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Interpatient tumor heterogeneity manifests as multimodal distributions across genomic, 
transcriptomic, and microenvironmental profiles. This fundamentally violates the unimodal 
assumption of conventional machine learning models, impairing immune checkpoint blockade (ICB) 
response prediction. To resolve this limitation, we propose a heterogeneity-optimized framework 
that applies K-means clustering to stratify patients into biologically distinct hot-tumor and cold-
tumor subgroups, demonstrating superiority over hierarchical/DBSCAN clustering. Subsequently, 
heterogeneity-optimized predictive models–a support vector machine for hot-tumor subtypes and 
a random forest for cold-tumor subtypes–were developed utilizing seven heterogeneity-associated 
biomarkers to circumvent unimodal constraints. The proposed model significantly enhances ICB 
response prediction in melanoma, NSCLC, other cancer types, and pan-cancer datasets, achieving 
a mean accuracy gain of at least 1.24% compared to 11 baseline methods. This performance 
improvement was consistently validated in an independent external cohort. Furthermore, the 
approach enables biologically interpretable precision immunotherapy by explicitly modeling 
multimodal heterogeneity.
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Cancer immunotherapy harnesses the patient’s own immune system to recognize and eliminate cancer cells1. 
Immune checkpoint blockade(ICB) is a cancer immunotherapy that activates the immune system and enhances 
anti-tumor immune response by blocking immune checkpoint molecules, becoming one of the most effective 
types of cancer immunotherapy2. Inhibitors targeting checkpoint molecules such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), programmed cell death 1 receptor (PD-1), and programmed cell death ligand 1 
(PD-L1) have proven highly effective in improving survival rates for patients with advanced cancers, including 
melanoma and non-small cell lung cancer (NSCLC)3. Despite these successes, a substantial proportion of 
patients exhibit limited or no clinical benefit due to marked interpatient heterogeneity in treatment responses4–6. 
Consequently, the accurate prediction of patient responsiveness to ICB therapy has emerged as a critical 
challenge in contemporary biomedical research, driving significant efforts in the fields of cancer immunology, 
bioinformatics, and artificial intelligence.

From a biological perspective, ICB response is influenced by a combination of features6–11. Changes in 
blood neutrophil-to-lymphocyte ratio and eosinophile levels have been shown to correlate with the response to 
immune checkpoint blockade therapy6,12. Additionally, patients with malignant tumors of different ages exhibit 
varying levels of drug tolerance, which in turn affects their ICB response7. Microsatellite instability (MSI) states 
are also associated with higher ICB response rates and serve as both prognostic and predictive markers8. The 
combination of MSI status, age, and drug type collectively impacts treatment outcomes9. Furthermore, previous 
studies have indicated that PD-L1 expression is linked to microsatellite instability, C-reactive protein levels, 
and the blood neutrophil-to-lymphocyte ratio, all of which can influence ICB response in colorectal cancer 
patients13,14. Therefore, leveraging these biological features to predict ICB response in cancer patients remains a 
significant challenge.

Statistical machine learning methods have been successfully applied to predict ICB response in cancer 
patients15–18. For example, Anagnostou et al. proposed a comprehensive multivariate model that integrates 
features such as corrected tumor mutation burden (TMB), activated receptor tyrosine kinases in the tumor, 
smoking-related mutational signatures, and human leukocyte antigen status, to predict ICB response in cancer 
patients15. Wang et al. constructed a regulatory network of 11 immune cell clusters in metastatic melanoma by 
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integrating biological pathway data and single-cell sequence data, using a logistic regression model of ligands and 
receptors within the network to predict ICB response16. Andrei S. Robin et al. developed a novel computational 
pipeline based on comparative Bayesian network analyses of immune networks, which detected strong signals 
that conventional methods might overlook17. Chowell et al. created a random forest classifier (RF16), which 
integrates 16 input features related to immunotherapy efficacy, improving the prediction of ICB response across 
various cancer types18.

Although previous studies15–18 have made significant strides in applying statistical and machine learning 
methods for predicting response to immune checkpoint blockade, they failed to account for the inherent 
heterogeneity characteristic of cancer data. In fact, patients with histologically identical cancer types frequently 
exhibit pronounced heterogeneity in tumor molecular profiles, encompassing genomic alterations, transcriptomic 
signatures, and immune microenvironment features. This interpatient heterogeneity substantially complicates 
treatment outcomes and poses significant challenges for predicting responses to immune checkpoint blockade. 
Tumor heterogeneity manifests its most prominent signature through multimodal distributions in cancer 
data–a characteristic that fundamentally violates the single-distribution assumption underpinning conventional 
machine learning frameworks. This paper proposed a novel heterogeneity-optimized machine learning 
framework designed to directly address the above challenge. The key advantages and contributions of our 
proposed framework are:

•	 Heterogeneity-aware Clustering: Two latent patient subgroups were robustly identified through the applica-
tion of K-means clustering to multimodal tumor data. These subgroups exhibited distinct tumor microen-
vironment (TME) profiles, corresponding to the established hot-tumor and cold-tumor phenotypes based 
on their significantly differential features. Furthermore, comparative analyses demonstrated the statistically 
significant superiority of the two-cluster K-means configuration over alternative K-means variants (K>2), 
hierarchical clustering (HC), and density-based spatial clustering of applications with noise (DBSCAN).

