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With the growing demand for secure and energy-efficient wireless communication in dynamic and 
energy-constrained environments, integrating unmanned aerial vehicle (UAV) with intelligent 
reflecting surface (IRS) has emerged as a promising solution. However, air–ground communication 
still faces critical challenges such as eavesdropping threats and limited onboard energy of UAVs. To 
address these issues, this paper proposes a physical layer security (PLS) transmission framework for 
UAV-IRS-assisted communication systems. The proposed scheme incorporates artificial noise (AN) 
and simultaneous wireless information and power transfer (SWIPT) to enhance secrecy performance 
and ensure sustained energy harvesting (EH). The system jointly optimizes the base station (BS) 
beamforming, UAV positioning, and IRS phase shift to maximize the secrecy rate (SR) under EH 
constraints. To solve the resulting non-convex optimization problem, we design a deep reinforcement 
learning (DRL)-based approach using the twin delayed deep deterministic policy gradient (TD3) 
algorithm. Simulation results demonstrate that the proposed method significantly improves both 
secrecy and energy efficiency compared to existing baseline schemes.

Keywords  Intelligent reflecting surface, Unmanned aerial vehicle, Physical layer security, Deep 
reinforcement learning

Recently, due to the increasing frequency of marine activities, traditional shore-based communication systems 
have struggled to meet the growing demands for coverage, transmission rate, and reliability. Specifically, current 
maritime communications mainly rely on base station (BS) deployed along the coastline. However, the coverage 
radius of BS is inherently limited. Moreover, complex marine environmental factors such as dynamic wave 
fluctuations, terrain undulations, and sea surface vapor effects create substantial challenges to the large-scale 
deployment of fixed BSs and relay nodes at sea. These factors not only cause severe path loss in the communication 
links for maritime communication but also make the system highly susceptible to interference from constantly 
changing sea conditions, which seriously degrades communication quality1. Furthermore, the line-of-sight 
(LoS) transmission characteristics of open sea areas make maritime communication systems more vulnerable to 
malicious interference and eavesdropping. Therefore, developing novel maritime communication networks that 
offer cost-effectiveness, wide coverage, low latency, and high reliability is of great practical significance2.

Unmanned aerial vehicle (UAV) have been widely recognized as an effective solution to address communication 
blind zones at sea, due to their flexibility, cost-effectiveness, and capability to establish LoS links3. Despite these 
advantages, UAVs are constrained by their limited onboard energy supply, which hampers their ability to 
support long-duration operations. Additionally, the maritime environment presents extra challenges, such as 
strong electromagnetic interference, multipath propagation, and high-frequency noise, which may significantly 
reduce the performance of single-UAV communication systems.

To overcome these limitations, intelligent reflective surface (IRS) has emerged as a promising solution. 
IRS is an artificial reconfigurable meta surface with passive reflecting units that can individually manipulating 
electromagnetic waves4,5. By adjusting the phase shifts, IRS enables flexible beamforming and intelligent 
reconfiguration of the wireless propagation environment, thus greatly enhancing network performance6. 
Moreover, IRS offers notable advantages such as easy deployment, programmability, and high cost-efficiency. 
It can be flexibly integrated into building surfaces or mounted on various unmanned platforms7, which makes 
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it a promising candidate for achieving full-coverage communication in dynamic scenarios and emergency 
situations8.

Despite the significant advantages of the integration of UAV and IRS (UAV-IRS), in enhancing maritime 
wireless communication capabilities, several critical challenges remain. Specifically, due to the broadcast 
property of electromagnetic waves and the openness of air-to-ground (ATG) links over the sea renders the 
system highly susceptible to malicious eavesdropping and jamming. While traditional cryptographic methods 
provide security at higher layers, they often incur significant computational overhead and are vulnerable to 
key distribution challenges. To complement these methods, physical layer security (PLS) has emerged as a 
promising paradigm. Meanwhile, the limited onboard battery capacity of UAV restricts their ability to operate 
continuously in remote or long-duration missions. In addition, the performance of IRS heavily depends on 
real-time configuration, which further increases system complexity. Therefore, it is imperative to develop an 
integrated optimization framework that simultaneously addresses PLS, energy harvesting (EH) requirement, 
and adaptability to dynamic environments.

To address these issues, we investigate an anti-eavesdropping simultaneous wireless information and 
power transfer (SWIPT) communication scheme for maritime networks enabled by cooperative UAV and IRS 
assistance. Specifically, IRS is employed to directionally improve the legitimate link signal quality, while AN is 
introduced to actively degrade the capacity of the eavesdropping channel. Meanwhile, SWIPT is employed to 
provide a sustainable energy supply for the UAV. Our objective is to jointly optimize the BS beamforming, UAV 
positioning, and IRS phase shift. The goal is to maximize the secrecy rate (SR) while ensuring that the UAV 
meets a minimum harvested energy threshold. To address the overestimation bias inherent in deep deterministic 
policy gradient (DDPG), we develop a twin delayed deep deterministic policy gradient (TD3) algorithm based 
on deep reinforcement learning (DRL) to solve the non-convexity optimization problem9.

