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OPEN A method for constructing digital

twins of CNC machine tools
feed systems based on hybrid
mechanism-data

Ruiqi Zhao?, Hua Huang?** & Le Mei%?

Traditional CNC machine tool feed system models suffer from low simulation accuracy and limited
generalizability. These issues arise from simplified process replication and rigid optimization
methods based on mechanical knowledge. To address these challenges, this study proposes a new
hybrid mechanism data-driven digital twin (DT) modeling framework. Firstly, a nonlinear coupling
characterization method was developed by combining fuzzy proportional integral (PI) control with
mechanical system dynamics. This method achieves real-time adaptive parameter updating of the
feeding system, and compared with traditional models, the maximum error is reduced by 32.79%.
To further address the inherent simplification characteristics of the mechanism model, a WOA-CNN-
LSTM-Attention algorithm was independently constructed for compensation, and experimental
verification through physical machine operation confirmed that the maximum error was reduced
from 0.0576mm to 0.0121mm. Finally, an online recognition system with a recursive least squares
multiplication with a forgetting factor was used to achieve fast parameter convergence: tracking
for 0.005 seconds in simple cases and 0.01 seconds in complex cases, achieving real-time DT
synchronization. This study provides a systematic solution for building stable and efficient DT systems
in precision manufacturing applications.
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CNC machine tools with high-precision feed systems plays a crucial role in driving the advancement of
advanced equipment in industries such as electric power, aerospace and high-speed railways'. Kim? proposed
a comprehensive design method for ball screw drive servo mechanisms, which improved design quality by
mathematical modeling, nonlinear optimization, and multi-objective function optimization of dynamic
performance. Lee® established the control model of the machining center and the multi-body dynamic
mechanical model of the transmission system based on Simulink and ABAQUS, for the analysis of cutting forces
and surface quality in the milling process. Wang* established a second-order mathematical model of ball screw
considering viscous friction and transmission stiffness based on Matlab/Simulink. Wang® built multi-domain
models of CNC machine tools based on Modelica, providing a new approach to comprehensively improve the
high-speed, high-precision, and intelligent development of CNC machine tools. The above studies show that the
construction of high-precision feed systems through simulation techniques is effective, but the modeling process
itself involves simplification, so it cannot fully reflect the physical properties of the objects in question, which often
results in substantial discrepancies between simulation outputs and actual operational results, rendering them
insufficient for practical applications. To address fixed characteristic errors of mechanism models, scholars have
introduced DT simulation technology, which effectively merges mechanical expertise with big data analytics®.
Tao’ introduced a comprehensive five-dimensional model of DT alongside its top ten applications, emphasizing
the role of DT in forecasting failures and managing the health of complex electromechanical equipment. Sun®
developed a DT model specifically for cutting tools used in machining processes. Luo® presented a framework for
DT modeling and application tailored for CNC machine tools, successfully establishing a DT model to predict the
lifetime and maintenance strategies of ball screws on CNC milling machines. Cai'® exemplified the construction
of DT virtual machine tools within cyber-physical manufacturing through the development of a DT system for a
three-axis vertical milling machine. Finally, Tong!! proposed a real-time data processing application and service
based on intelligent CNC machine tool DT, enabling the evaluation and prediction of machine tools’ operational
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status.Huang'? proposed a DT simulation method for the CNC machine tool feed system based on the Long
Short-Term Memory(LSTM) algorithm, which effectively compensated for processing errors. According to the
literature above, it could be seen that the current DT simulation model based on traditional dual-loop PI control
theory and LSTM algorithm had low accuracy and poor adaptability to complex operating conditions. Therefore,
itis crucial to conduct research on efficient and reliable DT technology for machine tool feed control systems, to
achieve adaptive dynamic updates of model parameters following changes in environmental conditions, and to
further improve model simulation accuracy. In this study, a new method for DT modeling of the CNC machine
tool feed system based on a mechanism-data hybrid drive was proposed to address the shortcomings of the
traditional dual-loop PI control theory and the LSTM algorithm.

Methods

Digit twin model

The DT consisted of four main components: physical space, twin model space, data space, and data interaction
space, as illustrated in Fig. 1. Initially, a physical space was established, comprising components such as feed
systems, servo motors, sensor networks, and a DT space was formed by model-based mechanisms and data-
driven models. Subsequently, the physical data collected from controllers, encoders, and linear encoders was
processed through the data space and transmitted to the twin model space to predict the processing process of
physical entities. Finally, the predicted data were transferred to the data interaction space for online monitoring
and optimization control, ensuring the feed system to operate at its optimal state consistently. The process was
depicted in Eq. (1).