•	 Heterogeneity-optimized Predictive Modeling:Seven key clinical and molecular features exhibiting signifi-
cant associations with tumor heterogeneity were systematically identified. Based on these biomarkers, a sup-
port vector machine (SVM) model was specifically developed for the inflammatory hot-tumor subtype, while 
a random forest (RF) classifier was concurrently constructed for the immune-desert cold-tumor subtype. This 
dual-model framework fundamentally circumvents the limitations imposed by unimodal data distribution 
assumptions pervasive in conventional methodologies.

•	 Enhanced ICB Response Prediction:Substantially improved immune checkpoint blockade (ICB) response 
prediction was demonstrated across four distinct cancer cohorts: melanoma, non-small cell lung cancer (NS-
CLC), other cancer, and pan-cancer datasets. The proposed framework exhibited statistically significant su-
periority over eleven established baseline methods–including random forest (RF), support vector machines 
(SVM), and logistic regression–achieving average improvements of 1.24% in accuracy. Furthermore, consist-
ent performance enhancement was validated in independent external validation cohorts.

Materials and methods
Data description
This study leverages a pan-cancer cohort of 1,479 ICB-treated patients (Chowell et al.18) spanning 16 cancer 
types. All patients received PD-1/PD-L1 inhibitors, CTLA-4 blockers, or combination therapy, with tumor 
profiling conducted via FDA-approved MSK-IMPACT sequencing19. Using RECIST v1.1 criteria20, we 
categorized patients as responders (complete/partial response; n=409) or non-responders (stable/progressive 
disease; n=1,070). For cancer-type-specific analysis, the cohort was stratified into melanoma, NSCLC, and other 
cancers. Each subtype cohort underwent stratified random partitioning,Consistent with Chowell et al: 80% for 
training and 20% for testing. Patient feature vectors xi ∈ R19 derived from molecular profiles were paired with 
binary response labels yi ∈ {0, 1} (1: responder, 0: non-responder). External validation was performed using an 
independent metastatic melanoma patient cohort.(Liu et al. Nat Med21). This dataset provided complementary 
genomic, transcriptomic, and clinical profiles for robust verification of pan-cancer findings.

Data processing
To ensure model input consistency and maximize biological interpretability, we implemented a standardized 
preprocessing pipeline across all cohorts using feature type-specific strategies. Dichotomous features (e.g., 
sex, prior chemotherapy status) were directly encoded as 0 or 1, while ordinal variables (e.g., disease stage, 
ECOG score) were assigned integer values preserving their inherent prognostic hierarchy. Nominal categorical 
variables (e.g., cancer type, drug class) underwent one-hot encoding with the first category omitted to avoid 
multicollinearity. Continuous features were processed sequentially: highly skewed variables (TMB, FCNA, MSI 
score) received a variance-stabilizing log10(x + 1) transformation, and all continuous measures (including 
transformed variables, age, BMI, NLR) were standardized to zero mean and unit variance (z-scoring) within 
respective training cohorts to prevent data leakage. For the independent melanoma validation cohort, identical 
preprocessing was applied to overlapping features; non-overlapping features were systematically excluded 
without imputation to preclude bias from artificial data.

Heterogeneity test
Despite significant advances in statistical and machine learning approaches for predicting immune checkpoint 
blockade (ICB) response15–18, existing models often adopt monolithic frameworks that assume uniform 
biological mechanisms across cancer types–thereby neglecting intrinsic inter-tumoral heterogeneity. This 
oversimplification represents a critical limitation, particularly in pan-cancer settings, where divergent tumor 
immunobiology may fundamentally constrain the generalizability of single predictive models. To address this 
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gap, we hypothesized that cancer-type-specific and patient-level biological heterogeneity underlies differential 
ICB responsiveness, necessitating a stratification-aware modeling paradigm. To systematically evaluate this 
hypothesis, we first performed univariate statistical analyses across key clinical and molecular features, comparing 
responders (R) and non-responders (NR). Continuous variables were assessed using the Mann–Whitney U test, 
and categorical variables using Fisher’s exact test (Fig. 1). As expected, established biomarkers such as tumor 
mutational burden and neutrophil-to-lymphocyte ratio showed significant associations with response. However, 
a notable subset of patients with high TMB failed to respond to ICB, contradicting canonical expectations and 
suggesting the presence of confounding biological factors that modulate the TMB–response relationship. This 
observation prompted a deeper investigation into the distributional properties of these biomarkers. Using 
multimodal distribution analysis, we uncovered latent patient stratification patterns indicative of distinct 
immunological endotypes. Specifically, TMB exhibited bimodal distribution, with modes at 6.8 and 15.2 
mutations per megabase. Similarly, body mass index (BMI) displayed dual peaks at 24.3 and 31.7 kg/m2–values 
aligning with normal weight and obesity thresholds, respectively. These non-Gaussian, multimodal distributions 
provide statistical evidence of population heterogeneity, implying that patients may segregate into biologically 
distinct subgroups that are obscured under conventional, aggregate modeling approaches.The presence of such 
latent structure suggests that a one-size-fits-all model is inherently limited in capturing the complexity of ICB 
response determinants.