Related work
Combining UAV with IRS has emerged as an effective strategy to overcome the limitations of static IRS deployment 
in dynamic environments. The integration of UAV and IRS can be categorized into two typical approaches. 
The first approach deploys the IRS on fixed ground structures, while the UAV carries the transmitter. This 
architecture offers high engineering feasibility and significant economic advantages, as shown in studies10 and11. 
The other approach directly integrates the IRS onto the UAV, forming a movable aerial IRS, this configuration 
serves as an aerial relay node, which is capable of establishing a stable LoS communication link between ground 
BS and users12. Compared with ground-fixed IRS schemes, the UAV-IRS system exhibits unique performance 
advantages. It enables LoS-dominated transmission for ground users, allowing for wide-area signal coverage 
and flexible deployment. Therefore, this paper adopts the UAV-IRS model, and the recent research progress on 
UAV-IRS is reviewed in the following section. In13, The authors evaluate outage probability, traversal capacity, 
power consumption, and energy efficiency (EE) under standalone UAV deployment, pure IRS implementation, 
and their hybrid integration. The results verify that the integrated UAV-IRS mode provides the most significant 
performance advantages under various configurations. Furthermore, in14, the authors studied both static UAV-
IRS deployments and dynamic UAV-IRS network employing the time division multiple access (TDMA) protocol. 
This study revealed that the hybrid IRS architecture exhibits notable performance improvements compared to 
purely passive IRS systems with the same quantity of reflecting elements, particularly under constrained UAV 
power budgets. In15, the authors proposed a system model for the UAV-IRS-assisted ATG communications 
networks, which aimed to enhance the EE by jointly optimizing bandwidth allocation, IRS phase shifts, and 
UAV 3D positioning. These studies verify the superiority and feasibility of UAV-IRS systems from different 
dimensions in practical communication scenarios.

To address the communication security challenges caused by the openness of ATG propagation links, 
recent research has extensively explored the application of IRS-enhanced PLS in UAV-assisted networks. As 
demonstrated in16, the author focused on an IRS-assisted secure UAV communication scheme against both active 
jamming and passive eavesdropping. They aimed to maximize the average secrecy rate of uplink communication 
between a ground user and a UAV by jointly optimizing the ground user’s transmission power, IRS phase shift, 
and the UAV’s trajectory. Furthermore, in scenarios involving multiple UAVs and advanced access techniques 
like Non-Orthogonal Multiple Access (NOMA), PLS becomes even more critical. In17, the authors proposed 
a novel IRS-aided UAV-swarm NOMA system. Their primary objective was to maximize the overall security 
rate by jointly optimizing UAV swarm trajectories, power distribution among the UAVs, and the reflection 
coefficients of the IRS. In18, Wen et al. propose a secure UAV communication system leveraging IRS and artificial 
noise (AN) to counter multiple colluding curious users. Their work uniquely focuses on maximizing the average 
secrecy rate (ASR) through jointly optimizing UAV trajectory, IRS phase shifts, and AN-aware beamforming. 
In19, the authors examined millimeter-wave systems under active eavesdropper (Eve). In20, the authors studied 
PLS transmission mechanisms in UAV-IRS with multiple ground-based Eves. Furthermore, in21, the integration 
of mobile edge computing (MEC) with UAV-IRS was explored. The authors proposed a secure task offloading 
scheme under active eavesdropping, aiming to maximize the total secure computing tasks completed by all users. 
In multi-user networks,22 proposed an anti-eavesdropping scheme for IRS-assisted UAV communication, the 
scheme achieved notable secrecy gains through joint optimization under uncertain channel state information 
(CSI) of both legitimate receivers and potential Eves. Similarly, in23, the authors considered the imperfect CSI 
and hybrid attacks involving both jamming and eavesdropping. They proposed a UAV-mounted IRS system, 
which achieved substantial gains in both security and quality of service (QoS) compared to existing methods. 
While these IRS-assisted solutions significantly enhance the security and reliability of UAV communications, 
they often overlook the energy limitations of UAV platforms, whose limited onboard battery capacity continues 
to constrain long-term and stable operation.
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Hence, radio frequency (RF)-based SWIPT offers an effective and practical solution for powering wireless 
devices24. In25, the author proposed a SWIPT system involving multiple IRSs cooperating with multi-antenna 
access point (AP), aiming to reducing the total power required by the AP. In26, AN was introduced at the AP, 
and a power splitting (PS) scheme was adopted at the user side. The authors applied two algorithms to enhance 
user security while meeting the minimum EH threshold. Furthermore, in27, the authors proposed an energy-
efficient solution maintaining minimum data rate and EH requirements. Although these studies provide valuable 
theoretical support and technical methods to address the UAV energy bottleneck, they do not consider the use 
of DRL algorithms.

Although the above studies have effectively addressed the issue of limited UAV energy supply, there are still 
two shortcomings. Firstly, the short endurance of UAV in maritime communication scenarios has not been fully 
resolved. Secondly, while some works have tackled non-convex optimization problems, they do not leverage 
the dynamic policy learning capability of DRL. Hence, the author in8 proposed an innovative EH scheme that 
combines SWIPT and resource allocation in a UAV-IRS system. By simultaneously utilizing temporal and spatial 
segmentation EH models and designing a DRL-based algorithm, they significantly enhanced UAV endurance 
while satisfying communication QoS constraints. In28, the authors developed a communication architecture 
based on a UAV-IRS system integrated with SWIPT, in which a DRL algorithm was applied to simultaneously 
address the dual challenges of limited UAV endurance and low communication efficiency. Different from 
previous time-domain-focused studies, the authors in29 proposed a resource allocation strategy based on a 
harvest-transmit-store model for UAV-assisted IRS communication. They adopted the DDPG algorithm to 
dynamically optimize resource allocation in both time and energy domains, aiming to improve EH efficiency. 
However, DDPG suffers from overestimation issues during training, which can affect accurate estimation of the 
optimal policy. Notably, Yang et al. introduced an adaptive EH approach to extend UAV operational time and 
used an improved DRL algorithm for optimal EE1. The work is highly relevant, as they successfully developed 
a DRL-based framework for a UAV-IRS-assisted maritime communication system with adaptive EH to combat 
jamming. Their work pioneers the use of advanced DRL to maximize EE in the face of active jamming attacks.

