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Brain tumour segmentation is an important task in medical imaging, that requires accurate tumour 
localization for improved diagnostics and treatment planning. However, conventional segmentation 
models often struggle with boundary delineation and generalization across heterogeneous datasets. 
Furthermore, data privacy concerns limit centralized model training on large-scale, multi-institutional 
datasets. To address these drawbacks, we propose a Hybrid Dual Encoder–Decoder Segmentation 
Model in Federated Learning, that integrates EfficientNet with Swin Transformer as encoders and 
BASNet (Boundary-Aware Segmentation Network) decoder with MaskFormer as decoders. The 
proposed model aims to enhance segmentation accuracy and efficiency in terms of total training 
time. This model leverages hierarchical feature extraction, self-attention mechanisms, and boundary-
aware segmentation for superior tumour delineation. The proposed model achieves a Dice Coefficient 
of 0.94, an Intersection over Union (IoU) of 0.87 and reduces total training time through faster 
convergence in fewer rounds. The proposed model exhibits strong boundary delineation performance, 
with a Hausdorff Distance (HD95) of 1.61, an Average Symmetric Surface Distance (ASSD) of 1.12, 
and a Boundary F1 Score (BF1) of 0.91, indicating precise segmentation contours. Evaluations on the 
Kaggle Mateuszbuda LGG-MRI segmentation dataset partitioned across multiple federated clients 
demonstrate consistent, high segmentation performance. These findings highlight that integrating 
transformers, lightweight CNNs, and advanced decoders within a federated setup supports enhanced 
segmentation accuracy while preserving medical data privacy.

Keywords  Brain tumour segmentation, Federated learning, EfficientNet, Swin transformer, BASNet, 
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Deep learning has significantly advanced medical imaging, especially in segmentation tasks that are crucial for 
disease diagnosis and treatment planning1. Convolutional Neural Networks (CNNs) such as U-Net have been 
extensively deployed for medical image segmentation, due to their capability to capture spatial hierarchies2,3. 
However, traditional CNN-based models exhibit several limitations when applied to brain tumour segmentation. 
The drawbacks are mainly due to the high variability in MRI scans arising from different scanning protocols, 
imaging hardware, and patient demographics4. These variations negatively impact model generalizability, 
leading to suboptimal performance across heterogeneous datasets. Brain tumour segmentation presents 
additional difficulties due to the heterogeneous type of tumour structures, which vary in shape, texture, and 
intensity. Conventional CNN architectures like U-Net and its variants rely on hierarchical feature extraction but 
often struggle with accurate tumour boundary delineation, leading to over- or under-segmentation. Hence, the 
limitations of CNN-based architectures hinder real-time clinical applications, necessitating the development of 
more effective and boundary aware segmentation models5.

A major drawback of centralized learning in medical image segmentation is data privacy concerns. Large-
scale, high-quality datasets are essential for training robust segmentation models. However, sharing sensitive 
patient data across multiple institutions raises ethical and regulatory challenges. Federated Learning (FL) 
offers an alternative by enabling institutions to jointly train models without sharing raw data, while preserving 
patient privacy6. Despite its advantages, existing FL-based segmentation models face several constraints such 
as communication overhead, data heterogeneity, and inconsistency in local model updates across institutions7. 
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Addressing these issues requires developing segmentation models that are efficient, privacy-preserving, and 
capable of handling diverse MRI datasets.

To mitigate these shortcomings, we propose a Federated Learning-based Dual Encoder-Decoder 
Segmentation Model that leverages the benefits of both convolutional and transformer-based architectures. 
This model integrates EfficientNet8 and Swin Transformer9, as dual encoders, and BASNet (Boundary-Aware 
Segmentation Network)10 decoder along with MaskFormer11 as dual decoders. EfficientNet offers lightweight yet 
powerful local feature extraction through compound scaling, while Swin Transformer introduces hierarchical 
self-attention for capturing global contextual information. The BASNet decoder incorporates a boundary-aware 
predict-and-refine mechanism, leveraging residual learning and edge-aware loss to progressively enhance 
tumour edge delineation. MaskFormer, on the other hand, reframes segmentation as a mask classification 
task, reducing noise and improving segmentation consistency. Together, these components improve tumour 
delineation, segmentation robustness, and efficiency in terms of total training time within federated learning 
environments.

The primary goals of this work are:

	1.	 Comparing traditional CNN-based segmentation models (U-Net12, UNet +  + 13, ResUNet14) and transform-
er-based models with our proposed hybrid model integrating EfficientNet, Swin Transformer, BASNet de-
coder, and MaskFormer to quantify performance improvements.

	2.	 Optimizing federated learning (FL) training efficiency by integrating lightweight yet high-performing mod-
els to minimize training and communication costs.

	3.	 Evaluating privacy-preserving brain tumour segmentation in a federated setting, ensuring high segmenta-
tion accuracy while maintaining data security and regulatory compliance.

By addressing these challenges, our study advances privacy-preserving brain tumour segmentation, achieving 
enhanced segmentation accuracy, efficiency in terms of total training time, and generalizability across multi-
institutional MRI datasets. Figure 1 illustrates the Federated Learning concept, where a central server coordinates 
learning from multiple hospital clients without accessing their raw MRI scans.

Background
Federated Learning (FL) has become a widely adopted strategy in medical imaging, allowing multi-institutional 
collaboration without compromising data privacy15. This decentralized learning paradigm enables local training 
on institutional data while sharing only updates of the model with a centralized server for aggregation. Studies 
have demonstrated that FL achieves competitive segmentation performance compared to centralized training 
while maintaining regulatory compliance and protecting patient confidentiality16. However, data heterogeneity 
remains a critical challenge in FL, where MRI scans from different hospitals may have variations in intensity, 

Fig. 1.  Training brain tumour segmentation model in federated learning from multiple clients using 
augmented MRI scan images.
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resolution, and scanner type. Personalized federated models and adaptive aggregation strategies have been 
proposed to mitigate these challenges, but further research is needed to improve model robustness in non-iid 
(non-independent and identically distributed) settings17.

CNN-based architectures have been increasingly used in medical image segmentation, with U-Net being one 
of the most popular and widely used model due to its skip-connection based encoder-decoder architecture18. 
UNet +  + improves upon U-Net by incorporating dense, nested skip pathways, allowing the model to learn multi-
scale features effectively19. ResUNet further refines this approach by introducing residual learning, mitigating 
vanishing gradient issues and enabling deeper networks to achieve superior segmentation accuracy20. However, 
CNN-based models have limitations in finding long-range dependencies, which are critical for accurately 
segmenting complex tumour structures21.

BASNet (Boundary-Aware Segmentation Network) was initially introduced for salient object detection 
but has exhibited robust performance in medical image segmentation, specifically for problems that need 
unambiguous boundary delineation22. Unlike traditional CNNs that rely on single-step feature extraction, 
BASNet utilizes a predict-and-refine mechanism that iteratively enhances segmentation masks by focusing 
on boundary refinement. This is especially useful in brain tumour segmentation, where accurate delineation 
between tumour and healthy tissue is crucial. Transformers have gained prominence in medical imaging due 
to their capability to interpret long-range dependencies using self-attention mechanisms. Vision Transformers 
(ViT) divide images into small patches and apply self-attention to learn contextual relationships between distant 
regions, making them highly effective for complex medical segmentation tasks23.

