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Traditional CNC machine tool feed system models suffer from low simulation accuracy and limited 
generalizability. These issues arise from simplified process replication and rigid optimization 
methods based on mechanical knowledge. To address these challenges, this study proposes a new 
hybrid mechanism data-driven digital twin (DT) modeling framework. Firstly, a nonlinear coupling 
characterization method was developed by combining fuzzy proportional integral (PI) control with 
mechanical system dynamics. This method achieves real-time adaptive parameter updating of the 
feeding system, and compared with traditional models, the maximum error is reduced by 32.79%. 
To further address the inherent simplification characteristics of the mechanism model, a WOA-CNN-
LSTM-Attention algorithm was independently constructed for compensation, and experimental 
verification through physical machine operation confirmed that the maximum error was reduced 
from 0.0576mm to 0.0121mm. Finally, an online recognition system with a recursive least squares 
multiplication with a forgetting factor was used to achieve fast parameter convergence: tracking 
for 0.005 seconds in simple cases and 0.01 seconds in complex cases, achieving real-time DT 
synchronization. This study provides a systematic solution for building stable and efficient DT systems 
in precision manufacturing applications.
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CNC machine tools with high-precision feed systems plays a crucial role in driving the advancement of 
advanced equipment in industries such as electric power, aerospace and high-speed railways1. Kim2 proposed 
a comprehensive design method for ball screw drive servo mechanisms, which improved design quality by 
mathematical modeling, nonlinear optimization, and multi-objective function optimization of dynamic 
performance. Lee3 established the control model of the machining center and the multi-body dynamic 
mechanical model of the transmission system based on Simulink and ABAQUS, for the analysis of cutting forces 
and surface quality in the milling process. Wang4 established a second-order mathematical model of ball screw 
considering viscous friction and transmission stiffness based on Matlab/Simulink. Wang5 built multi-domain 
models of CNC machine tools based on Modelica, providing a new approach to comprehensively improve the 
high-speed, high-precision, and intelligent development of CNC machine tools. The above studies show that the 
construction of high-precision feed systems through simulation techniques is effective, but the modeling process 
itself involves simplification, so it cannot fully reflect the physical properties of the objects in question, which often 
results in substantial discrepancies between simulation outputs and actual operational results, rendering them 
insufficient for practical applications. To address fixed characteristic errors of mechanism models, scholars have 
introduced DT simulation technology, which effectively merges mechanical expertise with big data analytics6. 
Tao7 introduced a comprehensive five-dimensional model of DT alongside its top ten applications, emphasizing 
the role of DT in forecasting failures and managing the health of complex electromechanical equipment. Sun8 
developed a DT model specifically for cutting tools used in machining processes. Luo9 presented a framework for 
DT modeling and application tailored for CNC machine tools, successfully establishing a DT model to predict the 
lifetime and maintenance strategies of ball screws on CNC milling machines. Cai10 exemplified the construction 
of DT virtual machine tools within cyber-physical manufacturing through the development of a DT system for a 
three-axis vertical milling machine. Finally, Tong11 proposed a real-time data processing application and service 
based on intelligent CNC machine tool DT, enabling the evaluation and prediction of machine tools’ operational 
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status.Huang12 proposed a DT simulation method for the CNC machine tool feed system based on the Long 
Short-Term Memory(LSTM) algorithm, which effectively compensated for processing errors. According to the 
literature above, it could be seen that the current DT simulation model based on traditional dual-loop PI control 
theory and LSTM algorithm had low accuracy and poor adaptability to complex operating conditions. Therefore, 
it is crucial to conduct research on efficient and reliable DT technology for machine tool feed control systems, to 
achieve adaptive dynamic updates of model parameters following changes in environmental conditions, and to 
further improve model simulation accuracy. In this study, a new method for DT modeling of the CNC machine 
tool feed system based on a mechanism-data hybrid drive was proposed to address the shortcomings of the 
traditional dual-loop PI control theory and the LSTM algorithm.

Methods
Digit twin model
The DT consisted of four main components: physical space, twin model space, data space, and data interaction 
space, as illustrated in Fig.  1. Initially, a physical space was established, comprising components such as feed 
systems, servo motors, sensor networks, and a DT space was formed by model-based mechanisms and data-
driven models. Subsequently, the physical data collected from controllers, encoders, and linear encoders was 
processed through the data space and transmitted to the twin model space to predict the processing process of 
physical entities. Finally, the predicted data were transferred to the data interaction space for online monitoring 
and optimization control, ensuring the feed system to operate at its optimal state consistently. The process was 
depicted in Eq. (1).