Our research builds upon these advancements by addressing a different but equally critical challenge: 
secure communications against a passive Eve. Our study focuses on comprehensively addressing the long-term 
secure and energy-sustainable operation of UAV-IRS systems under persistent eavesdropping threats. The main 
contributions of this work are summarized as follows:

•	 To address the challenges of secure and sustainable communication in maritime environments, we propose 
a SWIPT-assisted anti-eavesdropping and EH scheme that leverages the complementary capabilities of UAV 
and IRS. The proposed approach jointly optimizes BS transmit beamforming, UAV positioning, and IRS 
phase shift to maximize the average SR, while satisfying the UAV’s minimum harvested energy requirement.

•	 Considering the dynamic and high-dimensional characteristics of the maritime environment, we model the 
joint optimization as a DRL task and develop a TD3 algorithm, to derive the optimal policy for optimizing 
the SR under the EH constraint.

•	 The simulation results demonstrate that the proposed scheme effectively improves both the coverage range 
and the SR of the UAV-IRS system. It also shows significant performance gains while maintaining acceptable 
computational complexity.

System model
In this paper, Fig. 1 depicts a typical system model of a UAV-IRS-assisted maritime communication network. 
Since the LoS link between BS and maritime device (MD) is obstructed by obstacles, the BS established on shore 
cannot transmit signals to the MDs. Therefore, a UAV-mounted IRS is used as a wireless relay to establish a 
LoS link, where the BS attempts to send signals to MD and a single-antenna Eve exists to try to interfere with 

Fig. 1.  UAV-IRS-assisted maritime security communication system.
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the information transmission. The UAV incorporates a rechargeable battery to extend duration by converting 
harvested energy into electrical power.

We consider a Cartesian coordinate system with the BS located at the origin. The position of the k th user 
at time slot t (0 < t ≤ T ) is qk(t) = {xk(t), yk(t), zk(t)}, where zk(t) and {xk(t), yk(t)} are the vertical 
and horizontal positions of the user, respectively. Here, both users and Eves are equipped with a single antenna, 
the BS is equipped with a Z-type antenna, and K = {1, 2, · · · , K} denotes the set of all MDs. The IRS has 
M × N  reflecting elements with uniform planar array (UPA), the IRS elements in the i th (0 < i ≤ I) row 
and j th (0 < j ≤ J) column are denoted by R = {Ri,j}M,N

i,j=1. The position of the UAV-IRS at the t th time 
slot is denoted by qu(t) = {xu(t), yu(t), zu(t)}. In this work, the system consists of two key components: the 
model of the communication system and the model of SWIPT. The communication channel is modeled with two 
links: BS-to-UAV (B-U) link (B-U link) and UAV-to-MD (U-M) link (U-M link)1. We assume that all channels 
experience quasi-static block fading and the CSI of all channels is perfectly known.

Communication model
The B-U link primarily exhibits LoS propagation characteristics, but due to path loss and shadow fading 
between BS and MD, we model this channel using a composite fading model that incorporates both 
large-scale and small-scale fading components30. The distance between the BS and RM,N

i,j=1 is denoted by 

dB,U
i,j =

√∣∣xr
i,j(t)

∣∣2 +
∣∣yr

i,j(t)
∣∣2 +

∣∣zr
i,j(t)

∣∣2.Then, the path loss can be mathematically defined as

	 P LB,U
i,j (dB) = P L (d0) + 10α log10

(
dB,U

i,j /d0
)

+ Xσ � (1)

where P LB,U
i,j  represents the B-U link’s path loss, defined P L(d0) at distance d0 with path loss exponent α, and 

Xσ  accounts for random shadowing effects caused by environmental obstructions and reflections.
Given the high altitude of the UAV, the B-U link is assumed to be dominated by a strong LoS path. 

Therefore, we model the channel using Rician fading to accurately capture both the LoS component 
and scattered multipath components. The channel vector from the BS to the RM,N

i,j=1 is denoted as 
hi,j = [hB,U

i,j (1), · · · , hB,U
i,j (z), · · · hB,U

i,j (Z)]. Thus, the channel gain of B-U link can be expressed as

	
hB,U

i,j =

√
1

P LB,U
i,j

·
∼
h =

√
1

P LB,U
i,j

·

(√
Kr

Kr + 1gLoS +
√

1
Kr + 1gNLoS

)
� (2)

where the Rician factor is denoted by Kr , gLoS  and gNLoS  denote the fast fading components of the LoS and 
non-line-of-sight (NLoS) channels, respectively.

For further presentation, the path loss is linearly transformed as follows

	 P LB,U
i,j = 10 exp

(
P LB,U

i,j (dB)/10
)

� (3)

The B-U link’s channel gain is given by

	

hB,U
i,j = 10 exp




−(P L (d0) + 10α log10

(
d

B,U
i,j
d0

)
+ Xσ)

20


 ·

∼
h� (4)

In the U-M link scenario, to better closely match the actual maritime communication environment, it is essential 
to account for the impact of air humidity, salt spray, and sea surface reflections on NLoS communication. 
We utilize a low-altitude UAV channel model which combines LoS and NLoS propagation characteristics. 
The occurrence probabilities of these propagation paths depend on the platform’s altitude and its horizontal 
separation from mobile devices31. For a typical LoS probabilistic model between the RM,N

i,j=1 and the k th MD, 
after32, it can be represented as follows

	
P Lk

LoS(dB) = 1
1 + a exp(−b(θi,j − a)) � (5)

where a and b are channel state parameters, Hr
i,j  represents the height of the UAV-IRS, and the elevation angle 