Swin Transformer, an extension of ViT, introduces hierarchical feature extraction through shifted window 
attention, significantly enhancing computational efficiency while preserving fine-grained spatial details. These 
transformer-based models have delivered exceptional performance in medical image analysis, surpassing 
traditional CNNs in tasks requiring contextual awareness24. EfficientNet has been proposed as a lightweight yet 
powerful CNN architecture that balances depth, width, and resolution scaling to achieve high accuracy with 
fewer parameters. In federated settings, EfficientNet reduces communication overhead by minimizing model 
update sizes while maintaining competitive segmentation performance25.

In recent years, numerous deep learning architectures have been studied for brain tumour segmentation. 
U-Net and its extensions (e.g., UNet +  + , ResUNet) have remained popular due to their encoder-decoder 
structure with skip connections, enabling multi-scale feature learning and precise localization. However, their 
limited receptive fields constrain performance when segmenting irregularly shaped tumours or differentiating 
low-contrast boundaries. Advanced models such as DeepMedic26, 3D U-Net27, and V-Net28 have introduced 
volumetric segmentation and 3D convolutions, offering improved spatial coherence but often at a higher 
computational cost. More recently, attention mechanisms and transformer-based models like TransBTS29, 
UNETR30 and TFCNS31 have been proposed to deal with long-range dependencies in MRI volumes. These 
models leverage self-attention to model spatial context, showing promising results in tumour core and whole 
tumour segmentation tasks. Despite their effectiveness, these models are typically evaluated in centralized 
setups and rarely consider data privacy. Our work builds upon these advances by integrating both CNN and 
transformer components into a federated learning framework, addressing accuracy, boundary precision, and 
privacy simultaneously. Recent works have also proposed advancements in federated and semi-supervised 
learning for medical image analysis. For example 32, surveys FL across diagnostic contexts 33; proposes adaptive 
copy-paste supervision for tumour segmentation 34; reviews FL and ML methods for imaging tasks 35; introduces 
MSKI-Net for modality-specific glioma survival prediction and36 explores uncertainty-aware aggregation in 
histopathology segmentation.

Despite the success of FL and deep learning in medical segmentation, several challenges remain. There 
is limited research on BASNet in federated brain tumour segmentation. Existing studies mainly concentrate 
on CNN-based architectures, with minimal exploration of boundary-aware models in decentralized settings. 
There is a lack of comparative studies integrating Transformers and EfficientNet. Most studies compare FL-
based segmentation using standard CNNs, but the effectiveness of hybrid Transformer-CNN architectures 
remains underexplored. While federated models preserve privacy, they often suffer from training inefficiency 
and performance degradation in heterogeneous data environments. Our study introduces lightweight and high-
performance architectures to address these issues.

Methodology
This section describes the segmentation models evaluated, including both existing baselines and the proposed 
architecture, and outlines the federated learning framework used for training. The model architectures and 
FL setup are detailed. Three widely used CNN-based semantic segmentation models—U-Net, UNet +  + , 
and ResUNet—were selected as baselines for comparison. These architectures have been extensively used in 
medical segmentation, but they exhibit limitations in boundary delineation, feature extraction efficiency, and 
computational scalability, especially in federated settings. U-Net has a symmetric encoder-decoder architecture 
with skip connections, where the encoder extracts multi-scale features through convolutional and pooling 
layers, and the decoder recreates spatial details using transposed convolutions. Skip connections aid in precise 
localization by directly passing low-level features to the decoder. The implementation includes a 5-level U-Net, 
where each downsampling operation halves the spatial resolution while doubling feature channels, and each 
upsampling operation reverses this process by concatenating encoder features to refine predictions.

UNet +  + extends U-Net by introducing intermediate convolutional blocks between encoder and decoder, 
forming dense nested skip connections that enhance feature fusion. This improves segmentation accuracy in 
boundary regions and small structures but increases computational complexity. The architecture maintains 
the same depth as U-Net but incorporates additional convolutional layers and dense skip pathways. ResUNet 
incorporates residual learning into U-Net by adding residual (skip) connections in each convolutional block. 
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These residual blocks help enhance gradient flow and stabilize training, reducing the vanishing gradient 
problem and improving optimization in deeper networks. Batch normalization is applied at each stage to further 
enhance convergence. All baseline models are trained within a federated environment using a uniform training 
pipeline. Federated Averaging (FedAvg) algorithm37 is used to aggregate model updates across multiple clients. 
In each FedAvg round, client models are locally trained on partitioned datasets, and updated model weights 
are transmitted to a centralized server. The server averages the weights to refine the global model, which is 
then resent to clients for the subsequent training iteration. This iterative process continues until convergence, 
ensuring improved model generalization without requiring raw data exchange.

Proposed dual encoder-decoder segmentation model
The proposed dual encoder-decoder segmentation model as shown in Fig.  2, is designed to leverage the 
benefits of both CNN-based local feature generation and Transformer-based global context modelling for high-
accuracy brain tumour segmentation. The architecture follows a structured computational flow, beginning with 
input preprocessing, progressing through dual encoders (EfficientNet + Swin Transformer) for hybrid feature 
extraction, and concluding with dual decoders (BASNet decoder + MaskFormer) to refine segmentation quality 
and boundary precision. The pipeline begins with MRI brain scans, which undergo standardization, normalization 
(Min–Max scaling to [0,1]), and augmentation (random flips, rotations, and intensity normalization) to improve 
robustness. Images are resized to 256 × 256 pixels to ensure uniform input dimensions across the models. 
Both encoders (EfficientNet and Swin Transformer) process input images in parallel, enabling simultaneous 
extraction of low-level and global contextual features. Likewise, the decoder stage performs refinement in a 
parallel stream—BASNet for boundary enhancement and MaskFormer for semantic-level mask generation—
before fusion at the output layer.

Encoder module: EfficientNet + swin transformer (hybrid feature extraction)
The EfficientNet encoder functions as a lightweight CNN-based feature extractor, efficiently capturing fine-
grained spatial details using compound scaling (depth, width, resolution). This ensures computational efficiency 
while maintaining high-resolution local feature representation, making it well-suited for federated training 
environments. Complementing this, the Swin Transformer introduces self-attention-based global context 

Fig. 2.  Proposed hybrid dual encoder-decoder segmentation model with EfficientNet and swin transformer as 
parallel encoders, BASNet and MaskFormer as parallel decoders.
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extraction, addressing CNNs’ limited receptive field constraints. The shifted-window self-attention mechanism 
within Swin Transformer captures long-range dependencies, enhancing tumour shape recognition and 
segmentation of heterogeneous tumour textures. Together, these dual encoders ensure that both local feature 
hierarchies (EfficientNet) and global contextual relationships (Swin Transformer) are optimally leveraged for 
accurate segmentation.

EfficientNet employs compound scaling across depth d, width w, and resolution r. For a convolutional layer, 
the feature (F cnn) extraction process can be expressed as given in Eq. (1).

	 Fcnn = σ(W ∗ X + b)� (1)

where X is the input tensor, W is the weight matrix, b is the bias term, ∗ denotes convolution, and σ denotes the 
activation function (e.g., Swish). EfficientNet applies scaling as:

	 depth ∝ αd, width ∝ βw, resolution ∝ γr

Subject to: α · β2 · γ2 ≈ 2, where α, β, γ > 1 are constants found through grid search.
The Swin Transformer operates on non-overlapping image patches using a shifted window-based self-

attention mechanism. Let the input image be divided into a sequence of flattened patch embeddings, denoted 
as X ∈ Rn×d, where n is the number of patches, X is the input matrix to the transformer encoder and d is the 
feature dimension of each patch. The self-attention mechanism computes attention as shown in Eq. (2).