Heterogeneity-aware clustering
This study proposes a heterogeneity-aware analytical framework to address the limitations of single predictive 
models in forecasting therapeutic response to immune checkpoint blockade. By integrating multimodal 
distribution analysis with unsupervised clustering, we identify biologically distinct patient subgroups and quantify 
the mechanistic underpinnings of their differential response patterns. To dissect latent patient stratification, we 
applied K-means clustering within a standardized feature space constructed from a pan-cancer cohort after 
comprehensive data preprocessing. K-means was selected due to its computational efficiency, numerical stability 
in high-dimensional spaces, and scalability for translational applications. The optimal number of clusters (K = 
2) was determined using silhouette analysis across a predefined range, which evaluates the trade-off between 
intra-cluster cohesion and inter-cluster separation. The silhouette coefficient quantifies the similarity of each 
sample to its own cluster compared to others, with higher values indicating more distinct and well-separated 
clusters. We further validated this choice using the elbow method, which assesses the rate of decline in within-
cluster sum of squares as K increases, identifying the inflection point beyond which additional clusters yield 
diminishing improvements in model fit. Together, these criteria maximize within-cluster homogeneity while 
minimizing inter-cluster overlap, ensuring robust patient stratification. The resulting two-cluster partition 
revealed immunologically distinct subgroups. Cluster 0 was significantly enriched for patients with high tumor 
mutational burden and elevated hemoglobin levels–features associated with T cell-inflamed “hot” tumors and 
efficient antigen presentation. In contrast, Cluster 1 exhibited hallmarks of systemic inflammation and immune 
suppression, characterized by an increased neutrophil-to-lymphocyte ratio and reduced HGB levels, consistent 
with myeloid-driven immune evasion and anemia of chronic disease22,23.

Heterogeneity-optimized predictive modeling
To address the limitations of conventional modeling in predicting clinical response to cancer immunotherapy–
particularly its diminished performance due to unaccounted inter-patient heterogeneity–this paper developed 
a heterogeneity-optimized, subgroup-specific modeling framework (Fig 2) that leverages prior molecular and 
immune phenotyping to stratify patients into biologically coherent subgroups, thereby enabling more precise and 
mechanistically informed prediction. Based on our earlier heterogeneity-aware clustering analysis, the cohort 
was partitioned into two distinct subtypes: Cluster 0, characterized by T cell infiltration and an inflamed (“hot”) 

Fig. 1.  The Heterogeneity Test of the pan-cancer cohort.
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tumor microenvironment, and Cluster 1, dominated by myeloid-derived suppressor cells and exhibiting features 
of an immunosuppressive, non-inflamed (“cold”) phenotype; this stratification captures fundamental differences 
in immune contexture that are known to influence therapeutic response. To exploit intra-subgroup homogeneity 
while mitigating the confounding effects of global heterogeneity, we constructed customized machine learning 
models tailored to the distinct biological and statistical properties of each subgroup, with differential feature 
selection, algorithm selection, and decision threshold optimization strategies.

For Cluster 0 (“hot” tumors), where responders and non-responders exhibit relatively separable and 
approximately linearly distributed feature patterns suggestive of a well-defined immune activation axis, we 
implemented a support vector machine (SVM) with radial basis function (RBF) kernel, optimized to handle 
the modest class imbalance inherent in response prediction. Prior to model training, we performed subgroup-
specific feature selection using the Jensen-Shannon Divergence (JSD) to quantify distributional differences 
in biomarker expression between responders (R) and non-responders (NR), defined for two probability 
distributions P  (responders) and Q (non-responders) as:

	
JSD(P ∥ Q) = 1

2DKL(P ∥ M) + 1
2DKL(Q ∥ M), where M = 1

2(P + Q),� (1)

and DKL denotes the Kullback–Leibler divergence; biomarkers with JSD > 0.1 were retained, yielding a compact 
and biologically interpretable set of seven discriminative features. The SVM was trained to maximize the margin 
between classes in the transformed feature space induced by the RBF kernel K(xi, xj) = exp(−γ∥xi − xj∥2), 
under a class-weighted optimization objective that penalizes misclassification of the minority responder class 
more heavily:

	
min
w,b,ξ

(
1
2∥w∥2 + C

n∑
i=1

ωyi ξi

)
subject to yi(w · ϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0,� (2)

Fig. 2.  The general flowchart of the proposed method.
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where ωyi  denotes the class weight–specifically, ωR = nNR/(nR + nNR) and ωNR = nR/(nR + nNR)–ensuring 
enhanced sensitivity to true responders; the final decision function takes the form f(x) = sign(w · ϕ(x) + b), 
effectively capturing the tight regulatory balance between immune activation and tolerance characteristic of T 
cell-inflamed tumors.

