Table 6 Performance comparison on Columbia dataset.

From: Multi-resolution transfer learning for tampered image classification using SE-enhanced fused-MBConv and optimized CNN heads

Dataset: Columbia

Ref. No.

Model

Year

AUC

F1 score

Accuracy

Precision

Recall

26

CAT-Net

2022

–

0.79

–

–

–

15

ConvNeXtFF

2023

0.93

0.88

–

–

–

30

DMDC-Net

2023

–

0.8

–

0.91

0.7

31

EITL-Net

2024

–

0.87

–

–

–

12

FCN

2022

–

0.53

–

–

–

63

Forensic-Net

2023

–

0.63

–

0.65

0.62

37

HiFi-Net

2023

–

0.83

–

–

–

38

IF-OSN

2022

0.86

0.7

–

–

–

39

IML-ViT

2024

–

0.91

–

–

–

40

ISIE-Net

2025

0.89

0.71

–

–

–

42

Loma

2025

–

0.88

–

–

–

44

MAPS-Net

2024

0.89

0.74

–

–

–

45

MPC

2025

–

0.94

–

–

–

46

MSFF

2022

0.96

0.83

–

–

–

47

MSF-Net

2025

–

0.78

–

–

–

49

NCL

2023

0.92

0.8

–

–

–

51

OSN

2022

0.86

0.7

–

–

–

52

PCL

2023

0.76

0.69

–

–

–

46

RRA-Net

2022

–

0.75

–

–

–

60

TruFOR

2023

–

0.79

–

–

–

11

ViT-132

2025

–

0.9

–

0.89

0.91

61

VVS+SS2D

2025

–

0.94

–

–

–

64

TPB-Net

2024

0.89

0.7

–

–

–

65

C2R-Net

2020

–

0.69

–

0.8

0.61

29

CR-CNN

2020

–

0.43

–

–

–

66

CAT-NET

2021

–

0.55

–

–

–

67

DFCN

2021

0.62

0.41

–

–

–

33

EXIF-SC

2020

–

0.51

–

–

–

36

GSR-Net

2020

–

0.61

–

–

–

68

Noiseprint

2020

0.84

0.36

–

–

–

69

RTAG

2021

–

0.73

–

0.62

0.89

55

SPAN

2020

0.93

0.81

–

–

–

55

SPAN

2020

–

0.48

–

–

–

58

TDA-Net

2021

0.89

0.73

–

–

–

Proposed

CNN+EfficientNetV2B0

2025

0.9869

0.9446

0.9424

0.9101

0.9818