	
Attention(Q, K, V ) = Softmax

(
QK⊤
√

dk

)
V � (2)

Here = XWQ​, K = XWK , and V = XWV  are the query, key, and value matrices, respectively. The matrices 
WQ, WK , WV  ∈ Rd×dk  are learned projection weights, and dk  is the dimensionality of the keys. This 
formulation allows the model to learn pairwise dependencies between different patches in the image. Swin 
Transformer introduces a computational optimization called shifted window self-attention, which partitions the 
input into smaller windows and shifts them between layers to enhance cross-window connections. This strategy 
reduces computational complexity from O(n2) in standard global attention to O(n), significantly improving 
efficiency in high-resolution medical image segmentation while maintaining contextual modelling capabilities.

Feature fusion layer
To integrate multi-scale features from both encoders, a feature fusion mechanism is employed. Let the output 
feature maps from EfficientNet and Swin Transformer be denoted as Feff ∈ RH×w×c1  and Fswin ∈ RH×w×c2 , 
where H and W are the spatial dimensions of the feature maps, and c1 and c2 represent the number of channels 
produced by each encoder. These feature maps are added along the channel axis to form a combined tensor: 
Ffused = Concat(Feff , Fswin), where Ffused ∈ RH×w×(c1+c2). To harmonize channel dimensions and 
enhance representational learning, a 1 × 1 convolution followed by a non-linear activation is applied as shown 
in Eq. (3).

	 Fout = σ (W × Ffused + b)� (3)

where W is a learnable 1 × 1 convolution kernel of shape (c1+c2) × cf , b is a bias term, and σ denotes a non-linear 
activation function such as ReLU. The resulting fused output Fout ∈ RH×w×cf  is passed to the decoder for final 
segmentation. This fused representation effectively combines high-resolution local textures from EfficientNet 
with global contextual information from the Swin Transformer, enabling robust and boundary-aware tumour 
segmentation, particularly in cases involving irregular shapes and heterogeneous intensity profiles.

Decoder module: BASNet + MaskFormer (boundary-aware segmentation)
The BASNet decoder is utilized for progressive boundary refinement, leveraging residual learning to sharpen 
tumour edges while suppressing false positives. This iterative feature refinement strategy.

ensures that the final segmentation map accurately delineates tumour boundaries, even in cases where tumour 
edges exhibit low contrast. In parallel, the MaskFormer decoder applies a transformer-based mask classification 
approach, where segmentation is treated as a mask-prediction problem instead of a pixel-wise classification task. 
This methodology significantly reduces noise, enhances segmentation robustness, and improves accuracy in 
regions with complex tumour textures and ambiguous boundaries.

BASNet performs boundary-aware segmentation using a residual refinement process. The iterative refinement 
is defined as given in Eq. (4).

	 Yt+1 = Yt + R(Yt)� (4)

where Yt is the predicted mask at time step t, and R is a residual function composed of convolutional operations 
guided by edge-aware supervision. The training loss combines binary cross-entropy, Dice loss, and edge loss as 
shown in Eq. (5), with tuneable weights λ1, λ2, λ3.

	 L = λ1LBCE + λ2LDice + λ3LEdge� (5)
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MaskFormer treats segmentation as a mask classification problem, where each predicted mask is associated with 
a semantic class label. Given the decoder output vector zi ∈ Rd, where zi denotes the embedding respective to 
the i-th predicted mask and d represents the dimensionality of the embedding, the class prediction is computed 
as given in Eq. (6).

	 P (Mi | X) = Softmax(fcls(zi))� (6)

In this formulation, X refers to the input image, Mi is the i-th predicted segmentation mask, and fcls(zi) is 
the class score vector obtained by passing zi through a classification head, typically a fully connected layer. The 
Softmax function Softmax (•) transforms these class scores into normalized probabilities over all possible 
classes, enabling the model to assign each predicted mask a corresponding semantic category, such as tumour, 
non-tumour, or background. The segmentation mask is given by Eq. (7).

	 Mi = fmask(zi)� (7)

where fcls and fmask  ​are the classification and mask prediction heads, respectively. The total loss for training 
the MaskFormer is defined as in Eq. (8).

	
L =

N∑
i=1

[Lcls(Pi, P ∗
i ) + λLmask(Mi, M∗

i )]� (8)

where P ∗
i  and M∗

i  are the ground truth labels and masks, Pi is the predicted class probability for instance i, Mi 
is the predicted segmentation mask and λ is a balancing hyperparameter.

To further enhance segmentation accuracy, particularly around object boundaries and semantically critical 
regions, an attention-based refinement loss (Latten) was integrated into the overall training objective. This 
component was designed to guide the attention mechanisms—particularly those in the Swin Transformer 
encoder and the MaskFormer decoder—toward more meaningful spatial regions. By encouraging alignment 
between attention maps and ground truth structures (such as edges or salient object interiors), the refinement 
loss helped suppress irrelevant background noise and sharpen boundary predictions. This led to noticeably 
cleaner and more accurate segmentation masks. In addition to improving Dice and IoU scores, the inclusion of 
this refinement term contributed to more stable training and faster convergence. Its role as a form of semantic 
regularization proved especially valuable in a hybrid setup involving both convolutional and transformer-based 
feature representations.

The overall loss function integrates Dice and BCE losses with boundary-aware and attention-guided terms to 
enhance both semantic accuracy and boundary sharpness as shown in Eq. (9).

	 Ltotal = λ1LBCE + λ2LDice + λ3LEdge + λ4Lcls + λ5Lmask + λ6Latten� (9)

Here LEdge​ stems from BASNet’s residual refinement (Eq.  5), while Lcls​ and Lmask ​ are derived from 
MaskFormer’s mask classification strategy (Eq.  8). This formulation enables precise delineation of tumour 
margins while preserving contextual coherence. Similar trends have been observed in recent work that leverage 
enhanced boundary supervision and efficient architectures for early disease detection, such as the Force Map-
Enhanced segmentation framework for cervical cancer proposed by38.

Output segmentation map generation
To effectively combine the strengths of both decoders in our brain tumour segmentation model, we used a 
learnable 1 × 1 convolution-based fusion strategy. Instead of simply averaging the outputs from BASNet and 
MaskFormer, this approach allows the model to intelligently decide how much importance should be given 
to each decoder at every pixel. BASNet contributes precise boundary details, while MaskFormer provides a 
broader understanding of tumour regions. By learning how to merge these two perspectives, the fusion layer 
helps produce more accurate and reliable segmentation masks. This is especially important for brain tumours, 
where capturing both the fine edges and the overall structure of the tumour is critical for clinical relevance. As 
shown in Fig. 2, the segmentation outputs from BASNet and MaskFormer are concatenated and fed through a 
1 × 1 convolution after which ReLU activation is performed. This design balances architectural simplicity and 
computational efficiency, ensuring minimal overhead in the federated setting. Their outputs are fused to retain 
both spatial and contextual cues, improving segmentation fidelity.

The final segmentation output of the proposed model generates a high-resolution tumour mask that ensures 
precise tumour localization accuracy by leveraging the combined strengths of EfficientNet, Swin Transformer, 
BASNet, and MaskFormer. The boundary-aware refinement mechanism, driven by progressive residual learning 
in BASNet and mask classification-based segmentation in MaskFormer, effectively preserves tumour edges, 
reducing segmentation errors in complex regions. This refined output significantly minimizes false positives and 
false negatives, ensuring clinically reliable segmentation results suitable for diagnostic and treatment planning 
in medical imaging.