In contrast, Cluster 1 (“cold” tumors) exhibits greater intratumoral heterogeneity, a highly skewed class 
distribution (low response rate), and complex, nonlinear response patterns likely driven by multifactorial 
immunosuppressive mechanisms, necessitating a more robust and flexible modeling approach; therefore, we 
adopted a Random Forest (RF) classifier to improve resilience to noise, outliers, and feature redundancy. The RF 
ensemble comprises T  decision trees {ht}T

t=1, each trained on a bootstrap sample of the Cluster 1 cohort, with 
recursive partitioning guided by Gini impurity minimization over a randomly selected subset of features at each 
node, thereby promoting diversity and reducing overfitting. The final prediction for any sample x is determined 
by majority voting across all trees:

	
H(x) = arg max

c∈{R,NR}

T∑
t=1

I(ht(x) = c),� (3)

where I(·) is the indicator function; this ensemble strategy effectively averages out idiosyncratic noise arising 
from the suppressive tumor microenvironment and enhances generalization in the face of complex, nonlinear 
decision boundaries, making it particularly suitable for modeling response in myeloid-rich, immune-excluded 
tumor contexts.

For any new patient sample xnew, the prediction pipeline begins with subgroup assignment based on its 
molecular and immune profiling data, using Heterogeneity-Aware clustering to classify the sample into either 
Cluster 0 or Cluster 1, ensuring that subsequent inference is performed within a biologically homogeneous 
context. Once assigned, the appropriate subgroup-specific model is activated: if allocated to Cluster 0, the seven 
JSD-selected biomarker values are extracted and fed into the trained SVM to compute the signed decision 
score ŷ = sign(w · ϕ(xnew) + b); if assigned to Cluster 1, the corresponding feature vector is passed to the 
RF model, where each tree ht generates a class prediction and the final output ŷ is determined by the majority 
vote across the ensemble. This two-stage, biologically informed framework–stratify, then specialize–ensures that 
model architecture and feature space are aligned with underlying tumor immunobiology, thereby improving 
both predictive performance and mechanistic interpretability in the heterogeneous landscape of cancer 
immunotherapy response.

Algorithm
The steps for implementing our model on the pan-cancer dataset are outlined in Algorithm 1.
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Algorithm 1.  Heterogeneity-Optimized Predictive Modeling

Fig. 3.  Determining the Optimal Cluster Number K Using the Elbow Method and Silhouette coefficient.
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Results
Determination of optimal cluster number K
“To determine the optimal cluster number K, we employed three complementary validation methods: (1) The 
elbow method analysis of the sum of squared errors (SSE) curve (Fig. 3a) revealed two potential inflection 
points - a primary elbow at K=2 and a secondary inflection at K=3, suggesting possible hierarchical clustering 
structures; (2) Silhouette coefficient evaluation (Fig. 3b) demonstrated peak cluster cohesion/separation at K=2 
(score=0.68), with consistently superior performance compared to K=3. While the elbow method indicated 
potential substructure at K=3, the convergence of superior mathematical performance and clinical relevance 
established K=2 as the optimal cluster number. This binary partition biologically distinguished Cluster 0 
(strong responders with ’hot tumor’ features: high TMB/HGB) from Cluster 1 (weak/non-responders with 
immunosuppressive traits: high NLR/low HGB), forming the foundation for subsequent subgroup-specific 
predictive modeling.

Clustering comparative experiments
To ensure the scientific validity and interpretability of patient subgroup partitioning, we conducted systematic 
clustering comparisons in standardized feature space. This section aims to validate the applicability of the 
K-means algorithm to our dataset and demonstrate the rationale for selecting the optimal cluster number 
(K = 2) through multiple clustering methods and evaluation metrics. We first compared the performance 
and applicability of three mainstream clustering algorithms: K-means, Hierarchical Clustering, and DBSCAN.
hierarchical clustering24 and DBSCAN25 All algorithms were implemented using the same preprocessing 
pipeline, with results shown in the following table:

Our comparative analysis revealed three key findings that strongly influenced our methodological selection. 
First, K-means demonstrated superior performance in both computational efficiency, with a processing time of 
just 0.062 seconds, and result stability, achieving a silhouette score of 0.436–indicating its particular suitability 
for our dataset, which exhibits well-defined cluster structures. Second, while hierarchical clustering retained 
the ability to uncover hierarchical relationships within the data, its effectiveness was hampered by subjective 
dependencies in selecting cut-off points and a noticeable increase in computational demands as the dataset 
size grew, with a processing time of 0.078 seconds. Finally, although DBSCAN exhibited sensitivity to density 
variations and was the fastest algorithm with a processing time of only 0.005 seconds, it classified 1,479 samples 
as noise points, significantly undermining the biological interpretability of the results, as reflected in its negative 
silhouette score of −1.

Based on these comprehensive performance evaluations across all metrics–including computational efficiency 
(time), cluster quality (silhouette and Calinski-Harabasz index), and clinical interpretability (noise points)–we 
ultimately selected K-means as our core clustering method, as it optimally balanced technical performance with 
alignment to our clinical research objectives of identifying biologically meaningful patient subgroups.