	 F SDT = (P F S,V F S, F SDT D, F SSS)� (1)

In the equation: FSDT  represented the DT framework of the feed system, PFS represented physical space, VFS 
represented digital model space, FSDTD represented data space, and FSSS represented data interaction space.

Construction of the mechanism control system model
The DT mechanism model was a highly interconnected, multi-parameter, nonlinear complex electromechanical 
integrated system that consists of control subsystems, electrical subsystems, and mechanical subsystems. This 
model serves as the foundation for visually mapping physical entities in a virtual space13. In this study, a method 
for obtaining mechanistic models using Matlab/ Simulink is proposed. Firstly, the internal components are 
modularized and decomposed according to the structural function of each subsystem. Secondly, the physical 
and energy flow relationships among modules were established through domain interface modules, enabling 
integration between the control, electrical, and mechanical subsystems. Finally, through the incorporation of 
pertinent parameters from the feeding system and the comparison of actual operational data with simulation 
results, the dynamic characteristics of the DT mechanism model were verified.

Construction of fuzzy PI control subsystem
The mechanism model of the control subsystem of the dual-axis feed system mainly includes the PI control 
module, coordinate transformation module and Space Vector Pulse Width Modulation(SVPWM) module.The 

Fig. 1.  DT model framework. CNC Computerized Numerical Control, CNN convolutional neural networks, 
LSTM long short-term memory.
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PI control module is essential for the precise control of the mechanical subsystem14. However, the traditional PI 
control algorithm was based on an ideal model and lacks adaptability in nonlinear complex systems15. Hence, 
A fuzzy PI control system for dual-axis feed system was proposed to address the poor robustness of traditional 
PI control in dealing with nonlinear and complex systems16. Figure 2 illustrated the selection of input speed 
error E(t) and its differential EC(t) as input signals for PI controller tuning using an online tuning method. 
Following the process of fuzzyfication, fuzzy reasoning, and defuzzification, the adjustment amounts ∆Kp and 
∆Ki for parameters Kp and Ki were determined. These adjustments were subsequently utilized to update the 
parameters within the PI controller. The calculation of the relevant parameters was detailed in Eqs. (2) and (3).

	 E (t) =N∗ − N � (2)

	 EC (t) =E (t) − E (t − 1) � (3)

In the equations: N*represented the instruction speed; N represented the system simulation speed. The fuzzy 
subsets of parameters E, EC, Kp, Ki and were {NB, NM, NS, ZO, PS, PM, PB}, with domains of {-10, 10}, {-10, 
10}, {0.2, 0.8}, and {20, 60} respectively. The membership functions were represented as shown in Fig. 3. In terms 
of input-output membership functions, this study formulates control rules by leveraging expert knowledge 
and the specific traits of the controlled system, as illustrated in Table  1. Through the utilization of weighted 
average defuzzification, a blend of “exact” and “fuzzy” elements was attained to dynamically fine-tune the output 
variables Kp and Ki. The comparison between the fuzzy PI control system and the traditional PI control system 
was conducted at a constant speed of 1000 rpm, as illustrated in Fig. 4. The traditional PI control system achieved 
a tracking error of 0.064% at 0.0281 s, while the fuzzy PI control system achieved a tracking error of 0.060% 
at 0.0136 s. The fuzzy PI control system demonstrated improvement of 51.6% in tracking time efficiency and 
enhancement of 0.004% in accuracy compared to the traditional PI control system.

Construction of electrical subsystem
The mechanism model of the electrical sub-system of the dual-axis feed system depicted in Fig.  5 primarily 
consists of the power supply, inverter, signal model to current model conversion module, line voltage modulation 
module, and permanent magnet synchronous motor (PMSM) module. Key PMSM parameters, including 
rotational inertia (J) and load torque (Tl), were derived from experimental data. The voltage balance equation of 
the PMSM model in the d-q axis system was shown in Eq. (4).

	

ud = Rsid + dφd

dt
− ωeφq

uq = Rsiq + dφq

dt
− ωeφd

� (4)

The magnetic flux equation of permanent magnet was shown in Eq. (5).