FSpr = (PFS,VFS,FSDTD,FSSS) (1)

In the equation: FSpr represented the DT framework of the feed system, PFS represented physical space, VES
represented digital model space, FSDTD represented data space, and FSSS represented data interaction space.

Construction of the mechanism control system model

The DT mechanism model was a highly interconnected, multi-parameter, nonlinear complex electromechanical
integrated system that consists of control subsystems, electrical subsystems, and mechanical subsystems. This
model serves as the foundation for visually mapping physical entities in a virtual space!?. In this study, a method
for obtaining mechanistic models using Matlab/ Simulink is proposed. Firstly, the internal components are
modularized and decomposed according to the structural function of each subsystem. Secondly, the physical
and energy flow relationships among modules were established through domain interface modules, enabling
integration between the control, electrical, and mechanical subsystems. Finally, through the incorporation of
pertinent parameters from the feeding system and the comparison of actual operational data with simulation
results, the dynamic characteristics of the DT mechanism model were verified.

Construction of fuzzy PI control subsystem
The mechanism model of the control subsystem of the dual-axis feed system mainly includes the PI control
module, coordinate transformation module and Space Vector Pulse Width Modulation(SVPWM) module.The

Digital Twin Framework
Twin model space
Mechanistic model Data-driven model
,‘- 3 1.Sensor data
£ " 2.CNC data
e 3\\ 1 |

1.Mec 1zjmu.a mlE(. AmSms 3.Servo data Tooti 1.Mechanical system 1.Whale optimization algorithm
2.Electrical equipment 2 Electrical system 2.CNN-LSTM

3.Controls 3.Control system 3.Self-attention I

Physical data o Simulation data I
&
I Control optimization
Data space Virtual and real interactive space
Correspondence Data processing Visualization Condition monitoring
o Dznfe S -+ =L
5 mapping | Lo T T
= = | |olfm| <51 el
. 1.0One-dimensional table I 1.Damping  2.Moment of inertia
Ethereum industrial network CNN feature extraction 2.Two-dimensional diagram Least squares algorithm
Feature extraction

Fig. 1. DT model framework. CNC Computerized Numerical Control, CNN convolutional neural networks,
LSTM long short-term memory.
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PI control module is essential for the precise control of the mechanical subsystem!4. However, the traditional P
control algorithm was based on an ideal model and lacks adaptability in nonlinear complex systems!. Hence,
A fuzzy PI control system for dual-axis feed system was proposed to address the poor robustness of traditional
PI control in dealing with nonlinear and complex systems!®. Figure 2 illustrated the selection of input speed
error E(t) and its differential EC(t) as input signals for PI controller tuning using an online tuning method.
Following the process of fuzzyfication, fuzzy reasoning, and defuzzification, the adjustment amounts AKp and
AKi for parameters Kp and Ki were determined. These adjustments were subsequently utilized to update the
parameters within the PI controller. The calculation of the relevant parameters was detailed in Egs. (2) and (3).

E(t)=N"-N (2)
EC(t)=E({t)—E(t—1) 3)

In the equations: N'represented the instruction speed; N represented the system simulation speed. The fuzzy
subsets of parameters E, EC, Kp, Ki and were {NB, NM, NS, ZO, PS, PM, PB}, with domains of {-10, 10}, {-10,
10}, {0.2, 0.8}, and {20, 60} respectively. The membership functions were represented as shown in Fig. 3. In terms
of input-output membership functions, this study formulates control rules by leveraging expert knowledge
and the specific traits of the controlled system, as illustrated in Table 1. Through the utilization of weighted
average defuzzification, a blend of “exact” and “fuzzy” elements was attained to dynamically fine-tune the output
variables Kp and Ki. The comparison between the fuzzy PI control system and the traditional PI control system
was conducted at a constant speed of 1000 rpm, as illustrated in Fig. 4. The traditional PI control system achieved
a tracking error of 0.064% at 0.0281 s, while the fuzzy PI control system achieved a tracking error of 0.060%
at 0.0136 s. The fuzzy PI control system demonstrated improvement of 51.6% in tracking time efficiency and
enhancement of 0.004% in accuracy compared to the traditional PI control system.

