.588–0.736) | 0.611 | 0.608 | 0.612 | 0.408 | 0.780 | 0.488 | |
External-testing | 0.510(0.442–0.578) | 0.562 | 0.325 | 0.697 | 0.382 | 0.642 | 0.351 |