Fig. 2.  Three-loop fuzzy PI control system. PositionAct: Actual displacement; PI:proportional integral; Nr : 
actual speed of the motor; Id: d-axis current after the Park transformation; Iq : q-axis current after the Park 
transformation; ωe: actual angular velocity of the motor;Ud: d-axis voltage after the Park transformation; Uq : 
q-axis voltage after the Park transformation; pluse: Pulse modulated signal.
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φd = Ldid + φf

φq = Lqiq
� (5)

In the equation: id, iq , ud, uq , Ld, Lq , φd, φq  represented d-q axis current, voltage, inductance, magnetic flux 
respectively; Rs was the stator resistance of the motor, ωe was the angular velocity of the motor, and ωf  was 
the permanent magnet flux. The torque equation of PMSM in the d-q coordinate system was shown in Eq. (6).

	
Te = 3

2p[φf iq + (Ld − Lq)idiq]� (6)

In the equation: Te represented electromagnetic torque, and p represented the number of motor poles. The 
mechanical motion equations of PMSM are shown in Eqs. (7) and (8).

	
Te = Tl + J

dω

dt
+ Bω � (7)

Fig. 3.  Fuzzy control parameter membership function diagram. a Relevance Function of E (x axis: the 
fuzzy subsets of parameters E is {NB, NM, NS, ZO, PS, PM, PB}, with domains of {–10, 10}; y axis: degree 
of membership). b Relevance Function of EC (x axis: the fuzzy subsets of parameters EC is {NB, NM, NS, 
ZO, PS, PM, PB}, with domains of {–10, 10}; y axis: degree of membership). c Relevance Function of Kp (x 
axis: the fuzzy subsets of parameters Kp is {NB, NM, NS, ZO, PS, PM, PB}, with domains of {0.2, 0.8}; y axis: 
degree of membership). d Relevance Function of Ki (x axis: the fuzzy subsets of parameters Ki is {NB, NM, 
NS, ZO, PS, PM, PB}, with domains of {20, 60}; y axis: degree of membership). NB negative big, NM negative 
medium, NS negative small, ZO Zero, PS positive small, PM positive medium, PB positive big, E speed error, 
EC acceleration error.
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Fig. 5.  Electrical subsystem mechanism model of feed system. A, B, C, a, b, c: three-phase voltage. Tl: load 
torque; J: rotational inertia; Te: electromagnetic torque; θ: rotor mechanical angle; iabc: inverse conversion 
current; Wm: mechanical angular velocity.

 

Fig. 4.  Comparison of fuzzy PI control and traditional PI control effects at 1000 rpm (x axis: simulation time 
from 0 to 0.1 seconds; y axis: motor speed per minute.

 

EC1
EC2

E NB NM NS ZO PS PM PB NB NM NS ZO PS PM PB

NB PB PB PM PM PS ZO ZO NB NB NM NM NS ZO ZO

NM PB PB PM NM PS ZO NS NB NB NM NS NS ZO ZO

NS PM PM PM PS ZO NS NM NB PM PM NS ZO PS PS

ZO PM PM PS ZO NS NM NM PM PM NS ZO PS PS PM

PS NM PS ZO NS NM NM NM NM NS ZO PS PS PM PB

PM PS ZO NS NM NM NM NB NS ZO PS PS PM PB PB

PB ZO NS NM NM NM NB NB ZO PS PS PM PB PB PB

Table 1.  Output parameter fuzzy rule table. NB negative big, NM negative medium, NS negative small, ZO 
Zero, PS positive small, PM positive medium, PB positive big, E speed error, EC acceleration error, EC1: fuzzy 
rule table of Kp, EC2: fuzzy rule table of Ki.
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dθ

dt
= ω � (8)

In the equations: B represented the damping coefficient, ω represented the rotor mechanical angular velocity, and 
θ represented the rotor mechanical angle. In the context of the SVPWM algorithm, which produced a saddle-
shaped waveform as its output signal, and the conventional PMSM model being controlled by a sinusoidal signal. 
Therefore, the SVPWM algorithm cannot be introduced directly into the model, and the line voltage signal must 
be used to drive the model15. The internal coordinate transformation equation of the PMSM model at this stage 
was depicted in Eq. (9).

	

[
ud

uq

]
= 1

3

[
cos θ

√
3 sin θ cos θ

− sin θ
√

3 cos θ − sin θ

] [
ua

ub

uc

]
� (9)

The corresponding current vector inverse transformation matrix was shown in Eq. (10).