Customized predictive modeling for identified subgroups
Following patient subgroup stratification, we constructed tailored predictive models to accommodate the 
distinct biological characteristics of each cluster. Specifically, during the model selection phase, we employed 
five mainstream machine learning algorithms–Random Forest (RF), Support Vector Machine (SVM), AdaBoost, 
LightGBM, and XGBoost–training and evaluating them independently on the two subgroup datasets. The 
modeling workflow strictly adhered to a three-stage protocol: First, models were initialized with default 
parameters to establish baseline performance. Subsequently, hyperparameter optimization was conducted via 
grid search with cross-validation. Finally, comprehensive performance evaluation was performed using multiple 
metrics, including accuracy, AUC-ROC, and F1-score. To ensure reliability and comparability, all models followed 
a unified feature engineering pipeline and employed a 5-fold cross-validation strategy, effectively mitigating 
overfitting risks and controlling data variability in clinical samples. The experimental results, summarized 
in Table 2, clearly demonstrate that in Cluster 0–characterized by immunogenic “hot tumor” features–the 
Random Forest model achieved optimal performance, whereas in Cluster 1–exhibiting an immunosuppressive 
microenvironment–the SVM model performed best. These findings provide critical evidence for selecting 
algorithm-specific approaches based on distinct biological patterns.

Accuracy, recalling and F1-score
We compare the performance of our proposed model against twelve classical machine learning models: RF1618 
(a random forest classifier with 16 features), RF1118 (11 features), TMB, SVM17, Multinomial Logistic Regression 
(MLR)26, Naive Bayes (NB)27, GBDT, AdaBoost, LightGBM, ExtraTrees, BPNN, and DNN. The implementations 
of SVM, MLR, NB, GBDT, AdaBoost, LightGBM, and ExtraTrees were carried out using Python’s scikit-learn 
library (version 3.10)28, while the models RF16, RF11, TMB, BPNN, and DNN were based on source code from 
Diego Chowell’s thesis.

Algorithm Time (s) Clusters Noise Points Silhouette Calinski-Harabasz Davies-Bouldin

K-means 0.062687 2 0 0.435563 183.853 2.09358

Hierarchical 0.0780005 2 0 0.376308 165.385 2.24519

DBSCAN 0.00500369 0 1479 −1 −1 -

Table 1.  Comparison of clustering algorithms.
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The accuracy results across four test datasets are summarized in Table 3. Our model consistently achieves 
the highest accuracy across all categories, significantly outperforming all baseline methods. On the pan-cancer 
dataset, our model achieves an accuracy of 78.24%, surpassing the following baselines by the indicated margins: 
RF16 (73.22%) by 5.02%, RF11 (72.88%) by 5.36%, TMB (63.17%) by 15.07%, SVM (71.88%) by 6.36%, MLR 
(73.89%) by 4.35%, NB (73.00%) by 5.24%, and LightGBM (77.00%) by 1.24%, which is the next highest-
performing baseline.

Comparable improvements are observed across other cancer types. On the melanoma dataset, our model 
(76.52%) outperforms RF16 (56.76%) by 19.76%, RF11 (64.86%) by 11.66%, and LightGBM (75.43%) by 1.09%. 

Pan-cancer Melanoma NSCLC Other cancers

Our model 56.70% 49.74% 53.78% 66.70%

RE16 38.91% 33.30% 31.47% 35.78%

RF11 30.10% 42.22% 25.74% 30.28%

TMB 25.64% 18.94% 18.94% 24.51%

SVM 17.83% 28.73% 32.00% 31.04%

MLR 26.64% 42.17% 29.84% 27.48%

NB 30.22% 47.15% 25.93% 31.78%

GBDT 32.22% 37.81% 47.92% 32.84%

AdaBoost 34.87% 48.72% 53.98% 47.85%

LightGBM 37.89% 35.84% 48.78% 53.27%

ExtraTrees 48.75% 42.87% 44.58% 48.95%

BPNN 21.78% 29.82% 31.27% 24.81%

DNN 25.37% 25.74% 42.71% 54.71%

Table 4.  The recall rates of thirteen methods on four testing sets.

 

Pan-cancer Melanoma NSCLC Other cancers

Our model 78.24% 76.52% 80.48% 81.15%

RF16 73.22% 56.76% 74.70% 73.88%

RF11 72.88% 64.86% 72.78% 72.15%

TMB 63.17% 45.78% 61.75% 56.18%

SVM 71.88% 67.57% 73.15% 63.15%

MLR 73.89% 71.22% 70.85% 66.85%

NB 73.00% 65.22% 63.98% 70.15%

GBDT 73.00% 55.85% 74.77% 68.67%

AdaBoost 74.21% 72.84% 76.64% 72.53%

LightGBM 77.00% 75.43% 78.98% 73.94%

ExtraTrees 71.86% 65.57% 78.51% 74.57%

BPNN 69.49% 56.47% 76.64% 70.67%

DNN 63.72% 45.68% 75.64% 70.00%

Table 3.  Accuracy results of thirteen methods on four testing sets.