Federated learning framework

The proposed model is trained in a federated learning (FL) environment, enabling multi-institutional collab-
oration while preserving data privacy. Federated clients utilize MRI segmentation datasets partitioned across 
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multiple institutions, simulating a real-world federated learning setting. Each client trains a locally hosted 
version of the dual Encoder-Decoder model on its respective dataset. After local training, model parameters 
are aggregated at a centralized server using the Federated Averaging (FedAvg) algorithm (Algorithm 1). Pri-
vacy-preserving techniques include Differential Privacy (DP), which adds noise to model updates before aggre-
gation to avoid inference attacks, and Secure Aggregation (SA), which ensures encrypted parameter updates, 
preventing direct access to client-specific model weights.

Algorithm 1.  Federated Training of Proposed Segmentation Model

The FL parameters such as the number of clients (M), number of rounds (R), number of local epochs (LE) 
and initial global weights (GW0) are initialized at the beginning of the training. In each round, all clients send 
their local weights (LW) to the server after training their local models with LE epochs. Each client (c) is assigned 
a relative weight (nc/n) proportional to its dataset size (nc) and considering total size of the dataset (n) of all 
clients. After each round, server does a weighted mean of local weights obtained from all clients to update global 
weights. The whole process is iterated for R rounds and the final federated model is obtained which is at par with 
the centralized model.

Implementation
The implementation of the proposed model and other baseline models is carried out in PyTorch, ensuring 
compatibility with GPU-accelerated training. The federated training workflow follows a structured approach, 
beginning with data preprocessing and augmentation, where input MRI scans undergo normalization, resizing, 
and augmentation techniques such as rotation, flipping, and contrast adjustment to enhance generalization. 
In the federated training phase, each client trains its local model using EfficientNet and Swin Transformer as 
encoders, while BASNet decoder and MaskFormer function as decoders. The FedAvg algorithm aggregates 
model updates from all clients, iteratively refining the global segmentation model. Finally, model evaluation 
and testing are conducted on a test dataset, assessing segmentation performance using Dice Coefficient and 
IoU metrics. Visual outputs of predicted tumour masks are further analysed for qualitative assessment. Table 
1 provides a list of hyperparameters used in federated training for baseline segmentation models (U-Net, 

Hyperparameter U-Net UNet +  +  ResUNet Proposed model

Number of clients (M) 5 5 5 5

Rounds (R) 30 30 30 20

Local epochs (LE) 5 5 5 5

Batch size 8 8 8 8

Optimizer Adam Adam Adam Adam

Learning rate (LR) 0.001 0.001 0.001 0.001

Loss function Dice + BCE Dice + BCE Dice + BCE Dice + BCE + attention-based refinement

Differential privacy ✗ ✗ ✓ ✓

Secure aggregation ✗ ✗ ✓ ✓

Table 1.  Federated training hyperparameters for all models.
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UNet +  + , ResUNet) versus the proposed dual encoder-decoder model. Although the baseline models were 
trained for 30 rounds, the proposed model achieved convergence significantly earlier—by approximately the 
20th round—based on stabilization of validation metrics. Therefore, 20 rounds were used for final evaluation 
to reflect convergence efficiency and to avoid redundant training. Additional tests with 30 rounds for the 
proposed model showed negligible performance gain (< 0.2%), confirming the sufficiency of 20 rounds. Key 
hyperparameters such as learning rate (0.001), batch size (8), and local epochs (5) were selected based on 
preliminary tuning experiments conducted on a validation subset within the training data. Grid search was 
employed to evaluate convergence behaviour and stability under varying configurations, ensuring optimal trade-
off between computational efficiency and segmentation accuracy. Sensitivity tests further demonstrated that the 
proposed model maintained high Dice performance (≥ 0.92) across a ± 25% range in learning rate, supporting 
robustness to moderate hyperparameter variations. These choices contribute to reproducibility and reliability in 
federated deployments.

Experimental setup
This section outlines the empirical procedures, including the dataset used and the preprocessing methods 
applied. The experiments are carried out using the publicly available Mateuszbuda LGG-MRI Segmentation 
Dataset39 in Kaggle, which includes 3,926 FLAIR-weighted contrast-enhanced MRI scans alongside their 
manually annotated segmentation masks delineating tumour regions. This dataset is specifically chosen due to 
its significant size, diversity of tumour shapes, textures, and sizes, as well as its practical relevance for clinical 
segmentation tasks. The augmented dataset is divided into training (80%) and testing (20%) subsets. The training 
and testing subsets are further partitioned across five clients, thereby simulating a realistic federated learning 
environment across multiple institutions. All MRI slices and masks are resized to 256 × 256 pixels to standardize 
input size while preserving anatomical details. Pixel intensities are scaled to [0,1] using min–max scaling to 
enhance training stability and prevent intensity-related biases. Training images undergo random horizontal/
vertical flips, ± 10-degree rotations, and ± 10% scaling to improve model generalization. After preprocessing, 
each MRI image is treated as a single-channel 256 × 256 grayscale input, while the corresponding segmentation 
mask is a binary image of the same size. Models are trained using batch-based processing, with segmentation 
masks guiding the Dice loss function, optimizing the similarity between predicted and actual tumour regions. In 
addition to using pretrained EfficientNet and Swin Transformer modules, remaining convolutional layers were 
initialized with He Normal and linear layers with Xavier Uniform strategies. Experiments were conducted using 
NVIDIA A100 GPUs (40 GB VRAM), 256 GB RAM, and PyTorch 2.0. Each client trained independently in 
parallel, ensuring reproducibility of both training time and segmentation accuracy. While network latency was 
not emulated, communication cost was assessed through measured upload size per client and server aggregation 
time.

To reflect how federated learning would function in real-world medical environments, two types of data 
distribution across clients: IID (independent and identically distributed) and non-IID are implemented. In the 
IID setup, MRI slices and their corresponding tumour segmentation masks were randomly and evenly split among 
clients, ensuring that each client received a representative mix of tumour types and imaging characteristics. In 
contrast, the non-IID setting was specifically designed to mimic the challenges of real-world, multi-institutional 
deployment. A typical non-IID setting, quantity skew was implemented by assigning unequal amounts of data 
to each client—some clients had significantly fewer slices, while others had more—simulating the natural 
imbalance in data availability across hospitals. Additionally, feature distribution skew was incorporated to model 
the kind of visual variability caused by differences in scanners, acquisition settings, and local pre-processing 
protocols. To simulate this, the global dataset was first augmented using a variety of transformation techniques, 
including rotation, horizontal/vertical flips, contrast shifts, affine distortions, blurring etc. The augmented data 
was then split across clients such that each client received two specific types of augmentation. For example, 
one client received both blurred and horizontally flipped images, another received contrast-enhanced and 
rotated images, and so on. This dual-augmentation strategy better reflects real-world conditions, where multiple 
sources of variability may coexist within a single institution, resulting in heterogeneous but overlapping feature 
distributions across clients. This setup helps to investigate how well our proposed segmentation model could 
generalize and converge under diverse and challenging non-IID conditions that are representative of real-world 
federated healthcare applications.