θi,j  between the U-M can be expressed as

	
θi,j = 180

π
arcsin

(
Hr

i,j

dB,U
i,j

)
� (6)

The two-ray path loss model’s applicability is limited in this work due to the predominance of NLoS conditions. 
Therefore, the signal propagation loss in this paper is modeled as follows
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P LNLoS(dB) = P LLoS(dB) + ηNLoS = 20 log10

(4πfd

c

)
+ ηNLoS� (7)

where f  denotes the carrier frequence, d is the distance from RM,N
i,j=1 to MD. Hence, the path loss between U-M 

is formulated as

	 P Lk
i,j(dB) = PLoS · P LLoS + PNLoS · P LNLoS = PLoS · P LLoS + (1 − PLoS) · P LNLoS � (8)

For further expression, P Lk
i,j(dB) is converted to the following equation

	
P Lk

i,j = 10 exp
(

P Lk
i,j(dB)
10

)
� (9)

Consequently, according to33,the U-M link channel gain is given by

	 hk
i,j = sk

i,j

(
P Lk

i,j

)−1/2� (10)

where sk
i,j  represents small-scale decay.

After25, ϕ = diag[λ1ejθ1,1 , λ2ejθ1,N , ..., λLejθM,N ] ∈ CM×N  is defined as the IRS diagonal reflection 
phase matrix, where j =

√
−1 represents the imaginary unit, λL ∈ [0, 1][0, 1] and θM,N ∈ (0, 2π) represent 

the amplitude reflection coefficient and phase shift coefficient of the RM,N
i,j=1, respectively. For simplicity, it is 

assumed in this paper that λL = 1, ∀l ∈ L, that is, each reflecting element’s antenna features independent 
control capability, enabling optimal signal reflection in ideal scenarios34.

Transmission model
Information security is ensured by injecting AN into transmitted signals, thereby lowering Eve’s signal-to-noise 
ratio (SNR). The transmitted signal generated by all MDs at the BS is mathematically represented as

	
X =

∑K

k=1
wksk + w0s0� (11)

where wk ∈ CZ×1 and w0 ∈ CZ×1 represent the beamforming vectors of the k th legal MD and AN, sk  and s0 
denote the information signals of the k th MD and AN, respectively.

The signals received by the k th MD and Eve can be expressed as follows

	 yk = ĥ
H

r,kΦGHX + n0� (12)

	 ye = ĥ
H

r,eΦGHX + n0� (13)

It is assumed that the channel matrix G = [gH
1,1, · · · , gH

1,N , · · · gH
M,N ] ∈ CZ×1 of the B-U link follows Rayleigh 

fading distribution, where gi,j  denotes the channel vector, and n0 ∼ CN (0, σ2) represents the additive 
Gaussian white noise. The channel matrices from the UAV-IRS to the k th MD and Eve are denoted as ĥH

r,k  and 

ĥH
r,e, respectively, which can be expressed as

	

ĥ
H

r,k =




h1,1(k) · · · h1,N (k)
...

. . .
...

hM,1(k) · · · hM,N (k)


� (14)

	

ĥ
H

r,e =




h1,1(e) · · · h1,N (e)
...

. . .
...

hM,1(e) · · · hM,N (e)


� (15)

Since the PS mode is used to allocate the power of information transmission (IT) and EH, we define ρ and 1 − ρ 
as the power allocation factors for IT and EH, respectively. Therefore, the received IT signals at the k th MD and 
Eve can be expressed as yID

k = √
ρkyk + nID  and yEH

k =
√

1 − ρkyk , where nID ∼ CN (0, σ2
ID) is the noise 

introduced in the IT phase.

SWIPT model
To extend UAV operational duration, we employ SWIPT for EH. The energy harvested from incident RF signals 
is given by

	
Ht =

M∑
i=1

N∑
j=1

∥∥gH
i,jX

∥∥2
� (16)
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Let η ∈ [0, 1] denote the power conversion efficiency. Thus, the harvested energy at the UAV-IRS can be 
expressed as

	
Et =

M∑
i=1

N∑
j=1

η (1 − ρ)
∥∥gH

i,jX
∥∥2

� (17)

Therefore, the EH efficiency of the system can be defined as

	
εt = Et

Ht
� (18)

The SNR for the k th MD can be calculated as

	

SNRk =
ρ|ĥH

r,kwk|2
K∑

i=0,i̸=k

|ĥH

r,kwk|2 + σ2 + σ2
ID

� (19)

The SNR at the Eve during the IT phase is given by

	

SNRe =
ρ|ĥH

r,ew0|2
K∑

i=0,i̸=k

|ĥH

r,ew0|2 + σ2
� (20)

Therefore, the average achievable SR for the k th MD can be expressed as

	 Rsec
k = [log2 (1 + SNRk) − log2 (1 + SNRe)]+� (21)

where [z]+ = max{z, 0}.