	

[
ia
ib

ic

]
= 1

3

[
cos θ − sin θ
cos(θ − 120◦) − sin(θ − 120◦)
cos(θ + 120◦) − sin(θ + 120◦)

] [
id

iq

]
� (10)

Construction of the mechanical system
The mechanical transmission system demonstrates intricate dynamic characteristics, influenced by factors such 
as inertia, stiffness, damping, and friction. The equivalent dynamic model was illustrated in Fig. 6, where the 
angular displacement of the motor was denoted as θm(t). The rotational inertia of the motor shaft and the 
lead screw were represented by Jm and Js, respectively. The rotational stiffness were denoted by Ka and Ks 
respectively, while the damping was represented by Cm and Cs, respectively. Furthermore, the mass of the 
table was M, the stiffness coefficient of the worktable was Kg , the movement damping was Cg , and the angular 
displacement of the lead screw was denoted as θs(t). This study converting the variables equivalent Jm, Js, Cm, 
Cs, Cg , Ka, Ks and Kg  to the motor, as illustrated in the calculation equation in Eq. (11).

	

J = Jm + Js + ( L

2π
)

2
M

C = Cm + Cs + ( L

2π
)

2
Cg

K = 1
1

Ka
+ 1

Ks
+ 1

( L
2π

)2
Kg

� (11)

In the equations: L represented the lead of the screw. The balance equation of the mechanical transmission 
subsystem could be expressed equivalently as Eq. (12).

	 Jθ̈g(t) + Cθ̇g(t) + K[θg(t)−θm(t)] = 0� (12)

By utilizing Solidworks for modeling essential components, including screws, couplings, and guide rails, the 
physical constraints and assembly relationships of the components were mapped using XML and STEP format 

Fig. 6.  Simplified dynamic model of mechanical subsystem. Jm: rotational inertia of the motor shaft; Js: 
rotational inertia of the lead screw; Ka: rotational stiffness of the motor shaft; Ks: rotational stiffness of the lead 
screw; Cm: damping of the motor shaft; Cs: damping of the lead screw; Kg: stiffness coefficient of the worktable; 
Cg: moving damping of the worktable; θm(t): angular displacement of the motor; θg(t): angular displacement 
of the lead screw.
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files, followed by importing the files into MATLAB/Simulink to generate a virtual model of the mechanical 
subsystem of the feed system, as illustrated in Fig. 7. A sinusoidal signal was fed and the constructed mechanism 
model was compared to the mechanism model under traditional PI control, as shown in Fig. 8. In the traditional 
PI control system, a drift phenomenon was observed at 3.5 s, which fails to accurately map the input signal. 
In contrast, the fuzzy PI control system could dynamically adjust the PI parameters through the fuzzy system, 
achieving precise mapping of the input signal. This study confirmed the effectiveness and robustness of the 
proposed mechanism model construction method in this study.

Construction diagram of data-driven model for numerical control machine tool based on 
WOA-CNN-LSTM-Attention
Although the digital twin mechanism model of the feed system can visualize the geometric features, spatial 
positions, and overall control methods of physical entities, mechanism based models have significant limitations. 
On the one hand, due to the difficulty in obtaining detailed parameters of the equipment, the overall modeling 
of the equipment is simplified; On the other hand, the impact of various working conditions and environmental 
factors on the results of the feed system is difficult to characterize using a mechanistic model, which inevitably 
leads to residuals between the predicted results of the mechanistic model and the actual results, greatly reducing 
the simulation accuracy of the digital twin model17. To improve the prediction reliability of DT models, this study 

Fig. 8.  Comparison diagram of fuzzy PI control and traditional PI control. a Traditional PI control (x axis: 
simulation time from 0 to 5 seconds; y axis: displacement of the table of the feed system); b Fuzzy PI control (x 
axis: simulation time from 0 to 5 seconds; y axis: displacement of the table of the feed system.

 

Fig. 7.  Virtual model of the mechanical subsystem of the feed system.
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proposed a data-driven prediction model based on the deep fusion of convolutional neural networks(CNN), 
attention mechanism(Attention), whale optimization algorithm(WOA) and LSTM, as shown in Fig. 9. Firstly, 
based on the characteristics that CNN excelled at extracting features from collected experimental data and 
LSTM could better learn from time series data, a CNN-LSTM prediction model is established. Secondly, the 
WOA was introduced to optimize the hidden layer neuron quantity, learning rate, and iteration times to obtain 
the optimal parameters. Finally, the deep learning algorithm attention mechanism was coupled to highlight the 
impact of features on input effects, further improving the model’s prediction accuracy and computer efficiency. 
The proposed model was validated through experiments on a real feed system, and the results demonstrate its 
superior prediction performance compared to traditional models. This research provided a new approach for 
enhancing the prediction reliability of DT models in complex mechanical systems. The CNN primarily consisted 
of a sequence of convolutional layers and pooling layers18. In this study, a max-pooling CNN was employed to 
integrate signal features including actual speed, actual acceleration, and actual workbench position, thereby 
maximizing the activation of data features. The mathematical formulations for convolutional layers and pooling 
layers were presented in Eqs. (13) and (14) correspondingly.