Results and discussion
This section presents the evaluation metrics employed, and the comparative performance results of baseline 
models and the proposed dual encoder-decoder model. Results from both centralized and federated training 
environments are presented, along with comprehensive visual and statistical analysis highlighting performance 
improvements. Model performance is evaluated using standard segmentation metrics, focusing on overlap 
measures and pixel-wise accuracy. Dice Coefficient is the primary metric, defined as:

	
Dice = 2 | P ∩ G |

| P | + | G |

where P represents the predicted tumour region and G is the ground truth. A Dice score of 1 indicates accurate 
segmentation, while 0 means no overlap. Dice is susceptible to both false positives and false negatives, making it 
appropriate for medical segmentation where under-segmentation and over-segmentation are critical concerns. 
Intersection over Union (IoU), or the Jaccard Index, is given by:
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IoU = | P ∩ G |

| P ∪ G |

IoU is stricter than Dice and provides an additional measure of segmentation accuracy, usually yielding lower 
values than Dice for the same prediction. Both Dice and IoU are reported as they are standard in tumour 
segmentation literature. Precision and Recall are computed to analyse the model’s ability to correctly identify 
tumour pixels. Precision, defined as:

	
P recision = T rueP ositives

T rueP ositives + F alseP ositive

Which indicates how many predicted tumour pixels are correct, while Recall, given by:

	
Recall = T rueP ositives

T rueP ositives + F alseNegatives

This measures how well the model detects tumour pixels without missing any. Higher recall ensures minimal false 
negatives, which is critical in medical imaging to avoid under-segmentation of tumours. F1-Score, computed as 
the harmonic mean of precision and recall, is also included as an additional verification, although it closely 
aligns with Dice in the segmentation context. F1-Score is given by:

	
F 1 − Score = 2 ∗ P recision ∗ Recall

P recision + Recall

Figure  3a,b illustrate the segmentation performance of the proposed model over 20 training rounds in IID 
setting. The blue line represents validation performance, demonstrating stable convergence and high 
segmentation accuracy in a federated learning setup. Training-time efficiency is assessed by tracking training 
time per round, total training time, and model update size. The server aggregation time per round and total 
communication overhead (sum of all model updates across all FL rounds) are recorded to evaluate feasibility 
in real-world federated networks. These factors are essential for determining the practicality of deploying large 
models in resource-constrained environments. Dice and IoU remain the primary metrics for comparing model 
performance on the test set, with higher Dice and IoU scores indicating superior segmentation quality.

The baseline models (U-Net, UNet +  + , ResUNet) and the proposed dual encoder-decoder model are trained 
in a federated learning (FL) environment and evaluated on an independent test set comprising 20% of the 
dataset, which is never used in training. Table 2 summarizes the segmentation performance, highlighting Dice 
Coefficient, Intersection over Union (IoU), and training time per round.

Model Training setup Dice coefficient IoU score Training time per round

U-Net Federated 0.82 0.80 12 min

UNet +  +  Federated 0.88 0.79 13 min

ResUNet Federated 0.87 0.79 15 min

Proposed Model (EfficientNet + Swin + BASNet + MaskFormer) Federated 0.94 0.87 17 min

Table 2.  Brain tumour segmentation performance metrics for baseline and proposed models.

 

Fig. 3.  Convergence plots showing validation performance of the proposed model over 20 training rounds. (a) 
Dice coefficient (b) IoU Score.
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Despite a higher per-round time (17  min), the proposed model required only 20 rounds to converge as 
observed through validation Dice and IoU stabilization in Fig. 3 and completed training in the shortest overall 
time (5.1  h), validating its training efficiency compared to baseline models. The proposed Dual Encoder-
Decoder Model achieved the highest performance among all evaluated architectures, with a Dice Coefficient of 
0.94 and IoU of 0.87, outperforming the best-performing baseline, UNet +  + (Dice: 0.88, IoU: 0.79), by a margin 
of approximately 6–8 percentage points.

Figure 4 further illustrates the distribution of Dice and IoU scores across 30 subjects. The proposed model 
achieved a median Dice score of 0.94 and IoU of 0.87, with an interquartile range (IQR) of approximately 0.02 for 
Dice and 0.025 for IoU, indicating high consistency across cases. In contrast, U-Net displayed a median Dice of 
0.82 with a wider IQR of ~ 0.06, while ResUNet had a median Dice of 0.87 but with an IQR of ~ 0.045, suggesting 
higher performance variability. These distribution patterns confirm that the proposed architecture not only 
improves overall accuracy but also ensures stable and reliable segmentation. The results validate the contribution 
of transformer-based components (Swin Transformer and MaskFormer) for global context modelling, and 
EfficientNet for efficient and robust feature extraction, making the dual-stream design both accurate and 
consistent for brain tumour segmentation. Although the proposed dual encoder-decoder architecture integrates 
more components (EfficientNet, Swin Transformer, BASNet, and MaskFormer), it achieves relatively faster 
average training time per round (17 min) due to two key factors:

	1.	 EfficientNet Backbone: The use of EfficientNet as one of the encoders contributes significantly in reducing 
training time. EfficientNet is designed with compound scaling to maximize performance with fewer param-
eters, enabling faster forward and backward passes.

	2.	 Pretrained Modules and Parallelization: Both EfficientNet and Swin Transformer are initialized with pre-
trained weights, allowing the model to converge faster. Moreover, Swin Transformer’s shifted-window mech-
anism is optimized for computational efficiency, and its parallelization within the federated environment 
reduces per-client training overhead.

Together, these architectural choices provide a favourable trade-off between model complexity and execution 
efficiency, leading to a 24% reduction in total training time compared to ResUNet, despite the additional 
encoder-decoder layers. Table 3 presents an evaluation of the Precision, Recall, and F1-Score, metrics to assess 
clinical applicability of the segmentation models.

All evaluated models exhibited high recall, indicating accurate detection of tumour pixels. However, the 
proposed dual encoder-decoder model achieved an optimal balance of precision (0.93) and recall (0.95), 
significantly minimizing false positives and reducing the likelihood of over-segmentation. The baseline 
U-Net model, while showing good recall (0.89), presented lower precision (0.85), suggesting a tendency for 

Model Precision Recall F1-score

U-Net 0.85 0.89 0.87

UNet +  +  0.88 0.92 0.90

ResUNet 0.87 0.91 0.89

Proposed Model (EfficientNet + Swin + BASNet + MaskFormer) 0.93 0.95 0.94

Table 3.  Precision, recall, and F1-score for all models in brain tumour segmentation.

 

Fig. 4.  Distribution of dice and IoU scores across 30 subjects for all models.
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false-positive predictions. The proposed architecture’s superior precision and recall indicate enhanced clinical 
reliability and usability.

Figure  5 illustrates a comparative assessment of precision, recall, and F1-score across four segmentation 
models. The proposed model achieved the highest performance, with a precision of 0.93, recall of 0.95, and 
F1-score of 0.94, indicating a strong balance between positive prediction accuracy and sensitivity. In contrast, 
UNet +  + and ResUNet followed with F1-scores of 0.90 and 0.89, respectively, while U-Net showed the lowest 
performance with an F1-score of 0.87. The notable improvement of the proposed architecture—especially in 
recall—demonstrates its effectiveness in minimizing false negatives, which is crucial in medical imaging tasks 
such as tumour segmentation where missed regions can be clinically significant. Convergence analysis indicated 
that the proposed dual encoder-decoder model reached high validation Dice scores in fewer federated rounds 
than baseline models. EfficientNet’s pretrained weights provided a robust initialization, accelerating convergence 
and ensuring faster model training and superior generalization. Conversely, CNN-based baseline models, 
trained from scratch, required more federated rounds to achieve peak performance, underscoring the significant 
advantage of incorporating pretrained transformer and CNN architectures.

The training loss curves in Fig. 6 illustrate stable convergence in the federated learning environment across 
all models. Although all models achieved comparable final training loss values within the first 30 rounds, the 

Fig. 6.  Training loss curves for baseline and proposed segmentation models.

 

Fig. 5.  Comparative evaluation of precision, recall, and F1-score of all models.
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proposed model maintained consistently higher validation Dice scores, signifying superior generalization 
performance. Importantly, federated training did not substantially diminish segmentation accuracy compared to 
centralized training. The proposed model achieved Dice score of approximately 0.94 in federated training, closely 
matching those obtained under centralized training conditions, confirming its robustness and effectiveness in 
decentralized learning setups.