Problem formulation
Our objective is to jointly optimize the BS transmit beamforming, the UAV positioning, and the IRS phase shift 
under practical constraints to achieve significant improvement in the average SR. Accordingly, the optimization 
problem P1 is formulated as

	

P 1 : max
W,ΘM,N ,q(t)

Rsec
k

s.t. C1 : Rsec
k ≥ Rsec,min

k , ∀kεK
C2 : Rk ≥ Rmin

k , ∀kεK

C3 : 0 ≤ p =
∑
k∈K

∥ Wk ∥2≤ pmax

C4 : θM,N ∈ [0, 2π]
C5 : 0 ≤ ρ ≤ 1
C6 : Et ≥ Emin

C7 : qs = qu[1], qe = qu[n + 1]
C8 : ∥ qu[n + 1] − qu[n] ∥≤ Vmaxδt

� (22)

where Rsec,min
k  denotes the target SR for the k th MD, Rmin

k  represents its required data rate, and 
θ = [θ1,1, θ1,2, · · · θM,N ] is the phase shift vector of all IRS reflecting elements. Vmax represents the maximum 
flying speed of the UAV, n denotes the total number of discrete time slots into which the entire operation period 
T  is divided, T = nδt, where δt is the duration of each slot. The constraints C1 and C2 ensure the worst-
case SR and data rate requirements, respectively. The constraints in C3 are set to satisfy the maximum power 
constraints of the BS. The constraints in C4 are the constraints for the IRS reflecting element. C5 is the range 
constraint for the power distribution ratio. C6 guarantees minimum EH requirements while maximizing SR. 
C7 and C8 specify the UAV’s initial/final positions and the flight trajectory constraints. Given the time-varying 
characteristics of the communication environment, the UAV must adapt its strategy dynamically based on 
CSI. As a result, problem (22) poses significant challenges for traditional solution methods. Hence, alternative 
efficient approaches are required and will be introduced in the following section.

Although previous studies have provided valuable solutions, many rely on conventional optimization 
techniques such as alternating optimization (AO) or successive convex approximation (SCA). These methods 
face two main challenges when applied to our problem. First, the joint optimization problem is highly complex, 
non-convex, and involves tightly coupled high-dimensional variables. These iterative algorithms are prone to 
converging to local optima. Second, and more importantly, the maritime communication environment is highly 
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dynamic. Traditional iterative methods need to resolve the entire optimization problem whenever the channel 
state changes, making them unsuitable for the real-time decision-making required and long-term optimization.

DRL offers a powerful alternative to address these challenges, particularly the TD3 algorithm. Its actor–critic 
architecture can directly output continuous actions and, leveraging the powerful learning capability of deep 
neural networks, handle high-dimensional state spaces. The TD3 algorithm introduces improvements such as 
dual Q-networks, delayed policy updates, and target policy smoothing over DDPG, thereby enhancing stability 
and performance. Hence, DRL-based methods can provide our system with a model-free, adaptive solution that 
is capable of learning long-term optimal strategies.

TD3-based framework
Problem transformation to RL framework
Accordingly, the optimization task can be formulated as a Markov Decision Process (MDP) characterized by the 
quintuple M = {S, A, P, R, γ}. Here, the state space S  represents all possible states of the system, it describes 
the observed information of the environment. The action space A includes all possible actions that the agent 
can perform. The state transfer probability denoted as P , which describes the probability of the system will 
transition from the current state st to a subsequent state st+1 after taking action at. The reward function R 
is used to measure the immediate benefit of an action, such as the system secrecy capacity and EH efficiency, 
which determines the learning effect. There is also a discount factor denoted as γ ∈ (0, 1) is used to balance the 
immediate reward with the reward obtained in the future. The detailed description is as follows:

State Space The system state represents the agent’s observable environmental information. At the t th time 
step, the state information primarily consists of the channel of B-U link hB,U

i,j , the U-M link hk
i,j , the U-E link 

he
i,j , the current position of the UAV qu(t), and the current energy level of the UAV Et. Therefore, the state st 

is expressed as

	 st =
{

hB,U
i,j , hk

i,j , he
i,j , qu(t), Et

}
� (23)

Action space At the t th time step, the UAV-IRS system selects an action at ∈ A based on the current state st. 
The action space includes all feasible actions the agent can execute within the environment. It comprises five 
main components, the BS beamforming vector wt, the AN beamforming vector w0, the IRS phase shift vector 
θM,N , the UAV movement adjustment qm and the power allocation ratio ρ. Hence, the action space is given by

	 at = {wt, w0, θM,N , qm, ρ}� (24)

Reward function The reward function assesses the effectiveness of the learned decision policy. It determines the 
expected feedback received by the agent upon executing a selected action. However, in practice, we observe that 
directly using the optimization objective function (22) as the reward function may result in unstable training or 
poor convergence. Therefore, we introduce appropriate penalty terms for adjustment. Without loss of generality, 
the reward function is reformulated as follows

	 Rt = ω1Rs + ω2Re� (25)

where coefficients ω1 and ω2 represent the weighting factors for SR and EE, respectively, where ω1 ≥ ω2 and 
ω1 + ω2 = 1.

The individual reward components are defined as piecewise functions with penalties for constraint violation:

	
Rs =

{
Rsec

k , if Rsec
k ≥ Rsec,min

k

Rsec
k − ρp(Rsec,min

k − Rsec
k ), if Rsec

k < Rsec,min
k

� (26)

	
Re =

{
Et, if Et ≥ Emin

Et − ρp(Emin − Et), if Et < Emin
� (27)

where Rt represents the total reward calculated for the agent at a given time step, Rs and Re denotes the reward 
component derived from the system’s actual SR and harvested energy, including any penalties for not meeting 
the minimum requirement, respectively, Rmin

k  and Rsec,min
k  are required to meet a minimum threshold of 1 

bps/Hz and 0.1 bps/Hz, respectively. Emin must satisfy a minimum harvested energy requirement of 0.1 W, 
and ρp is a penalty coefficient, set to 2 in our implementation, and ρp is a penalty coefficient, set to 2 in our 
implementation.