Construction of electrical subsystem

The mechanism model of the electrical sub-system of the dual-axis feed system depicted in Fig. 5 primarily
consists of the power supply, inverter, signal model to current model conversion module, line voltage modulation
module, and permanent magnet synchronous motor (PMSM) module. Key PMSM parameters, including
rotational inertia (J) and load torque (77), were derived from experimental data. The voltage balance equation of
the PMSM model in the d-q axis system was shown in Eq. (4).

. d
Uug = Rsiqg + Shd _ WePq

dt
d )
uq = Rsig + d—tq — WePd
The magnetic flux equation of permanent magnet was shown in Eq. (5).
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Tdx Wex0.0012 Fuzzy self-tuning system structure of online
controller parameters

Fig. 2. Three-loop fuzzy PI control system. PositionAct: Actual displacement; PI:proportional integral; N,
actual speed of the motor; I4: d-axis current after the Park transformation; I,: q-axis current after the Park
transformation; we: actual angular velocity of the motor;Uy: d-axis voltage after the Park transformation; Uy:
q-axis voltage after the Park transformation; pluse: Pulse modulated signal.
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Fig. 3. Fuzzy control parameter membership function diagram. a Relevance Function of E (x axis: the

fuzzy subsets of parameters E is {NB, NM, NS, ZO, PS, PM, PB}, with domains of {-10, 10}; y axis: degree

of membership). b Relevance Function of EC (x axis: the fuzzy subsets of parameters EC is {NB, NM, NS,
Z0, PS, PM, PB}, with domains of {-10, 10}; y axis: degree of membership). ¢ Relevance Function of Kp (x
axis: the fuzzy subsets of parameters Kp is {NB, NM, NS, ZO, PS, PM, PB}, with domains of {0.2, 0.8}; y axis:
degree of membership). d Relevance Function of Ki (x axis: the fuzzy subsets of parameters Ki is {NB, NM,
NS, ZO, PS, PM, PB}, with domains of {20, 60}; y axis: degree of membership). NB negative big, NM negative
medium, NS negative small, ZO Zero, PS positive small, PM positive medium, PB positive big, E speed error,
EC acceleration error.

©d = Lata + @y 5)
®q = Lqiq
In the equation: 44, ¢, Ud, Uq> La, Lq, pa, g represented d-q axis current, voltage, inductance, magnetic flux
respectively; Rs was the stator resistance of the motor, w. was the angular velocity of the motor, and w; was
the permanent magnet flux. The torque equation of PMSM in the d-q coordinate system was shown in Eq. (6).

3 . ..
T. = Ep[ﬁpfzq + (Ld - Lq)zdlq] (6)

In the equation: 7. represented electromagnetic torque, and p represented the number of motor poles. The
mechanical motion equations of PMSM are shown in Egs. (7) and (8).

Te=n+J‘;—°;+Bw %
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Table 1. Output parameter fuzzy rule table. NB negative big, NM negative medium, NS negative small, ZO
Zero, PS positive small, PM positive medium, PB positive big, E speed error, EC acceleration error, EC": fuzzy
rule table of Kp, EC?: fuzzy rule table of Ki.
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_,
dt —

(8)

In the equations: B represented the damping coeflicient, w represented the rotor mechanical angular velocity, and
0 represented the rotor mechanical angle. In the context of the SVPWM algorithm, which produced a saddle-
shaped waveform as its output signal, and the conventional PMSM model being controlled by a sinusoidal signal.
Therefore, the SVPWM algorithm cannot be introduced directly into the model, and the line voltage signal must
be used to drive the model'®. The internal coordinate transformation equation of the PMSM model at this stage
was depicted in Eq. (9).

B

Uq
Uq

cos 0
—sinf /3cosb

V3sin 6

—sin6

cos 0

Ik

a
b
c

The corresponding current vector inverse transformation matrix was shown in Eq. (10).