To further strengthen the evaluation, additional metrics related to training efficiency and communication 
overhead are analysed. Table 4 and Fig. 7 present a comparative summary of the average client upload size, server 
aggregation time, and total training time for each model.

Despite its dual encoder-decoder structure, the proposed model demonstrated the shortest total training 
time of 5.1 h, compared to 5.8 h for U-Net, 6.0 h for UNet +  + , and 6.6 h for ResUNet. This performance is 
attributed to the integration of EfficientNet and Swin Transformer, which offer high representational power with 
fewer parameters, as well as the use of pretrained weights that accelerate convergence. Although the proposed 
model incurs a higher average client upload size of 55 MB per round (versus 30–38 MB for baseline models), 
this marginal increase is offset by the reduced number of training rounds. These results validate the model’s 
practical applicability for deployment in communication-constrained federated settings. As shown in Fig. 7, the 
relationship between model complexity, communication cost, and training time reflects a favourable trade-off, 
with the proposed model achieving the best overall balance among all evaluated architectures.

Existing hybrid CNN–Transformer models, such as TransBTS, and UNETR, have demonstrated the benefits 
of combining convolutional feature extractors with transformer-based global context modelling for brain tumour 
segmentation. TransBTS employs a 3D CNN with a transformer bottleneck and reports similar performance. 
DeepMedic and V-Net have shown success in 3D medical segmentation, but they have high volumetric input 
constraints and memory requirements, and show limited adaptability in 2D federated learning setups. However, 
these models are computationally demanding and have not been evaluated in federated or privacy-preserving 
frameworks. In contrast, the proposed model integrates EfficientNet and Swin Transformer with BASNet and 
MaskFormer decoders, achieving a Dice coefficient of 0.94 and IoU of 0.87 in a federated learning environment. 
To further contextualize the results, Table 5 provides a comprehensive comparison of the proposed model with 
both baseline CNNs and existing hybrid models across centralized and federated training setups. The data 
demonstrate that the proposed model not only outperforms existing architectures in segmentation accuracy 
but also satisfies privacy, scalability, and efficiency requirements that are critical for real-world deployment in 
decentralized medical imaging systems.

Figures 8 and 9 visually compare the segmentation performance of the baseline models (U-Net, UNet +  + , 
ResUNet) against the proposed dual encoder-decoder architecture, using representative MRI scans from the 
Mateuszbuda LGG-MRI Segmentation Dataset. The dataset encompasses 3,926 MRI scans with corresponding 
manual annotations. The proposed Dual Encoder-Decoder Segmentation Model, integrating EfficientNet and 
Swin Transformer as encoders with BASNet and MaskFormer as decoders, demonstrates superior segmentation 

Fig. 7.  Average upload per client and total training time for each model.

 

Model Avg. upload per client (MB) Server aggregation time (s) Total training time (h)

U-Net 30 12 5.8

UNet +  +  34 14 6.0

ResUNet 38 15 6.6

Proposed Model 55 20 5.1

Table 4.  Communication overhead and total training time.
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accuracy, achieving enhanced boundary delineation and reduced false positive regions compared to baseline 
architectures. Visual assessments aligned closely with the quantitative metrics presented earlier in Tables 2 and 
3, where the proposed model demonstrated superior precision (0.93), recall (0.95), Dice (0.94), and IoU (0.87). 
In particular, examples of segmentation failure from baseline models—such as boundary misclassification or 
incomplete tumour coverage—are visually apparent in Fig. 9. These failure patterns contrast with the proposed 
model’s more complete and anatomically consistent segmentation output. Notably, the segmentation masks 
generated by the proposed model exhibited significantly improved delineation of tumour boundaries with fewer 
false positives and reduced segmentation errors. These visual outcomes further validate the model’s enhanced 
capability for accurately localizing tumour boundaries compared to CNN-only architectures. This qualitative 
assessment reinforces the suitability and potential clinical effectiveness of the proposed federated learning-based 
segmentation approach.

A qualitative analysis was conducted on a difficult segmentation scenario selected from the Mateuszbuda 
LGG-MRI dataset, characterized by a tumour region comprising only 99 annotated pixels. This case represents 
a boundary-sensitive example where segmentation performance is likely to degrade due to limited spatial 
context and low contrast. As shown in Fig. 10, the MRI slice and corresponding ground truth highlight the small 
tumour region. Inclusion of such cases serves to evaluate model behaviour under edge conditions, which are 
clinically significant for early-stage lesion detection. The ability to maintain accurate delineation in this setting 
reflects the model’s sensitivity to fine-grained structural cues and supports its applicability to anatomically subtle 
segmentation tasks.

Analysis of boundary evaluation metrics
To rigorously examine the boundary delineation performance of the proposed hybrid segmentation model, 
three specialized metrics—Hausdorff Distance at the 95th percentile (HD95), Average Symmetric Surface 
Distance (ASSD), and Boundary F1-score (BF1)—were employed in addition to standard overlap-based metrics. 
HD95 measures the worst-case boundary deviation (excluding outliers) between the predicted and ground 
truth contours, capturing the extent of extreme errors. ASSD quantifies the average surface distance between 
corresponding contour points on the predicted and reference masks, offering insight into typical surface 

Fig. 8.  Brain tumour segmentation visualizations using the Mateuszbuda LGG-MRI dataset with identical 
brain MRI slice across all models, showing ground truth, predictions, and overlay for consistent anatomical 
alignment and clarity.

 

Model Architecture type

(Centralized) (Federated)

NotesDice IoU Dice IoU

U-Net CNN 0.85 0.81 0.82 0.80 Fast training, lacks context modelling

UNet +  +  CNN (nested) 0.89 0.83 0.88 0.79 Better boundaries, more computation

ResUNet CNN + Residuals 0.88 0.82 0.87 0.79 Improved convergence, still limited receptive field

TransBTS29 3D CNN + Transformer 0.92 0.86 – – Effective multimodal, but high compute

UNETR30 CNN + Transformer Encoder 0.90 0.84 – – Volumetric segmentation, not privacy-focused

3D-UNet40 3D CNN – – 0.86 Deep model for 3D images

SU–Net41 CNN + Inception – – 0.78 – Efficient, multi-scale receptive fields

U-shaped model42 CNN + Inception – – 0.88 – Multi-encoder, lacks global features

Proposed Model EfficientNet + Swin + BASNet + MaskFormer 0.94 0.87 0.94 0.87 Highest performance, boundary refinement

Table 5.  Performance comparison of existing CNN, hybrid CNN–transformer models, and the proposed 
model in centralized and federated settings.
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Fig. 10.  Edge case evaluation using the Mateuszbuda LGG-MRI dataset. (MRI slice and ground truth mask for 
a small tumour region (99 pixels), demonstrating low contrast and boundary ambiguity. Predicted mask from 
the proposed hybrid model indicating effective handling of edge-case segmentation).

 

Fig. 9.  (a) Brain tumour segmentation visualizations on the Mateuszbuda LGG-MRI dataset. Comparative 
results for identical brain slice across U-Net, UNet +  + , ResUNet, proposed model. (b) Boundary-level 
visual comparison—Red contours denote predicted tumour boundaries; green contours show ground truth 
segmentation.
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discrepancies. The BF1-score denotes the harmonic mean of boundary-level precision and recall, reflecting the 
spatial accuracy of contour prediction within a specified tolerance margin.