	
O(l) =

L−1∑
a=0

X(l + a) × W (a) + b � (13)

	
Y (i) = max

j∈R
X

(
i × l′ + j

)
� (14)

In the equations, O(l) represented the output of the convolutional layer; X(l) represented the value of the input 
sequence; W(a) represented the weight of the convolutional kernel; L represented the size of the convolutional 
kernel; l represented the time position; b represented the bias term. Y(i) represented the output of the pooling 
layer ; i represented the output position; R represented the set of position indexes in the pooling window; l′ 
represented the pooling stride. The LSTM model outperforms the traditional Recurrent Neural Network (RNN) 
when it came to managing and forecasting time series data19. This was due to its superior ability to handle 
long-term dependencies and gradient problems. The internal computational process of LSTM was detailed in 
Equations (15) to (20).

	 fl = σ (Wxf × xl + Whf × hl−1 + bf ) � (15)

	 c̃l = tanh (Wxc × xl + Whc × hl−1 + bc) � (16)

	 il = σ (Wxi × xl + Whi × hl−1 + bi) � (17)

Fig. 9.  Algorithm structure diagram. LSTM long short-term memory, WOA whale optimization algorithm, 
CNN convolutional neural networks.
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	 cl = fl × cl−1 + il × c̃l � (18)

	 ol = σ (Wxo × xl + Who × hl−1 + bo) � (19)

	 hl = ol × tanh (cl) � (20)

In the equations: fl, il and ol respectively represented the forget gate, input gate, and output gate of the LSTM 
unit, controlling the discard, memory, and output of information within the control unit; cl represented the 
carrier of the long-term memory; hl represented the output of the short-term memory unit at time step l , 
also serving as the carrier of short-term memory; [Wxf Whf ], [Wxi Whi], [Wxo Who] and [Wxc Whc] 
respectively represented the weights of the forget gate, input gate, output gate, and candidate memory state; bf , 
bi, bo and bc respectively represented the bias terms of the forget gate, input gate, output gate, and candidate 
memory state. Inappropriate selection of the learning rate, number of neurons, and regularization coefficient of 
the CNN-LSTM model could result in increased modeling errors20. To address this issue, this study employed the 
WOA to fine-tune these three key parameters of the CNN-LSTM model and obtain the optimal values, thereby 
enhancing modeling accuracy. WOA, a novel swarm intelligence algorithm inspired by the predatory behavior 
of whales, utilized shrinking surrounds, random walks, and spiral ways for optimization. Compared with genetic 
algorithm and particle swarm optimization algorithm, WOA has fewer setting parameters, but stronger global 
and local optimization capabilities21. In order to verify the advantages of WOA over other intelligent optimization 
algorithms for LSTM algorithm, a set of wind speed change data within the same period in a certain region 
was used to optimize the learning rate, number of neurons, and regularization coefficient of LSTM algorithm 
using Genetic Algorithm(GA), Particle Swarm Optimization(PSO), Grey Wolf Optimizer(GWO), and WOA 
under the same constraints. The comparison of optimized LSTM algorithms is shown in the Fig. 10 , and the 
results show that WOA has the best performance with R2 = 0.96959, and PSO has the worst performance with 
R2 = 0.89709. The optimization process was mathematically represented in Equations (21) to (24).

	
Z (n + 1) =

{
Z∗ (n) − A × |D × Z∗ (n) − Z (n)| q < 0.5

|Z∗ (n) − Z (n)| × eγ × cos (2πγ) + Z∗ (n) q ≥ 0.5 � (21)

Fig. 10.  Comparison of Algorithm Performance. LSTM long short-term memory, GA genetic algorithm, PSO: 
particle swarm optimization, GWO grey wolf optimizer, WOA whale optimization algorithm.
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	 A =2 × m × r − m � (22)

	 D =2 × r � (23)

	
m =2 − 2 × n

nmax
� (24)