The MDP aims to derive an optimal control policy that maximizes the long-term expected reward for all 
state-action pairs under the policy’s operation. The maximum total long-term reward attainable by the agent 
can be defined as

	
Qπ(s, a) = Eπ

[
∞∑

k=0

γk Rt+k+1| st = s, at = a

]
� (28)

where Rt+k+1 denotes the immediate reward at future step k, and Qπ(s, a) denotes the action value function.
The Bellman equation describes the recursive relationship of the state action value function. Accordingly, it 

can be expressed as
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Qπ(s, a) = Eπ

[
Rt+1 + γ

∑
a′

π (at+1| st+1) Qπ (st+1, at+1)| st = s, at = a

]
� (29)

where π(at+1|st+1) denotes the probability of at+1 in st+1.
The target Q-value is defined through the Bellman equation, which combines the immediate reward Rt+1 

and the maximum future Q-value, and can be expressed as

	
yt = rt+1 + γ max

at+1
Qtarget(st+1, at+1, π(st+1; θπ); θQ)� (30)

where Qtarget(st+1, at+1) represents the Q-value computed by the target network, which is used to reduce 
instability during the training process.

To update the Q-network, we minimize the error between Qπ(st, at) and the yt by optimizing the mean 
squared error of critic network. The loss function can be expressed as

	
L(θQ) = E(st,a,r,st+1)∼D

[(
yt − Qπ(s, a; θQ)

)2
]

� (31)

where Qπ(s, a; θQ) denotes the output of the current Q-network, representing the Q-value for taking action at 
in state st.

The DDPG algorithm is a DRL method designed for continuous action spaces, employing an actor-critic 
framework as its core architecture. It adopts an actor-critic architecture as its core framework and employs 
four deep neural networks: the training-actor network µ(·|θµ), training-critic network µ(·|θQ), and their 
corresponding target-actor network µ′(·|θµ′

) and target-critic network Q′(·|θQ′
)35. During training, the 

actor network updates  θµ  by enhancing the expected cumulative return, while the critic network updates 
θQ by reducing the error between the actual and target Q-value. Through this iterative process, the policy is 
progressively optimized.

The TD3 algorithm is an improved DRL method designed for continuous control tasks. Its core architecture 
is based on the DDPG framework, which incorporates the Double Q-network mechanism to optimize action-
value function estimation36. Specifically, TD3 adopts two critic networks and adopts a minimum value policy 
to mitigate the Q-value overestimation bias. This significantly improves the training stability and effectiveness 
in continuous action space. As illustrated in Fig. 2, the TD3 algorithm utilizes a dual-network architecture, 
consisting of two separate critic networks to ensure robust value function approximation.

TD3-based UAV-IRS configuration
Compared with the DDPG algorithm, the TD3 algorithm primarily addresses the problems of Q-value 
overestimation and unstable policy update during the training process of DDPG. The major improvements of 
TD3 can be summarized in the following three aspects:

Double Q-learning TD3 utilizes dual separate critic networks, denoted as Qtarget,1 and Qtarget,2, and 
computes the target Q-value using the smaller of the two estimates. This conservative strategy effectively 
mitigates overestimation bias in Q-values and enhances the stability of the training process. Accordingly, the 
target Q-value can be reformulated as:

	
yt = rt+1 + γ min

i=1,2
Qtarget,i

(
st+1, a′

t+1
)

� (32)

Fig. 2.  TD3 network architecture diagram.
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a′
t+1 is the next action generated by the policy network. To improve robustness, a small amount of noise 

is typically added to this action, a technique known as target policy smoothing. This approach helps reduce 
Q-value overestimation and improves the stability of IRS phase shift and BS transmit power optimization.

Delayed Policy Update The actor network (policy network) and critic network (value network) are updated 
simultaneously of the DDPG. However, if the critic network is insufficiently trained, frequent update of actor 
network may amplify estimation errors, leading to unstable learning. To address this issue, TD3 adopts a delayed 
policy update mechanism, where the critic network is updates more frequently than the actor network, which is 
updated with a delay of d steps after each critic update to help mitigate the risk of getting stuck in local optima. 
During actor network updates, TD3 maximizes the Q-value estimated by the critic network through gradient 
ascent. The actor network’s loss function is given by

	 ∇θµ J = E
[
∇aQ1(s, a; θQ

1 )|a=µ(st) · ∇θµ µ(s; θµ)
]

� (33)

where ∇aQ1(s, a; θQ
1 ) denotes the gradient of the Q-value from the critic network with respect to the action, 

and µ(s|θµ) represents the gradient of the actor network. The objective of the actor network is to update its 
parameters θµ via gradient ascent.

Target Policy Smoothing TD3 introduces clipped noise to the target action in order to smooth the policy, it 
can prevent the policy network from overfitting to a deterministic action, thereby enhancing robustness during 
training. The smoothed target action is given by

	 a′
t+1 = πtarget (st+1) + clip(ε, −c, c), ε ∼ N (0, σ2)� (34)

where ε is the clipped noise sampled from a normal distribution with standard deviation σ, and c is the clipping 
threshold.

The TD3’s loss function is computed as the mean squared error between the predicted and target Q-value yt, 
it can be expressed as

	
L(θQ) = E

[(
Qi

(
st, at; θQ

)
− yt

)2
]

, i ∈ {1, 2}� (35)

Complexity analysis
Our computational complexity analysis focuses on two phases: offline training and online execution. During 
the offline training phase, the time complexity of the TD3 algorithm primarily stems from the forward and 
backward propagation of the two critic networks and one Actor network. Assuming a state space dimension of 
ds, an action space dimension of da, a hidden layer size of h, and a batch size of b, the total time complexity for 
a single update is approximately O(b · ((ds + da) · h + h2)). The space complexity is determined by the size 
of the network parameters and the experience replay buffer. In contrast, the algorithm exhibits a significant 
advantage in the online execution phase, requiring only a single forward pass through the trained actor network. 
Its complexity is constant and far lower than traditional iterative optimization methods. For example, baselines 
such as AO method must repeatedly solve complex non-convex subproblems at each time step, involving 
computationally expensive operations like matrix inversions, which results in a much higher online complexity 
than our TD3 approach. Therefore, the low online execution complexity of our DRL-based algorithm makes it 
highly suitable for real-time decision-making in dynamic communication environments.