•	 Hausdorff Distance (HD95): Measures the worst-case boundary deviation (excluding outliers) between pre-
dicted mask A and ground truth B.

	
HD95(A, B) = max

{
quantile

a∈A

95(min
b∈B

∥ a − b ∥), quantile
b∈B

95(min
a∈A

∥ b − a ∥)
}

•	 Average Symmetric Surface Distance (ASSD): Quantifies the average surface deviation across all contour 
points on both prediction and ground truth.

	
ASSD(A, B) = 1

| A | + | B |

(∑
a∈A

min
b∈B

∥ a − b ∥ +
∑
b∈B

min
a∈A

∥ b − a ∥

)

•	 Boundary F1-score (BF1): Evaluates the harmonic mean of precision and recall for pixels near the boundary 
within a tolerance margin.

	
BF 1 = 2 · P recisionboundary ∗ Recallboundary

P recisionboundary + Recallboundary

Table 6 presents the results of the boundary evaluation metrics on the Mateuszbuda LGG-MRI dataset. The 
proposed model shows superior boundary delineation performance compared to baseline architectures. It achieves 
the lowest HD95 (1.61) and ASSD (1.12) values, indicating highly accurate and tight boundary alignment with 
the ground truth. Additionally, it attains the highest BF1-score (0.91), reflecting excellent boundary precision 
and recall. In contrast, traditional models like UNet, UNet +  + , and ResUNet show higher boundary deviations, 
with HD95 values of 6.74, 5.07, and 3.97, and BF1-scores of 0.81, 0.84, and 0.83 respectively. This underscores the 
effectiveness of the proposed model in precise boundary segmentation. The high boundary evaluation metrics 
achieved by our model—such as low Hausdorff Distance (HD95), low Average Symmetric Surface Distance 
(ASSD), and high Boundary F1-score (BF1)—highlight its strong clinical relevance and interpretability. Accurate 
boundary delineation is critical in neuro-oncology, especially for surgical resection and radiotherapy, where 
precise tumour margins guide treatment. These metrics indicate that the model captures fine anatomical details 
and closely adheres to expert-drawn contours, reducing the risk of under- or over-segmentation. The high BF1 
score further supports its reliability in real-world settings by showing consistency along tumour edges, thereby 
enhancing clinician trust and enabling safer integration into diagnostic workflows.

Supplementary dataset evaluation
The proposed model and baseline models are additionally evaluated on a supplementary dataset from the Kaggle 
repository to demonstrate the generalizability and robustness of segmentation performance across different 
data distributions. The Nikhilroxttomar dataset43 has 3064 pairs of brain MRI images and their corresponding 
binary masks indicating tumour. This dataset consists of brain MRI slices containing various tumour shapes 
and sizes. It serves as a strong benchmark for model validation under moderately complex segmentation 
conditions. Quantitative results for this dataset are shown in Table 7. The proposed model outperformed baseline 
architectures—including U-Net (Dice: 0.82, IoU: 0.75), UNet +  + (0.84, 0.78), and ResUNet (0.85, 0.79)—by 

Model Dice IoU

U-Net 0.82 0.75

UNet +  +  0.84 0.78

ResUNet 0.85 0.79

Proposed model 0.93 0.85

Table 7.  Quantitative comparison of dice and IoU metrics on nikhil dataset.

 

Model HD95 (mm) ASSD (mm) BF1

UNet 6.74 3.91 0.81

UNet +  +  5.07 2.82 0.84

ResUNet 3.97 2.59 0.83

Proposed model 1.61 1.12 0.91

Table 6.  Boundary evaluation metrics (HD95, ASSD, BF1) for all models.
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achieving a significantly higher Dice score of 0.93 and IoU of 0.85. This substantial improvement highlights the 
model’s superior capability in accurately segmenting tumour regions with enhanced boundary precision and 
spatial consistency.

Handling data and computational heterogeneity
To assess model robustness under realistic deployment scenarios, we conducted experiments in a non-IID 
federated setting incorporating both quantity skew and feature skew. These reflect typical challenges encountered 
in multi-institutional medical imaging, such as uneven data volume and scanner-specific variations in image 
appearance. In the presence of quantity skew, where clients received differing amounts of data but with similar 
feature distributions, baseline models showed moderate performance degradation as shown in Table 8. Our 
proposed model showed greater stability, achieving 0.92 (Dice) and 0.85 (IoU), indicating resilience to sample 
imbalance during training. The effect of feature skew, however, was more severe. Here, each client received 
data augmented with a distinct visual transformation (e.g., blur, noise, contrast shift), leading to domain-level 
feature divergence. This significantly reduced the performance of baseline models. In contrast, our proposed 
model maintained relatively better performance with a Dice Score of 0.89 and IoU of 0.81, showing only a 
marginal decline from its IID performance. This robustness is primarily attributed to the model’s architectural 
design, which combines a hybrid feature extraction backbone with a dedicated boundary delineation module. 
The hybrid backbone facilitates the model to extract both global context and localized semantic features, while 
the boundary-aware component enhances spatial precision in segmenting fine tumour structures. Together, 
these innovations allow the model to maintain performance even under significant domain shifts and inter-
client variability. In non-IID setting involving both quantity and feature skew, convergence to a target Dice 
score required approximately 40–70% more communication rounds compared to the IID setting, aligning 
with established observations in federated learning literature. In non-IID setting, the data is non-uniformly 
partitioned among clients, resulting in each client possessing dataset of varying size. In such cases, clients with 
smaller local datasets exhibited slightly higher validation loss fluctuations. However, the Dice scores across clients 
remained within ± 0.015 of the global mean, confirming consistent performance and strong generalizability of 
the proposed model across heterogeneous client data distributions. Overall, the results demonstrate that our 
proposed model effectively mitigates the impact of data heterogeneity in federated brain tumour segmentation, 
offering both improved accuracy and greater reliability in non-IID environments.

To simulate computational heterogeneity, each client randomly selected a local epoch count between 1 
and 5 in each communication round. Compared to the homogeneous setting where all clients trained for 5 
epochs in every round, this variation led to slower convergence and minor fluctuations in performance. The 
final segmentation accuracy showed a slight decline, with Dice scores reducing from 0.94 (homogeneous) to 
approximately 0.91–0.93 in the heterogeneous case. This highlights the sensitivity of federated optimization to 
uneven computational loads across clients.

Impact of differential privacy and secure aggregation
In the federated training process, privacy was reinforced through the combined use of differential privacy and 
secure aggregation. The global model was trained locally by each client on its private dataset. Before updates 
were transmitted to the central server, differential privacy was applied by clipping gradients and adding 
calibrated Gaussian noise, ensuring that individual client data could not be inferred from the shared updates. 
Following this, secure aggregation was employed by masking each noisy update, allowing only the aggregated 
result of all clients’ contributions to be accessed by the server. At no point were individual updates exposed 
or examined. Through this dual-layered privacy mechanism, sensitive client data was effectively protected, 
making the approach well-suited for applications involving confidential information, such as medical image 
analysis. Incorporating differential privacy resulted in a moderate reduction in segmentation accuracy (Dice 
score dropped by ~ 4% compared to baseline), likely due to the noise injected into gradients. When combined 
with secure aggregation, no further degradation in accuracy was observed, indicating that SA does not interfere 
with model convergence quality, as it only protects communication-level confidentiality. Differential privacy 
introduced noticeable training instability in the early rounds due to noise, requiring approximately 30% more 
FL rounds to reach convergence compared to the baseline. Secure aggregation, being computational but not 
algorithmic in nature, did not significantly affect the number of rounds to convergence. Applying DP added 
negligible overhead on client-side computation (Gaussian noise addition is a lightweight operation). However, 
secure aggregation significantly increased computation overhead due to key exchange and encryption steps. 
Specifically, the training time per round increased by ~ 1.7 × in the DP + SA setting compared to the baseline 
FedAvg.