3]s

Construction of the mechanical system
The mechanical transmission system demonstrates intricate dynamic characteristics, influenced by factors such
as inertia, stiffness, damping, and friction. The equivalent dynamic model was illustrated in Fig. 6, where the
angular displacement of the motor was denoted as 6, (¢). The rotational inertia of the motor shaft and the
lead screw were represented by J,, and Js, respectively. The rotational stiffness were denoted by K, and K
respectively, while the damping was represented by C,, and Cs, respectively. Furthermore, the mass of the
table was M, the stiffness coefficient of the worktable was Ky, the movement damping was Cyy, and the angular
displacement of the lead screw was denoted as 6, (¢). This study converting the variables equivalent Jy,, Js, Cm,
Cs, Cy, Ka, Ks and K to the motor, as illustrated in the calculation equation in Eq. (11).

cosf —sin 6
cos(f — 120°)
cos(6 + 120°)

—sin(6 — 120°)
— sin(0 + 120°)

= e ()
m S 27T
L2
C_C’m-i-Cs-i-(%)Cg
KZLJFLL 1
Ka T Ko T (£)°K,

]

)

(10)

(11)

In the equations: L represented the lead of the screw. The balance equation of the mechanical transmission
subsystem could be expressed equivalently as Eq. (12).

JO,(t) 4+ CO,(t) + K[0y(t)—0m (t)] =0

(12)

By utilizing Solidworks for modeling essential components, including screws, couplings, and guide rails, the
physical constraints and assembly relationships of the components were mapped using XML and STEP format
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Fig. 6. Simplified dynamic model of mechanical subsystem. ] : rotational inertia of the motor shaft; J :

rotational inertia of the lead screw; K rotational stiffness of the motor shaft; K. rotational stiffness of the lead
screw; Cm: damping of the motor shaft; CS: damping of the lead screw; K : stiffness coefficient of the worktable;
C : moving damping of the worktable; 6., (¢): angular displacement of the motor; 6, (¢): angular displacement

ofg the lead screw.
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Fig. 7. Virtual model of the mechanical subsystem of the feed system.
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Fig. 8. Comparison diagram of fuzzy PI control and traditional PI control. a Traditional PI control (x axis:
simulation time from 0 to 5 seconds; y axis: displacement of the table of the feed system); b Fuzzy PI control (x
axis: simulation time from 0 to 5 seconds; y axis: displacement of the table of the feed system.

files, followed by importing the files into MATLAB/Simulink to generate a virtual model of the mechanical
subsystem of the feed system, as illustrated in Fig. 7. A sinusoidal signal was fed and the constructed mechanism
model was compared to the mechanism model under traditional PI control, as shown in Fig. 8. In the traditional
PI control system, a drift phenomenon was observed at 3.5 s, which fails to accurately map the input signal.
In contrast, the fuzzy PI control system could dynamically adjust the PI parameters through the fuzzy system,
achieving precise mapping of the input signal. This study confirmed the effectiveness and robustness of the
proposed mechanism model construction method in this study.

Construction diagram of data-driven model for numerical control machine tool based on
WOA-CNN-LSTM-Attention

Although the digital twin mechanism model of the feed system can visualize the geometric features, spatial
positions, and overall control methods of physical entities, mechanism based models have significant limitations.
On the one hand, due to the difficulty in obtaining detailed parameters of the equipment, the overall modeling
of the equipment is simplified; On the other hand, the impact of various working conditions and environmental
factors on the results of the feed system is difficult to characterize using a mechanistic model, which inevitably
leads to residuals between the predicted results of the mechanistic model and the actual results, greatly reducing
the simulation accuracy of the digital twin model'”. To improve the prediction reliability of DT models, this study
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proposed a data-driven prediction model based on the deep fusion of convolutional neural networks(CNN),
attention mechanism(Attention), whale optimization algorithm(WOA) and LSTM, as shown in Fig. 9. Firstly,
based on the characteristics that CNN excelled at extracting features from collected experimental data and
LSTM could better learn from time series data, a CNN-LSTM prediction model is established. Secondly, the
WOA was introduced to optimize the hidden layer neuron quantity, learning rate, and iteration times to obtain
the optimal parameters. Finally, the deep learning algorithm attention mechanism was coupled to highlight the
impact of features on input effects, further improving the model’s prediction accuracy and computer efficiency.
The proposed model was validated through experiments on a real feed system, and the results demonstrate its
superior prediction performance compared to traditional models. This research provided a new approach for
enhancing the prediction reliability of DT models in complex mechanical systems. The CNN primarily consisted
of a sequence of convolutional layers and pooling layers'®. In this study, a max-pooling CNN was employed to
integrate signal features including actual speed, actual acceleration, and actual workbench position, thereby
maximizing the activation of data features. The mathematical formulations for convolutional layers and pooling
layers were presented in Eqs. (13) and (14) correspondingly.