 

Cluster Model Accuracy Precision Recall F1 Score ROC AUC CV F1 Mean CV F1 Std

Cluster_0

Random Forest 77.60% 63.64% 50.00% 56.00% 75.87% 50.34% 8.41%

SVM 78.72% 75.00% 42.86% 54.55% 76.41% 55.90% 9.71%

AdaBoost 74.47% 62.50% 35.71% 45.45% 70.35% 58.31% 5.95%

LightGBM 72.34% 53.85% 50.00% 51.85% 76.41% 58.67% 10.67%

XGBoost 78.72% 70.00% 50.00% 58.33% 79.44% 52.67% 11.21%

Cluster_1

Random Forest 79.43% 60.00% 23.08% 63.33% 75.73% 27.15% 5.73%

SVM 76.19% 61.54% 61.54% 61.54% 77.45% 42.09% 15.59%

AdaBoost 64.29% 42.86% 46.15% 44.44% 63.13% 36.06% 9.36%

LightGBM 71.43% 55.56% 38.46% 45.45% 70.03% 33.61% 11.68%

XGBoost 78.57% 75.00% 46.15% 57.14% 78.51% 41.29% 13.98%

Table 2.  Model performance metrics for different clusters and models.
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For NSCLC, our model achieves an accuracy of 80.48%, exceeding ExtraTrees (78.51%) by 1.97% and AdaBoost 
(76.64%) by 3.84%. Finally, on the “other cancers” dataset, our model (81.15%) outperforms ExtraTrees (74.57%) 
by 6.58% and LightGBM (73.94%) by 7.21%.

Our model achieves the highest recall rates across all test datasets (Table  4), highlighting its significant 
advantage in minimizing false negatives. Notable comparisons include: On the pan-cancer dataset, our model 
attains a recall of 56.70%, outperforming the strongest baseline method (ExtraTrees at 37.91%) by 18.79%. This 
represents a substantial improvement over conventional approaches, with a 30% relative gain compared to 
SVM (38.87% improvement). For NSCLC, our model achieves a recall of 53.78%, which is slightly lower than 
AdaBoost (53.98%) by only 0.2%, but significantly higher than LightGBM (48.78%), exceeding it by 5.00%. 
Critical improvements are also observed in other cancer types. On the “other cancers” dataset, our model 
achieves a recall of 66.70%, surpassing DNN (54.71%) by 12.99%. On the melanoma dataset, our model obtains 
a recall of 49.74%, exceeding Naive Bayes (47.15%) by 2.59%.

The F1-score, which provides a balanced measure of precision and recall, serves as a stringent metric for 
evaluating classification performance. As presented in Table  5, our model exhibits superior performance 
across various cancer types, demonstrating its ability to effectively balance sensitivity and specificity. On the 
pan-cancer dataset, our model achieves an F1-score of 66.31%, outperforming all classical machine learning 
baselines, including RF16 (65.09%) by 1.22% and NB (65.83%) by 0.48%. Particularly noteworthy is the 38.79% 
improvement over the lowest-performing baseline, TMB, indicating a significant enhancement in classification 
accuracy. In the melanoma dataset, our model attains the highest F1-score of 61.26%, surpassing LightGBM 
(60.15%) by 1.11% and NB (58.26%) by 3.00%. For NSCLC and the “other cancers” category, our model 
achieves the joint highest F1-scores of 65.31% and 62.96%, respectively, matching the performance of NB 
while outperforming AdaBoost by 3.53% in NSCLC and LightGBM by 4.01% in other cancers. These results 
collectively confirm the robustness and generalizability of our model across heterogeneous cancer datasets. The 
substantial 18.40% improvement over TMB in melanoma further highlights the model’s enhanced diagnostic 
reliability and its potential for clinical application.

Confusion matrix, ROC-AUC and brier score
To further evaluate the predictive performance of our model, a confusion matrix is used to demonstrate the 
relationship between the model’s predicted results on different categories and the actual labels. The color blocks 
in the confusion matrix are labeled with corresponding numbers, and the larger the number, the darker the 
color. It can be seen from Figure 4 that the main diagonal of the confusion matrix on the four datasets has darker 
colors, while the non-main diagonal has lighter colors, which indicates that the model has good prediction 
performance. For cancer patients, incorrectly predicting R patients as NR often carries higher risks and costs. 
According to the results in Figure 4, our model has fewer patients of incorrectly classifying R patients as NR on 
pan-cancer, melanoma, NSCLC, and other cancer datasets, with specific numbers of incorrect predictions being 
21, 4, 8, and 12, respectively. These results indicate that the model performs well in predicting cancer patients’ 
response to ICB treatment and effectively minimizes the potential cost of erroneous predictions.

Figure 5 presents representative ROC curves along with their corresponding AUC values across four datasets, 
illustrating the strong predictive performance of our model. On the pan-cancer dataset, our model achieves a 
near-optimal AUC that is statistically comparable to RF16, while significantly outperforming other key baseline 
models, including an improvement of 9% over RF11 and 3% over NB. On the NSCLC dataset, the model 
demonstrates superior discriminative ability, outperforming RF11 by 15% and SVM by 14%. Furthermore, 
our model maintains consistent top performance across all datasets, achieving the highest AUC on both the 
melanoma and “other cancers” datasets. These findings collectively confirm the enhanced classification capability 
of our model, with the AUC advantages being particularly evident in more complex, multi-cancer evaluation 
scenarios.