Based on the above, the complete training procedure is summarized in Table 1. Firstly, experience needs to be 
collected from the environment, during each interaction, the current and new state are stored in the replay buffer, 
followed by random sampling for network training. Next, the Double Q-network is employed to compute the 
target Q-value and the critic network are updated accordingly. The actor network is optimized using a delayed 
update strategy, while the target networks are adjusted through a soft update strategy. In addition, TD3 achieves 
target policy smoothing through introducing noise to the target action, which helps reduce action noise and 
improves training stability. Through continuous interaction with the environment, TD3 updates the critic and 
actor networks, softly updates the target networks, and progressively improves the learned policy. The algorithm 
continues this iterative process until convergence or until a predefined termination condition is met. This update 
process allows TD3 to achieve superior stability and performance compared to the traditional DDPG algorithm, 
especially in reinforcement learning tasks with continuous action spaces and increased task complexity.

Simulation results analysis
This section presents the evaluation and analysis of the security performance in the UAV-IRS-assisted maritime 
communication system based on the proposed TD3 algorithm, with particular attention to scenarios involving 
eavesdropping threats. The simulation scenario is constructed within a 3D space of dimensions 1000 × 1000 × 
100 meters. The environment includes a BS, a UAV-mounted IRS platform, three MDs, and an Eve. Specifically, 
the BS is fixed at the (0,0,25) and equipped with 4 antennas. The UAV-IRS with the IRS consisting of (M×N) = 16 
reflecting elements. To simulate realistic flight constraints, the UAV-IRS is restricted to a rectangular horizontal 
area centered at its initial location. It is allowed to move within ±100 meters along both the x- and y-axes, with 
its altitude confined between 0 and 100 meters. The system is configured to operate at a carrier frequency of 2.4 
GHz, and the ambient noise power is set to −110 dBm.

In our implementation, both the actor and critic networks of the TD3 agent are constructed as fully connected 
neural networks, also known as multilayer perceptrons (MLPs). The actor network takes the vectorized state as 
input and consists of two hidden layers with 400 and 300 neurons, respectively, each activated by ReLU functions. 
The output layer employs a Tanh activation function to generate normalized actions, which are subsequently 
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scaled to their actual physical ranges. The actor network is optimized using the Adam optimizer. The critic 
networks evaluate state–action pairs. Each critic receives a concatenated state and action vector as input and, 
similar to the actor, is composed of two hidden layers with 400 and 300 neurons activated by ReLU functions. 
The output layer contains a single neuron with a linear activation function that directly predicts the Q-value. The 
critic networks are also trained using the Adam optimizer.

To ensure compatibility with neural network inputs, all complex-valued variables (e.g., channel gains and 
beamforming vectors) are decomposed into their real and imaginary parts before being fed into the actor and 
critic networks. Consequently, each complex variable contributes two dimensions to the input or output space. 
Based on this principle, with Z=4 BS antennas, three legitimate users and an IRS of M×N=16 elements, the total 
state space and action space dimensions are calculated to be 260 and 54, respectively.

For exploration during training, zero-mean Gaussian noise with a standard deviation of 0.2 is added to the 
actions output by the actor network. This exploration noise is clipped to the range of ±0.5 to prevent excessively 
large deviations. Similar to DDPG, TD3 employs this stochastic perturbation to encourage exploration in 
continuous action spaces (Table 2).

Figure 3 shows the relationship between the average SR and the number of training samples. It can be 
observed that the proposed TD3 algorithm consistently achieves higher reward values compared to the other 
two algorithms. This is due to Soft Actor-Critic (SAC) balances exploration and exploitation by maximizing 
an entropy-regularized reward function. However, it exhibits large performance fluctuations during the early 
training phase. As training progresses, SAC shows a relatively faster convergence rate in environments that 
require efficient exploration, and the curve gradually stabilizes at a higher level. In contrast, the DDPG suffers 
from overestimation bias, which results in performance oscillations, convergence difficulties, and unstable 
policy updates. These issues are exacerbated in dynamic and complex maritime communication environments, 
leading to lower reward values and significant instability. The TD3 algorithm proposed in this paper effectively 
alleviates these problems. By introducing mechanisms such as delayed policy updates and double Q-networks, 
TD3 mitigates the effects of overfitting and rapid value overestimation, leading to more stable and reliable 
training performance. These results verify the superiority of the TD3 approach.

Figure 4 shows how the SR varies with the number of IRS reflecting elements. As the element count increases, 
the SR also rises. This indicates that a larger IRS array significantly enhances secrecy performance, and the system 
can achieve finer-grained beamforming by adaptively tuning the phase responses across an expanded array of 
elements. As a result, the signal quality of the legitimate link is enhanced, while the equivalent channel of the 
eavesdropping link is effectively suppressed, leading to an overall improvement in SR performance. Moreover, 
the results further show that deploying more antennas at the BS leads to higher SR. This is because additional 
antennas provide greater beamforming gain, allowing the signal energy to be more precisely focused toward the 
legitimate user. At the same time, the energy directed toward potential Eves is minimized, thereby enhancing 
the overall communication security. In conclusion, simultaneously increasing the IRS elements and BS antennas 
greatly enhances the average SR.

Table 1.  TD3-based optimization algorithm.
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Fig. 4.  SR for different number of antennas and IRS reflecting elements.