L—-1

O() =Y X(I+a)x W (a)+b (13)
a=0
Y (4) = rjneég(X (z x I’ +j) (14)

In the equations, O(l) represented the output of the convolutional layer; X(I) represented the value of the input
sequence; W(a) represented the weight of the convolutional kernel; L represented the size of the convolutional
kernel; I represented the time position; b represented the bias term. Y(i) represented the output of the pooling
layer ; i represented the output position; R represented the set of position indexes in the pooling window; I’
represented the pooling stride. The LSTM model outperforms the traditional Recurrent Neural Network (RNN)
when it came to managing and forecasting time series data'®. This was due to its superior ability to handle
long-term dependencies and gradient problems. The internal computational process of LSTM was detailed in
Equations (15) to (20).

fi =0 (Wxe X 21 + Whe X hi—1 + by) (15)
¢ = tanh (Wxe X 21 + Whe X hi—1 + be) (16)
it =0 (Wxi X & + Wi X hi—1 + b;) (17)
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Fig. 9. Algorithm structure diagram. LSTM long short-term memory, WOA whale optimization algorithm,
CNN convolutional neural networks.
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a=fiXc_1+iuXg (18)
01 =0 (Wxo X 1 + Who X hi—1 + bo) (19)
h; = oy X tanh (¢;) (20)

In the equations: f1, ¢; and o; respectively represented the forget gate, input gate, and output gate of the LSTM
unit, controlling the discard, memory, and output of information within the control unit; ¢; represented the
carrier of the long-term memory; h; represented the output of the short-term memory unit at time step [,
also serving as the carrier of short-term memory; (Wi Wiys], [Wai Whil, [Wao Who| and [Wae Whe]
respectively represented the weights of the forget gate, input gate, output gate, and candidate memory state; by,
bi, bo and b, respectively represented the bias terms of the forget gate, input gate, output gate, and candidate
memory state. Inappropriate selection of the learning rate, number of neurons, and regularization coefficient of
the CNN-LSTM model could result in increased modeling errors®. To address this issue, this study employed the
WOA to fine-tune these three key parameters of the CNN-LSTM model and obtain the optimal values, thereby
enhancing modeling accuracy. WOA, a novel swarm intelligence algorithm inspired by the predatory behavior
of whales, utilized shrinking surrounds, random walks, and spiral ways for optimization. Compared with genetic
algorithm and particle swarm optimization algorithm, WOA has fewer setting parameters, but stronger global
and local optimization capabilities®!. In order to verify the advantages of WOA over other intelligent optimization
algorithms for LSTM algorithm, a set of wind speed change data within the same period in a certain region
was used to optimize the learning rate, number of neurons, and regularization coefficient of LSTM algorithm
using Genetic Algorithm(GA), Particle Swarm Optimization(PSO), Grey Wolf Optimizer(GWO), and WOA
under the same constraints. The comparison of optimized LSTM algorithms is shown in the Fig. 10, and the
results show that WOA has the best performance with R? = 0.96959, and PSO has the worst performance with
R? = 0.89709. The optimization process was mathematically represented in Equations (21) to (24).

Z*(n) — Ax|Dx Z*(n) — Z(n)|q¢ < 0.5

Z(n+1) :{ |Z* (n) — Z (n)| x ¥ x cos (2my) + Z* (n)q > 0.5 1)
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Fig. 10. Comparison of Algorithm Performance. LSTM long short-term memory, GA genetic algorithm, PSO:
particle swarm optimization, GWO grey wolf optimizer, WOA whale optimization algorithm.
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A=2xmxr—m (22)

D=2xr (23)
=2-2x

m nnlax (24)

In the equations: n represented the current iteration number; Z(n)represented the position vector; Z*(n)
represented the best position vector; A and D respectively represented control parameter vectors; -y is any number
in interval [-2 — 1]; r represented any vector between 0 and 1; m represented the convergence factor; nmaq
represented the maximum number of iterations; g represented a random number in interval [0 1], seeking the
global optimal solution through random walking while |A| > 1 and seeking the local optimal solution through
contraction and surroundinghen while | A| < 1. The training of this model should take into consideration the
channel information, as neglecting it may lead to uneven resource distribution and a decrease in resolution
effect??. To address this issue, this study incorporates an attention mechanism that assigns different weight
coeflicients to each temporal feature of the CNN-LSTM model according to its importance, which ensured that
crucial features were preserved even with an increased sequence length, ultimately enhancing the resolution
accuracy?. The implementation steps of the model developed in this research were illustrated in Fig. 11. The
algorithm developed in this study, WOA-CNN-LSTM-Attention, was illustrated in Fig. 12. It demonstrated
superior precision in early-stage tracking when compared to the LSTM algorithm, resulting in smoother and
more accurate overall predictions. Table 2 presented a detailed performance comparison, showing that the
WOA-CNN-LSTM-Attention algorithm outperforms the LSTM algorithm by reducing the Mean Absolute Error
(MAE) by 3.10%, the Mean Absolute Percentage Error (MAPE) by 52.95%, and the Root Mean Square Error
(RMSE) by 32.21%.