In the equations: n represented the current iteration number; Z(n)represented the position vector; Z∗(n) 
represented the best position vector; A and D respectively represented control parameter vectors; γ is any number 
in interval [−2 − 1]; r represented any vector between 0 and 1; m represented the convergence factor; nmax 
represented the maximum number of iterations; q represented a random number in interval [0 1], seeking the 
global optimal solution through random walking while |A| ≥ 1 and seeking the local optimal solution through 
contraction and surroundinghen while |A| < 1 . The training of this model should take into consideration the 
channel information, as neglecting it may lead to uneven resource distribution and a decrease in resolution 
effect22. To address this issue, this study incorporates an attention mechanism that assigns different weight 
coefficients to each temporal feature of the CNN-LSTM model according to its importance, which ensured that 
crucial features were preserved even with an increased sequence length, ultimately enhancing the resolution 
accuracy23. The implementation steps of the model developed in this research were illustrated in Fig. 11. The 
algorithm developed in this study, WOA-CNN-LSTM-Attention, was illustrated in Fig.  12. It demonstrated 
superior precision in early-stage tracking when compared to the LSTM algorithm, resulting in smoother and 
more accurate overall predictions. Table   2 presented a detailed performance comparison, showing that the 
WOA-CNN-LSTM-Attention algorithm outperforms the LSTM algorithm by reducing the Mean Absolute Error 
(MAE) by 3.10%, the Mean Absolute Percentage Error (MAPE) by 52.95%, and the Root Mean Square Error 
(RMSE) by 32.21%.

Online parameter identification of numerical control machine tool model based on recursive 
least squares method with forgetting factors
It is one of the key technologies of DT to obtain important parameter information in real time and align it 
with the response of the physical system to help the control algorithm adjust the motor control strategy in 
time24. With the increase of real-time information, the traditional recursive least squares algorithm is prone 
to data saturation25. Therefore, this paper proposes an online recognition strategy for DT model based on the 
recursive least squares method based on the forgetting factor, and uses the mechanical characteristic parameters 
of moment of inertia as the system identification parameters. According to the principle of least squares, the 

Fig. 11.  WOA-CNN-LSTM-Attention algorithm flowchar.
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iteration equation of the recursive least squares method with forgetting factors could be derived, as shown in 
Equation (25).

	

ζ (k) = λ−1ψ (k − 1) φ (k)
1 + λ−1φT (k) ψ (k − 1) φ (k)

ξ (k) = Q (k) −
∧
S

T

(k − 1) u (k)
∧
S (k) =

∧
S (k − 1) + ζ (k) ξ (k)

ψ (k) = λ−1ψ (k − 1) − λ−1ζ (k) φT (k) ψ (k − 1)

� (25)

In the equation, φ(k) represented the branch input vector; Q(k)represented the output vector; ξ(k) represented 
the error; ψ(k)represented the covariance matrix; ζ(k) represented the gain matrix; 

∧
S (k) represented the least 

squares estimate ; λ represented the forgetting factor, choosing a suitable forgetting factor in the interval [0.9 1] 
based on convergence speed and disturbance resistance can avoid data saturation. In order to accurately identify 
the moment of inertia of the permanent magnet synchronous motor, it is necessary to derive the mechanical 
motion equation of the permanent magnet synchronous motor, which is shown in Eq. (7). To accurately 
determine the moment of inertia of a permanent magnet synchronous motor, it is necessary to derive the 
mechanical motion equation of the permanent magnet synchronous motor. The equations of mechanical motion 
(7) for a permanent magnet synchronous motor could be expressed as Eqs. (26) and (27).

	
dω

dt
= ω(t) − ω(t − 1)

∆t
= ω(t) − ω(t − 1)

T
� (26)

Performance indicators

Algorithm name MAE MAPE RMSE

LSTM 0.0226 0.1728 0.0444

WOA-CNN-LSTM-Attetion 0.0219 0.0813 0.0301

Table 2.  Comparison table of algorithm performance indicators. MAE mean absolute error, MAPE mean 
absolute percentage error, RMSE root mean square error, LSTM long short-term memory, WOA whale 
optimization algorithm, CNN convolutional neural networks.

 

Fig. 12.  Comparison of algorithm prediction performance graph (x axis: algorithm’s sample size of 1800; y 
axis: accuracy of the algorithm’s prediction results).
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ω(t) = (1 − BT

J
)ω(t − 1) + T

J
Te(k − 1) − T

J
Tl(k − 1) � (27)

By combining Eq. (12), the physical interpretations of each matrix in actual identification systems could be 
observed in Eq. (28).