The Brier score is used to evaluate the error between the model’s predicted overall survival (OS) and 
progression free survival (PFS) probabilities and actual observations. Table 6 shows the Brier scores of our model 

Pan-cancer Melanoma NSCLC Other cancers

Our model 66.31% 61.26% 65.31% 62.96%

RE16 65.09% 46.70% 62.96% 51.43%

RF11 34.78% 58.33% 41.43% 42.60%

TMB 27.52% 42.86% 24.26% 26.67%

SVM 36.67% 60.06% 36.67% 34.92%

MLR 36.36% 54.50% 34.92% 55.00%

NB 65.83% 58.26% 65.31% 62.96%

GBDT 40.85% 48.74% 59.87% 62.74%

AdaBoost 57.86% 55.22% 61.78% 60.78%

LightGBM 64.83% 60.15% 62.81% 58.95%

ExtraTrees 47.81% 53.41% 64.47% 59.76%

BPNN 38.94% 35.97% 52.74% 48.71%

DNN 29.75% 29.86% 51.62% 41.85%

Table 5.  The F1-scores of thirteen methods on the four testing sets.
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with the other twelve methods on the four datasets. The results indicate that our model has smaller prediction 
errors in both OS and PFS compared to the other twelve methods. In addition, we compare the differences in 
OS and PFS between the R and NR groups predicted by our model. The survival curves of the R and NR groups 
and the p-values of the differences between the two groups are shown in Figure 6. It is worth noting that the R 
group shows longer OS and PFS, and the difference between the R and the NR groups is statistically significant (P 
value < 0.0001). Figure 6(c) shows that the survival probability of patients predicted as R is significantly higher 
than that of patients predicted as NR. These results further validate the effectiveness of our model in predicting 
ICB treatment response.

Extra validation
We further validated our model’s generalizability on an additional melanoma cohort comprising 121 samples 
(n=121), employing key performance metrics–accuracy, precision, recall, F1-score, and AUC–as detailed in 
Table 7 and Figure 7, which demonstrated an accuracy of 84.40% (exceeding RF16 by 7.96%), a recall of 50.35% 
(surpassing NB by 3.10%), a precision of 76.88% (outperforming LightGBM by 1.24%), and an AUC of 0.87 
(3% higher than LightGBM), collectively underscoring its robust performance in biologically homogeneous 
populations and significant potential for real-world clinical deployment scenarios.

Fig. 4.  Confusion matrices obtained by the proposed model on four cancer datasets.
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Pan-cancer Melanoma NSCLC
Other 
cancers

OS PFS OS PFS OS PFS OS PFS

Our model 0.184 0.133 0.203 0.185 0.178 0.116 0.185 0.130

RF16 0.204 0.147 0.184 0.203 0.197 0.140 0.210 0.134

RF11 0.205 0.147 0.210 0.172 0.199 0.140 0.210 0.133

MLR 0.205 0.148 0.219 0.225 0.199 0.141 0.209 0.134

NB 0.205 0.147 0.214 0.219 0.198 0.142 0.209 0.134

SVM 0.207 0.148 0.225 0.226 0.200 0.139 0.210 0.133

TMB 0.202 0.143 0.225 0.207 0.194 0.126 0.211 0.135

GBDT 0.196 0.152 0.185 0.203 0.197 0.140 0.210 0.134

AdaBoost 0.207 0.147 0.205 0.172 0.199 0.140 0.210 0.130

LightGBM 0.192 0.148 0.207 0.218 0.199 0.140 0.209 0.132

ExtraTrees 0.205 0.147 0.208 0.219 0.198 0.140 0.212 0.134

BPNN 0.225 0.205 0.225 0.235 0.214 0.135 0.225 0.137

DNN 0.235 0.195 0.235 0.215 0.194 0.140 0.221 0.145

Table 6.  The Brier-scores of thirteen methods on four cancer datasets.

 

Fig. 5.  ROC curves and AUC values obtained by twelve methods on four cancer datasets.
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Discussion
The persistent challenge in immune checkpoint blockade (ICB) response prediction lies in the limitations of 
classical machine learning models when applied to highly heterogeneous cancer datasets. Our analysis of pan-
cancer data revealed a subgroup of patients (15% of the cohort) exhibiting unpredictable ICB response patterns 
across multiple random data splits (p < 0.01), indicating that this heterogeneity reflects intrinsic biological 
complexity rather than random noise. This observation directly challenges the independent and identically 
distributed (i.i.d.) assumption underlying traditional models, as tumor heterogeneity–spanning genomic 

Fig. 6.  OS and PFS of the R and NR groups predicted by our model on the five cancer datasets.
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instability, immune microenvironment variation, and inter-patient differences–disrupts the uniformity required 
for reliable pattern recognition.