Online parameter identification of numerical control machine tool model based on recursive
least squares method with forgetting factors

It is one of the key technologies of DT to obtain important parameter information in real time and align it
with the response of the physical system to help the control algorithm adjust the motor control strategy in
time?!. With the increase of real-time information, the traditional recursive least squares algorithm is prone
to data saturation?®. Therefore, this paper proposes an online recognition strategy for DT model based on the
recursive least squares method based on the forgetting factor, and uses the mechanical characteristic parameters
of moment of inertia as the system identification parameters. According to the principle of least squares, the
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Fig. 12. Comparison of algorithm prediction performance graph (x axis: algorithm’s sample size of 1800; y
axis: accuracy of the algorithm’s prediction results).

Performance indicators
Algorithm name MAE | MAPE | RMSE
LSTM 0.0226 | 0.1728 | 0.0444
WOA-CNN-LSTM-Attetion | 0.0219 | 0.0813 | 0.0301

Table 2. Comparison table of algorithm performance indicators. MAE mean absolute error, MAPE mean
absolute percentage error, RMSE root mean square error, LSTM long short-term memory, WOA whale
optimization algorithm, CNN convolutional neural networks.

iteration equation of the recursive least squares method with forgetting factors could be derived, as shown in
Equation (25).

ATk De®)
O = T k- Do )
ER=Q) & (k—1uk) (25)

S(k) =8 (k—1)+C(k)E (k)
Y(k) =AY (k—1) =X (k)" (K)v(k—1)

In the equation, ¢ (k) represented the branch input vector; Q(k)represented the output vector; &(k) represented
the error; ¢ (k)represented the covariance matrix; ¢(k) represented the gain matrix; S (k) represented the least

squares estimate ; A represented the forgetting factor, choosing a suitable forgetting factor in the interval [0.9 1]
based on convergence speed and disturbance resistance can avoid data saturation. In order to accurately identify
the moment of inertia of the permanent magnet synchronous motor, it is necessary to derive the mechanical
motion equation of the permanent magnet synchronous motor, which is shown in Eq. (7). To accurately
determine the moment of inertia of a permanent magnet synchronous motor, it is necessary to derive the
mechanical motion equation of the permanent magnet synchronous motor. The equations of mechanical motion
(7) for a permanent magnet synchronous motor could be expressed as Egs. (26) and (27).
dw wt)—w(t—-1) w(t)—w(t—1)

- - (26)
dt At T
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w(t) = (1 — B—JT)w(t 1)+ %Te(k —1y- %Tl(k —) (27)

By combining Eq. (12), the physical interpretations of each matrix in actual identification systems could be
observed in Eq. (28).

5— [k%,%,%n(kq)
(1) = [w(t — ], Tk — 1), ~1]" (28)
Q) = w(t)

Based on Egs. (27) and (28), the branch weight vector S(k) of the actual system could be recursively derived,
leading to the determination of the system moment of inertia J. Subsequently, a closed-loop PMSM control
system was established, utilizing the integrated PMSM module in Matlab/Simulink, to evaluate the algorithm’s
identification tracking performance with the specified torque J = 0.003kg - m?, as depicted in Fig. 13. The
recursive least squares method with forgetting factors proposed in this study achieves error-free tracking within
0.005 s, validating the algorithm’s precise identification capability.