	

S=
[
1−BT

J
,
T

J
,
T

J
Tl(k−1)

]T

φ(t) = [ω(t − 1)], Te(k − 1), −1]T

Q(t) = ω(t)

� (28)

Based on Eqs. (27) and (28), the branch weight vector S(k) of the actual system could be recursively derived, 
leading to the determination of the system moment of inertia J. Subsequently, a closed-loop PMSM control 
system was established, utilizing the integrated PMSM module in Matlab/Simulink, to evaluate the algorithm’s 
identification tracking performance with the specified torque J = 0.003kg · m2, as depicted in Fig. 13. The 
recursive least squares method with forgetting factors proposed in this study achieves error-free tracking within 
0.005 s, validating the algorithm’s precise identification capability.

Results of experimental verification
As shown in Fig. 14, the X-axis motion of the dual axis feed system is controlled by a programmable multi axis 
controller produced by Beckhoff Automation GmbH in Germany, which can be integrated with other EtherCAT 
devices. HIWIN’s screw and slide table are selected as the components of the motion pair, and a 0.005mm 
precision grating ruler is used as the position feedback element, forming a fully closed-loop control system 
for real-time communication. Encapsulate the hybrid driven digital twin model constructed in this chapter, 
import it into the industrial automation software TwinCAT PLC, and reserve input and output interfaces. Use 
the TwinCAT NC module to issue motion control commands to the feed axis, the console moves 100 mm, the 
input slope displacement signal is 1500 mm/min, and the initial moment of inertia of the permanent magnet 
synchronous motor is 0.0027 kg m2. The parameters of the permanent magnet synchronous motor are shown in 
Table 3 . The simulation of the mechanism model for the traditional three-loop PI control system was illustrated 
in Fig. 15a, showing a maximum error of 0.0857 mm. In contrast, the mechanism model tracking test for the 
fuzzy PI control system presented in this study, as depicted in Fig. 15b, exhibited a maximum error of 0.0576 mm. 
This system had the capability to autonomously adjust its PI control parameters in response to environmental 
variations. Compared to the conventional dual-loop PI control system, the maximum error had been decreased 
by 32.79%, which indicating superior simulation accuracy. The error compensation of the results is carried out by 
using WOA-CNN-LSTM-Attention, and the network structure parameters are shown in Table  4. The collected 
experimental displacement, experimental speed, and experimental acceleration were taken as input parameters, 
and the error between the output displacement of the mechanism model and the experimental displacement 

Fig. 13.  Test results of online parameter identification for rotational inertia (x axis: simulation time from 0 to 
0.01 seconds; y axis: moment of inertia).
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Fig. 15.  Schematic model simulation effect diagram. a Traditional PI control system (x axis: actual machine 
running time from 0 to 5 seconds; y axis: displacement error of the table of the feed system); b Fuzzy PI control 
system (x axis: actual machine running time from 0 to 5 seconds; y axis: displacement error of the table of the 
feed system).

 

Motor parameters Parameter value

Logarithm 1

Stator resistance/Ω 2.375

Inductance of d-q axis/H/Ω 0.0075

DC bus voltage/V 311

Table 3.  Motor parameter table. DC bus voltage: direct current bus voltage.

 

Fig. 14.  Feed system experimental platform.
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was taken as the output value, and the training set accounts for 80% of the dataset and was normalized, the 
specific operation process is as follows. Firstly, the input 3D vector extracts the data signal features through the 
convolutional layer, the convolution kernel is 16, and then the convoluted vector is input to the pooling layer, 
because the poolsize is 1, so the shape of the output vector remains unchanged. The vector enters the LSTM layer 
for calculation, using the Adam gradient descent algorithm, the maximum number of iterations is 100, the initial 
learning rate is 0.01, and the learning rate decline factor is 0.5, the attention layer is used to capture the important 
features of LSTM training, and the lower limit of the learning rate after 700 training times is set to 0.001 to avoid 
the learning rate from being too small and entering the local convergence. The WOA is used to find the optimal 
solution of the learning rate, the number of neurons, the regularization coefficient and other parameters of the 
CNN-LSTM model to improve the accuracy and efficiency of the algorithm, and the constraints are shown in Eq. 
(29), the maximum number of iterations is set to 20 times, the population size is 8, and the optimal parameter 
values are 0.001, 50 and 0.0001, respectively. The prediction performance of the trained algorithm is shown in 
the Fig. 16, R2 = 0.99927.

	

0.001 ≤ ε ≤ 0.01
50 ≤ L1 ≤ 100
0.0001 ≤ L2 ≤ 0.1

� (29)

Fig. 16.  Prediction Error (x axis: test set ample number; y axis: prediction error).