 

Fig. 3.  Performance comparison of different DRL methods.

 

Notation Parameter Value

a LoS parameter 5

b LoS parameter 0.5

Kr Rician factor 3

σ Noise power − 110 dBm

ηLoS LoS factor of B-U link 0.1

ηNLoS NLoS factor of B-U link 21

γ Discount factor 0.99

r Soft update rate 0.005

α Actor learning rate 1 × 10⁻4

β Critic learning rate 1 × 10⁻3

M Replay buffer size 1 × 10⁶

D Batch size 256

Table 2.  Summarizes the simulation and training parameters in detail.
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Figure 5 compares the SR achieved by three DRL algorithms (TD3, SAC, DDPG) and the AO algorithm under 
different IRS reflecting element configurations. The results demonstrate that all schemes exhibit a significant 
improvement in SR with the expansion of the IRS element array. Under identical configurations, the proposed 
scheme (TD3) consistently outperforms both SAC and DDPG, as well as the traditional AO algorithm. The AO 
algorithm shows the poorest performance, which highlights the necessity of using DRL algorithms to optimize 
and improve system performance. The advantage becomes more pronounced when using larger numbers of 
reflecting elements. These findings validate the effectiveness of our proposed TD3 algorithm for dynamic UAV-
IRS collaborative optimization.

Figure 6 depicts how the secrecy rate varies with the BS’s maximum transmit power for the proposed scheme 
and three reference schemes. As expected, all schemes show an increasing trend in SR as the BS transmit power 
increases, since higher transmission power improves the SNR of the legitimate user. Among the benchmarks, 
the "Random UAV Position" scheme achieves greater SR improvement compared to "Random Transmit 
Beamforming" and "Random IRS Phase Shift" under the same power levels. This highlights the sensitivity of 
UAV placement to overall system performance. Notably, the proposed scheme consistently outperforms all 
alternatives across the full power range. This confirms that joint optimization of transmit beamforming, UAV 
positioning, and IRS phase shifts significantly enhances the secrecy capacity and anti-eavesdropping capability 
of the system, thereby improving PLS.

Figure 7 compares the EH performance of different strategies under varying transmit power levels. The 
results demonstrate that the proposed joint optimization scheme achieves significant advantages, particularly 
in high-power regions, where its performance improvement becomes more pronounced. Furthermore, the EH 
efficiency of all four schemes monotonically increases with transmit power. Among them, the random UAV 
position strategy generally outperforms the other two baseline methods, highlighting the critical role of UAV 
placement in energy transfer efficiency. In contrast, the random IRS phase shift strategy exhibits the poorest 
performance, indicating that IRS phase control plays a crucial role in system optimization.

Fig. 6.  SR versus maximum transmit power for different scenarios.

 

Fig. 5.  SR versus number of IRS reflecting elements under different scenarios.
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Figure 8 illustrates the impact of the power allocation ratio between EH and IT on both SR and EE under 
different schemes. As shown in the figure, with an increasing EH time ratio, the SR gradually decreases, while the 
EE increases. Due to the longer EH duration enables the UAV to harvest more energy, whereas the reduced IT 
time limits data transmission, thus leading to lower SR. The proposed dynamic optimization scheme achieves an 
effective balance between SR and EE within the interval 0.3 and 0.5. In this range, it maintains a relatively high SR 
while reaching a significantly higher peak EE compared to the fixed-phase scheme. The inferior performance of 
the fixed-phase scheme arises from its inability to suppress the eavesdropping link and its reliance on increased 
transmit power to offset performance degradation. Furthermore, the no-IRS scheme yields the lowest SR and 
EE among all evaluated methods, due to its lack of active channel control capability. These results highlight the 
importance of dynamic optimization in balancing the EH and IT, and confirm its effectiveness in enhancing 
both security and EE.

As depicted in the Fig. 9, it can be seen that the UAV remains in close proximity to the user cluster, tending 
to hover directly above the users. When channel conditions deteriorate, the UAV dynamically maintains or 
increases its distance from the eavesdropper to maximize link quality and ensure secrecy rate. In addition, 
whenever feasible, the UAV moves as close as possible to the BS to harvest energy. This observation validates 
the effectiveness of the proposed DRL-based approach in solving the complex, multi-objective trajectory 
optimization problem.

Conclusion
This paper addresses the challenges of secure communication and limited battery capacity in UAV-assisted 
IRS-enabled communication systems. We introduce a UAV-IRS framework into a maritime communication 
environment with the presence of Eves. In this setting, AN is embedded into the transmitted signals to enhance 
PLS, while the SWIPT mechanism ensures that the UAV meets its minimum EH requirements. Specifically, 
we construct an optimization problem to enhance the system’s average SR through jointly optimizing the BS 
transmit beamforming, IRS phase shift configuration, and UAV deployment location. To address the inherent 

Fig. 8.  SR and EE versus power allocation factor.

 

Fig. 7.  Energy versus maximum transmit power for different scenarios.
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non-convexity of this problem, we propose a TD3 algorithm within a DRL framework, which generates 
optimal solutions for both eavesdropping mitigation and EH. Simulation results confirm the convergence and 
effectiveness of the proposed algorithm. The TD3-based method significantly improves SR while satisfying the 
UAV’s minimum EH requirements. Compared with benchmark schemes, our approach demonstrates noticeable 
improvements in both SR and EH efficiency, confirming its potential for enhancing PLS and energy sustainability. 
Although this work focuses on a maritime communication scenario, the proposed secure and energy-efficient 
framework is highly generalizable. In future work, we plan to investigate robust design strategies for STAR-IRS-
assisted wireless networks under imperfect CSI, based on more practical deployment scenarios.

Data availability
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