Results of experimental verification

As shown in Fig. 14, the X-axis motion of the dual axis feed system is controlled by a programmable multi axis
controller produced by Beckhoff Automation GmbH in Germany, which can be integrated with other EtherCAT
devices. HIWIN’s screw and slide table are selected as the components of the motion pair, and a 0.005mm
precision grating ruler is used as the position feedback element, forming a fully closed-loop control system
for real-time communication. Encapsulate the hybrid driven digital twin model constructed in this chapter,
import it into the industrial automation software TwinCAT PLC, and reserve input and output interfaces. Use
the TwinCAT NC module to issue motion control commands to the feed axis, the console moves 100 mm, the
input slope displacement signal is 1500 mm/min, and the initial moment of inertia of the permanent magnet
synchronous motor is 0.0027 kg m?. The parameters of the permanent magnet synchronous motor are shown in
Table 3 . The simulation of the mechanism model for the traditional three-loop PI control system was illustrated
in Fig. 15a, showing a maximum error of 0.0857 mm. In contrast, the mechanism model tracking test for the
fuzzy PI control system presented in this study, as depicted in Fig. 15b, exhibited a maximum error of 0.0576 mm.
This system had the capability to autonomously adjust its PI control parameters in response to environmental
variations. Compared to the conventional dual-loop PI control system, the maximum error had been decreased
by 32.79%, which indicating superior simulation accuracy. The error compensation of the results is carried out by
using WOA-CNN-LSTM-Attention, and the network structure parameters are shown in Table 4. The collected
experimental displacement, experimental speed, and experimental acceleration were taken as input parameters,
and the error between the output displacement of the mechanism model and the experimental displacement

x10
Least Squares identification
— — —Initial moment of inertia
3 _________
25
~
E 2f
£
=X
-
1.5
1
1 1 1 1 1 1 1 1 1 J

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
t/s

Fig. 13. Test results of online parameter identification for rotational inertia (x axis: simulation time from 0 to
0.01 seconds; y axis: moment of inertia).
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Fig. 14. Feed system experimental platform.

Motor parameters Parameter value
Logarithm 1
Stator resistance/$2 2.375

Inductance of d-q axis/H/2 | 0.0075
DC bus voltage/V 311

Table 3. Motor parameter table. DC bus voltage: direct current bus voltage.
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(a) Traditional PI Control System (b) Fuzzy PI Control System

Fig. 15. Schematic model simulation effect diagram. a Traditional PI control system (x axis: actual machine
running time from 0 to 5 seconds; y axis: displacement error of the table of the feed system); b Fuzzy PI control
system (x axis: actual machine running time from 0 to 5 seconds; y axis: displacement error of the table of the
feed system).
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Parameter name Parameter value
Filters of convolutional layer of CNN 16

Filter Size of convolutional layer of CNN [10 10]
Padding of convolutional layer of CNN Same

Strides of convolutional layer of CNN 1 1]

Activation of convolutional layer of CNN [1 1] | ReLu

Poolsize of pooling layer of CNN 1 1]

Strides of pooling layer of CNN 1 1]

Padding of pooling layer of CNN same

Units of LSTM 50

Dropout of LSTM 0.2

Activation of LSTM tanh

Optimizer of LSTM Adam, Learning Rate=0.01

Table 4. Network structure parameter table.
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Fig. 16. Prediction Error (x axis: test set ample number; y axis: prediction error).

was taken as the output value, and the training set accounts for 80% of the dataset and was normalized, the
specific operation process is as follows. Firstly, the input 3D vector extracts the data signal features through the
convolutional layer, the convolution kernel is 16, and then the convoluted vector is input to the pooling layer,
because the poolsize is 1, so the shape of the output vector remains unchanged. The vector enters the LSTM layer
for calculation, using the Adam gradient descent algorithm, the maximum number of iterations is 100, the initial
learning rate is 0.01, and the learning rate decline factor is 0.5, the attention layer is used to capture the important
features of LSTM training, and the lower limit of the learning rate after 700 training times is set to 0.001 to avoid
the learning rate from being too small and entering the local convergence. The WOA is used to find the optimal
solution of the learning rate, the number of neurons, the regularization coefficient and other parameters of the
CNN-LSTM model to improve the accuracy and efficiency of the algorithm, and the constraints are shown in Eq.
(29), the maximum number of iterations is set to 20 times, the population size is 8, and the optimal parameter
values are 0.001, 50 and 0.0001, respectively. The prediction performance of the trained algorithm is shown in
the Fig. 16, R*> = 0.99927.