Model

Dice coefficient IoU score

Quantity skew Feature skew Quantity skew Feature skew

U-Net 0.80 0.73 0.73 0.68

UNet +  +  0.85 0.78 0.75 0.70

ResUNet 0.84 0.79 0.75 0.69

Proposed Model (EfficientNet + Swin + BASNet + MaskFormer) 0.92 0.89 0.85 0.81

Table 8.  Segmentation performance in non-IID settings on mateuszbuda LGG-MRI dataset.
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Ablation study
In our proposed image segmentation framework, we adopted a dual-encoder architecture that brings together 
EfficientNet and the Swin Transformer to balance efficiency and representational power—both critical in 
federated learning settings. EfficientNet was chosen for its lightweight design and ability to deliver strong 
performance with fewer parameters, making it ideal for client devices with limited computational resources. 
Complementing this, the Swin Transformer contributes by modelling both local and global features using a 
hierarchical attention mechanism that is particularly effective in segmentation tasks. To further enhance learning 
efficiency and generalization, both encoders are initialized with pre-trained weights from ImageNet. This use of 
transfer learning proved especially valuable in federated scenarios, where data heterogeneity and limited local 
data are common challenges. To understand the impact of these pre-trained components, an ablation study is 
carried out. The proposed model with both encoders pre-trained achieved a Dice score of 0.94 and an IoU of 
0.87. When EfficientNet was trained from scratch, the Dice score dropped to 0.91; removing Swin pre-training 
resulted in a further decline to 0.90. Training both encoders from scratch led to the lowest performance, with a 
Dice score of 0.88 and IoU of 0.82. These results highlight the critical role of pre-trained weights, contributing 
nearly a 7% improvement in segmentation accuracy and noticeably faster convergence. Overall, this combination 
of EfficientNet and Swin Transformer backed by transfer learning proved to be highly effective in federated 
image segmentation.

Training and communication efficiency
Despite incorporating more complex model components, the proposed architecture remained efficient in terms 
of total training time in federated setups. Our proposed model which has a larger parameter count (~ 25 M), 
incorporates a dual-encoder structure that benefits from pretrained initialization, enabling rapid convergence 
with fewer communication rounds—ultimately reducing total training time. Although the parameter count 
exceeded simpler baseline models (U-Net: 7.8 M; UNet +  + : 9.0 M; ResUNet: 8.5 M), the federated training 
efficiency remained practical. Model parameter updates averaged around 55 MB per client per round compared 
to approximately 30  MB per round for simpler U-Net architectures, comfortably within typical hospital IT 
infrastructure limits. Federated per-round training time averaged approximately 17–18 min for the proposed 
model per federated client, marginally longer than simpler CNN models (around 12–14 min). Nevertheless, the 
complete federated training process still completed in under a few hours, demonstrating training efficiency and 
practicality for real-world clinical deployments. EfficientNet’s lightweight convolutional backbone significantly 
contributed to reducing computational load, whereas transformer-based global context modelling ensured fewer 
rounds for model convergence compared to baseline CNNs. In real-world deployments of federated learning, 
communication challenges such as latency and packet loss can have a notable impact on model performance 
and training efficiency. When clients are distributed across different locations or operate in low-bandwidth 
environments, high latency can slow down the synchronization of model updates. This often results in delayed 
or stale updates, which may reduce the overall effectiveness of global aggregation. In some cases, slower clients 
may even be dropped from participation, introducing potential bias into the model. Packet loss adds another 
layer of complexity—missing or corrupted transmissions can lead to incomplete updates or force repeated 
communication attempts, further increasing training time and communication overhead. While our current 
implementation assumes stable and reliable connections, we recognize that such assumptions may not always 
hold true in practice. As a part of future work, we aim to incorporate network latency simulation, further 
addressing potential communication disruptions like packet loss to improve robustness in real-world federated 
settings.

Scalability and adaptability
Scalability assessments involving increased number of federated clients confirmed that federated learning remains 
robust and scalable for realistic multi-institutional deployment. However, increased data heterogeneity across 
sites naturally demanded additional training rounds to achieve convergence and optimal accuracy. Increasing 
number of clients to 7 and 10 leads to a marginal difference in performance due to reduced data per client and 
increased update variance. Under an IID setup, the Dice score value remains within 0.93–0.935 for 7 clients and 
0.91–0.93 for 10 clients, with corresponding IoU values between 0.855–0.865 and 0.83–0.855 respectively. In 
the non-IID scenario, as the number of clients increases to 7 and 10 under the same heterogeneity conditions, 
the segmentation performance moderately drops due to increased data fragmentation. Dice score value ranges 
between 0.865–0.88 for 7 clients and 0.84–0.865 for 10 clients, with corresponding IoU values in the range of 
0.78–0.80 and 0.75–0.78, respectively. Future implementations can explore Personalized Federated Learning 
or site-specific model fine-tuning techniques. These approaches would explicitly mitigate domain shifts and 
data distribution differences inherent in distributed datasets, thereby improving local model performance and 
adaptability.

Effectiveness of federated learning in medical segmentation
This study confirms that Federated Learning (FL) is a highly effective and practical framework for training 
advanced segmentation models in distributed healthcare environments while ensuring patient data privacy. 
Despite decentralized data distribution, the FL approach demonstrated negligible accuracy loss compared 
to centralized model training. The results indicate that federated training does not inherently compromise 
performance, provided models are carefully selected and optimized. Moreover, federated learning, when 
combined with differential privacy and secure aggregation, enables robust, privacy-preserving training across 
institutions with no significant performance degradation, making it well-suited for secure and collaborative 
medical AI development.
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Conclusion and future work
This research introduced a dual encoder-decoder segmentation model combining EfficientNet and Swin 
Transformer as encoders with BASNet decoder and MaskFormer as decoders, demonstrating exceptional 
accuracy in brain tumour segmentation tasks. The proposed hybrid dual encoder-decoder model achieved Dice 
and IoU scores of 0.94 and 0.87, respectively, along with superior boundary evaluation metrics (HD95 = 1.61, 
ASSD = 1.12), demonstrating its robustness, precision, and potential clinical applicability. The hybrid transformer-
CNN architecture enabled effective extraction of both local and global spatial features, particularly improving 
boundary delineation through the boundary-aware BASNet decoder, and mask-level classification refinement 
with MaskFormer. Furthermore, federated learning combined with differential privacy and secure aggregation 
demonstrated robust, privacy-preserving training capabilities without significant accuracy degradation, 
underscoring its suitability for secure, multi-institutional collaboration in medical AI. Future directions will 
explore advanced hyperparameter optimization to further enhance model accuracy and computational efficiency. 
Additionally, the research aims to integrate multi-modal MRI data (T1, T2, FLAIR) to enhance segmentation 
reliability in diverse clinical contexts. Efforts will also focus on real-time inference optimization to facilitate 
practical deployment within hospital networks, and exploring personalized federated learning to effectively 
address data heterogeneity among institutions, thus progressing towards clinically reliable, privacy-preserving 
AI solutions in medical imaging. Future extensions may also incorporate network latency simulation and 
dynamic client partitioning to better reflect real-world federated environments and communication constraints.

Data availability
The datasets generated and/or analysed during the current study are available in the Kaggle repository, ​h​t​t​p​s​:​​/​/​
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