 

Parameter name Parameter value

Filters of convolutional layer of CNN 16

Filter Size of convolutional layer of CNN [10 10]

Padding of convolutional layer of CNN Same

Strides of convolutional layer of CNN [1 1]

Activation of convolutional layer of CNN [1 1] ReLu

Poolsize of pooling layer of CNN [1 1]

Strides of pooling layer of CNN [1 1]

Padding of pooling layer of CNN same

Units of LSTM 50

Dropout of LSTM 0.2

Activation of LSTM tanh

Optimizer of LSTM Adam, Learning Rate=0.01

Table 4.  Network structure parameter table.
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Figure 17 shows that the maximum error after compensation is 0.0121 mm, which is 78.99% lower than the 
maximum error of 0.0576 mm before compensation and 85.88% lower than that of traditional modeling 
methods. The simulation effect after compensation is shown in Fig. 18. Performance verification was conducted 
at 3000 rpm, as shown in the Fig. 19, and the maximum error decreased from 0.0726mm to 0.034mm, a decrease 
of 53.17%, indicating good performance. The results show that the method proposed in this paper can effectively 
fit the actual working conditions, and further improve the simulation accuracy of the machine tool feed system. 
In order to verify the identification and tracking capabilities of the feedforward control system model in complex 
environments, the permanent magnet synchronous motor is loaded with a load at 3 s, and the moment of inertia 
after the load is about 0.0081 kg m2. As can be seen from Fig. 20, the system realizes the moment of inertia 
following at about 0.01 s, and keeps the input value up and down the stable float, and its root mean square 
error RMSE = 5.7735e-06. The results show that the system still has good identification and tracking ability in 

Fig. 18.  Mechanism - Data model simulation diagram at 1500 rpm (x axis: actual machine running time from 
0 to 5 seconds; y axis: displacement error of the table of the feed system).

 

Fig. 17.  Error compensation diagram (x axis: actual machine running time from 0 to 5 seconds; y axis: 
displacement of the table of the feed system).
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the complex dynamic working environment, realizes the real-time dynamic monitoring of the motor state, and 
provides a reliable basis for the important decision-making and maintenance strategy of the feed system.

Discussion
In the study, a novel modeling approach for the feed system of numerical control machine tools was proposed, 
utilizing fuzzy control theory and deep learning concepts. Experimental validation confirmed the effectiveness 
and advantages of this approach, providing a new perspective on DT modeling and model refinement. The 
detailed findings are outlined below. (1) This study introduced a modeling approach for the feed system of a 

Fig. 20.  Identification effect diagram (x axis: actual machine running time from 0 to 0.3 seconds; y axis: 
moment of inertia).

 

Fig. 19.  Mechanism - Data model simulation diagram at 3000 rpm (x axis: actual machine running time from 
0 to 5 seconds; y axis: displacement error of the table of the feed system).
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CNC machine tool utilizing a fuzzy PI control system integrated with physical knowledge, which enables real-
time adaptive parameter updates. By conducting comparative validation experiments, it was demonstrated that 
the maximum discrepancy between this approach and actual operational outcomes was 0.0576 mm, representing 
a 32.79% reduction compared to conventional modeling techniques. Moreover, to further enhance simulation 
precision, an error compensation technique leveraging big data and the WOA-CNN-LSTM-Attention algorithm 
was proposed, resulting in a high-fidelity DT model powered by a hybrid of mechanism and data-driven models. 
Compared to actual operational outcomes, the maximum deviation was 0.0121 mm, indicating a 78.99% 
reduction from the mechanism model. Thus, the issue of low simulation accuracy in simplified mechanism 
models is effectively addressed. (2) This study presented an online parameter identification approach for the feed 
system of a CNC machine tool using the recursive least squares method with forgetting factors, which enables 
online identification tracking of the moment of inertia. Experimental validation showed that this approach can 
achieve rapid zero-error tracking in simple operating conditions within 0.005 s; in more complex scenarios, 
the method can still accomplish identification tracking in approximately 0.01 s, with an RMSE of 5.7735e-06. 
The digital twin model constructed in this study only considers the real-time update of the moment of inertia 
parameters of the electrical system during operation, and lacks the update of the parameters of other modules of 
the digital twin, such as mechanical system and control system. In the future, the idea of transfer learning will be 
combined with digital twins, so that multiple parameters of the digital twin model can be migrated and adjusted 
with the change of actual working conditions. And in this study has a long calculation time and low efficiency 
due to many adaptive optimization processes. In the future, we will study the surrogate model and response 
surface to realize the reduction of the model order and improve the calculation efficiency of the model, so as to 
realize the wide application of digital twin technology in practical applications.

Data availability
Data will be made available on request.

Code availability
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