0.001 < £ < 0.01
50 < L <100 (29)
0.0001 < Ly < 0.1
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Fig. 17. Error compensation diagram (x axis: actual machine running time from 0 to 5 seconds; y axis:
displacement of the table of the feed system).
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Fig. 18. Mechanism - Data model simulation diagram at 1500 rpm (x axis: actual machine running time from
0 to 5 seconds; y axis: displacement error of the table of the feed system).

Figure 17 shows that the maximum error after compensation is 0.0121 mm, which is 78.99% lower than the
maximum error of 0.0576 mm before compensation and 85.88% lower than that of traditional modeling
methods. The simulation effect after compensation is shown in Fig. 18. Performance verification was conducted
at 3000 rpm, as shown in the Fig. 19, and the maximum error decreased from 0.0726mm to 0.034mm, a decrease
of 53.17%, indicating good performance. The results show that the method proposed in this paper can effectively
fit the actual working conditions, and further improve the simulation accuracy of the machine tool feed system.
In order to verify the identification and tracking capabilities of the feedforward control system model in complex
environments, the permanent magnet synchronous motor is loaded with aload at 3 s, and the moment of inertia
after the load is about 0.0081 kg m?. As can be seen from Fig. 20, the system realizes the moment of inertia
following at about 0.01 s, and keeps the input value up and down the stable float, and its root mean square
error RMSE = 5.7735e-06. The results show that the system still has good identification and tracking ability in
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Fig. 19. Mechanism - Data model simulation diagram at 3000 rpm (x axis: actual machine running time from
0 to 5 seconds; y axis: displacement error of the table of the feed system).

0.012
Initial moment of inertia
0.01 — — —Least squares identification
1
| b ‘ | ’
0.008 i “ 'i
A - [ | U
N
N i I T TR
-] X | .
: | A
300.006 i ot 1y
5 i L,‘; ‘,"‘-,'\'?«1“. i
| ' SR
0.004 |
|
A A i 4 -" A4 Ao
,‘{'“P‘ (L O | -"”‘".1' Y
0.002 i
0 1 1 1 1 1 ]
0.05 0.1 0.15 0.2 0.25 0.3
t/s

Fig. 20. Identification effect diagram (x axis: actual machine running time from 0 to 0.3 seconds; y axis:
moment of inertia).

the complex dynamic working environment, realizes the real-time dynamic monitoring of the motor state, and
provides a reliable basis for the important decision-making and maintenance strategy of the feed system.

Discussion

In the study, a novel modeling approach for the feed system of numerical control machine tools was proposed,
utilizing fuzzy control theory and deep learning concepts. Experimental validation confirmed the effectiveness
and advantages of this approach, providing a new perspective on DT modeling and model refinement. The
detailed findings are outlined below. (1) This study introduced a modeling approach for the feed system of a
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CNC machine tool utilizing a fuzzy PI control system integrated with physical knowledge, which enables real-
time adaptive parameter updates. By conducting comparative validation experiments, it was demonstrated that
the maximum discrepancy between this approach and actual operational outcomes was 0.0576 mm, representing
a 32.79% reduction compared to conventional modeling techniques. Moreover, to further enhance simulation
precision, an error compensation technique leveraging big data and the WOA-CNN-LSTM-Attention algorithm
was proposed, resulting in a high-fidelity DT model powered by a hybrid of mechanism and data-driven models.
Compared to actual operational outcomes, the maximum deviation was 0.0121 mm, indicating a 78.99%
reduction from the mechanism model. Thus, the issue of low simulation accuracy in simplified mechanism
models is effectively addressed. (2) This study presented an online parameter identification approach for the feed
system of a CNC machine tool using the recursive least squares method with forgetting factors, which enables
online identification tracking of the moment of inertia. Experimental validation showed that this approach can
achieve rapid zero-error tracking in simple operating conditions within 0.005 s; in more complex scenarios,
the method can still accomplish identification tracking in approximately 0.01 s, with an RMSE of 5.7735e-06.
The digital twin model constructed in this study only considers the real-time update of the moment of inertia
parameters of the electrical system during operation, and lacks the update of the parameters of other modules of
the digital twin, such as mechanical system and control system. In the future, the idea of transfer learning will be
combined with digital twins, so that multiple parameters of the digital twin model can be migrated and adjusted
with the change of actual working conditions. And in this study has a long calculation time and low efficiency
due to many adaptive optimization processes. In the future, we will study the surrogate model and response
surface to realize the reduction of the model order and improve the calculation efficiency of the model, so as to
realize the wide application of digital twin technology in practical applications.
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