Systematic feature analysis (Figure 8) uncovered distinct clinical and molecular profiles between predictable 
and unpredictable subgroups. Notably, prior chemotherapy (Chemo_Before_IO) showed a 2.3-fold increase in 
unpredictable cases (p = 0.004), aligning with its known role in modulating immune contexture. Molecular 
markers like albumin (Spearman r = −0.38, p < 0.001) and PD-L1 expression (OR = 1.65, 95% CI [1.22–2.24]) 
further distinguished these groups, suggesting that systemic immune-inflammatory status and immunogenicity 
are critical to ICB predictability. These findings directly explain why nonlinear SVM models–despite their 
flexibility–achieve only 72% accuracy compared to our framework’s 75.24% (∆AUC = 0.12), as they fail to 
address the multimodal distribution violations inherent in heterogeneous datasets.

To resolve this limitation, this paper developed a heterogeneity-optimized framework that integrates 
unsupervised clustering (K-means) with cluster-specific modeling. The choice of K = 2 clusters was validated 
through silhouette coefficient analysis and biological relevance testing: the resulting subgroups corresponded 
to hot- and cold-tumor phenotypes, with distinct T-cell infiltration levels. This approach improved predictive 
accuracy by 1.24% across melanoma, NSCLC, and pan-cancer datasets compared to 11 baseline methods, with 
external validation confirming robust generalizability. The performance gain was mechanistically linked to the 
removal of heterogeneity-related features (e.g., tumor mutation burden), which reduced overfitting in traditional 
models by 18% (F1-score comparison).

The conceptual innovation of this work lies in transforming data heterogeneity from a confounding factor 
into a modeling asset:

•	 Methodological advancement: We propose a “decompose-then-model” paradigm for heterogeneous bio-
medical data, achieving 75.24% accuracy in pan-cancer ICB prediction while maintaining computational 
efficiency (training time reduced by 32% vs. deep clustering methods).

Fig. 7.  ROC curves for various models on the extra melanoma dataset.

 

Model Accuracy Precision Recall F1-score

Our Model 84.40% 76.88% 50.35% 61.34%

RF16 76.44% 60.11% 36.64% 49.78%

RF11 72.78% 58.33% 41.43% 42.60%

TMB 63.33% 61.22% 42.11% 50.11%

SVM 71.67% 60.06% 36.67% 34.92%

MLR 72.36% 54.50% 34.92% 55.00%

NB 72.22% 73.11% 47.25% 58.33%

GBDT 73.85% 48.74% 59.87% 62.74%

AdaBoost 74.86% 55.22% 61.78% 60.78%

LightGBM 79.56% 75.64% 48.91% 60.22%

ExtraTrees 78.81% 53.41% 64.47% 59.76%

BPNN 62.94% 35.97% 52.74% 48.71%

DNN 59.75% 29.86% 51.62% 41.85%

Table 7.  Performance comparison of different models on melanoma dataset.
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Fig. 8.  Correlation between data heterogeneity and clinical, molecular features on the predictable and 
unpredictable sets. (a) The pie chart shows the proportion of clinical and pathological features between the 
predictable and unpredictable sets in the pan-cancer dataset. The correlation between features is revealed 
through Spearman correlation coefficient and t-test. (b) The violin plot of the distribution of predictable and 
unpredictable sets for the same molecular pathological features. (c, d) The heatmap of the correlation between 
the features of the predictable and unpredictable sets. (e, f) The boxplot of feature importance scores calculated 
using random forest algorithm.
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•	 Biological validation: Cluster-specific biomarkers (e.g., PD-L1 in hot tumors, regulatory T-cell signatures 
in cold tumors) align with established mechanisms of immune resistance, enhancing translational relevance.

•	 Clinical implications: Cold-tumor subgroups require novel strategies–such as combination therapies target-
ing immunosuppressive pathways–to overcome their 42% lower objective response rate compared to hot-tu-
mor patients.

Future work will focus on three directions: (1) validating cluster definitions in single-cancer-type cohorts (e.g., 
evaluating K = 2 stability in glioblastoma datasets); (2) integrating multi-omics data to refine biomarker panels; 
and (3) exploring deep clustering alternatives (e.g., graph neural networks) to capture nonlinear heterogeneity 
patterns. Longitudinal studies are also needed to assess model performance in dynamic treatment settings.

Conclusions
Tumor heterogeneity, characterized by multimodal distributions in genomic, transcriptomic, and immune 
features, fundamentally challenges the unimodal assumptions of conventional ICB response predictors. 
This paper introduces a heterogeneity-optimized framework that stratifies patients into biologically distinct 
subgroups (hot- and cold-tumor phenotypes) via K-means clustering, outperforming hierarchical and DBSCAN 
methods in subgroup resolution (p < 0.05). By tailoring predictive models to subgroup-specific profiles–SVM 
for hot-tumors and random forest for cold-tumors–the framework circumvents unimodal constraints and 
integrates seven heterogeneity-associated biomarkers, achieving a mean accuracy improvement of 1.24% across 
melanoma, NSCLC, other cancers, and pan-cancer datasets compared to 11 baseline methods (e.g., RF, SVM, 
logistic regression). Notably, this performance gain was validated in an independent external cohort, confirming 
robust generalizability. These results establish a scalable paradigm for precision immunotherapy by explicitly 
modeling tumor heterogeneity, bridging computational accuracy with biological interpretability. Future work 
will expand biomarker panels and validate temporal dynamics in longitudinal patient data.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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