Table 13 MSE of stratified and calibrated memory-type product estimators based on EEWMA at different values of ρ, \(\:{\lambda\:}_{1}=0.25,\:0.50,\:0.75\), \(\:{\lambda\:}_{2}=\:0.05,\:0.15,\:0.20\), and sample sizes \(\:n\).
From: Innovative memory-type calibration estimators for better survey accuracy in stratified sampling
ρ | n | λ1 = 0.25, λ2 = 0.05 | λ1 = 0.50, λ2 = 0.15 | λ1 = 0.75, λ2 = 0.20 | |||
---|---|---|---|---|---|---|---|
y** | \(\:{\widehat{\varvec{y}}}_{\varvec{m}\varvec{p}\varvec{e}}\) | y** | \(\:{\widehat{\varvec{y}}}_{\varvec{m}\varvec{p}\varvec{e}}\) | y** | \(\:{\widehat{\varvec{y}}}_{\varvec{m}\varvec{p}\varvec{e}}\) | ||
− 0.05 | 10 | 0.001191 | 0.000009 | 0.002889 | 0.000027 | 0.005610 | 0.000044 |
20 | 0.000585 | 0.000005 | 0.001432 | 0.000011 | 0.002838 | 0.000022 | |
30 | 0.000399 | 0.000003 | 0.000948 | 0.000007 | 0.001894 | 0.000015 | |
50 | 0.000238 | 0.000002 | 0.000577 | 0.000005 | 0.001126 | 0.000009 | |
200 | 0.000060 | 0.000001 | 0.000145 | 0.000001 | 0.000280 | 0.000002 | |
500 | 0.000024 | 0.000001 | 0.000058 | 0.000001 | 0.000113 | 0.000001 | |
− 0.25 | 10 | 0.001315 | 0.000009 | 0.003085 | 0.000021 | 0.006039 | 0.000041 |
20 | 0.000640 | 0.000004 | 0.001559 | 0.000011 | 0.002996 | 0.000021 | |
30 | 0.000428 | 0.000003 | 0.001036 | 0.000007 | 0.002009 | 0.000014 | |
50 | 0.000253 | 0.000002 | 0.000623 | 0.000004 | 0.001194 | 0.000008 | |
200 | 0.000006 | 0.000001 | 0.000155 | 0.000001 | 0.000298 | 0.000002 | |
500 | 0.000026 | 0.000001 | 0.000062 | 0.000001 | 0.000121 | 0.000001 | |
− 0.50 | 10 | 0.001371 | 0.000008 | 0.003366 | 0.000020 | 0.006556 | 0.000038 |
20 | 0.000071 | 0.000004 | 0.001685 | 0.000010 | 0.003307 | 0.000019 | |
30 | 0.000462 | 0.000003 | 0.001115 | 0.000006 | 0.002178 | 0.000013 | |
50 | 0.000277 | 0.000002 | 0.000678 | 0.000004 | 0.001307 | 0.000008 | |
200 | 0.000070 | 0.000004 | 0.000170 | 0.000001 | 0.000327 | 0.000002 | |
500 | 0.000027 | 0.000001 | 0.0000678 | 0.000001 | 0.000129 | 0.000001 | |
− 0.75 | 10 | 0.001501 | 0.000008 | 0.003622 | 0.000018 | 0.007103 | 0.000035 |
20 | 0.000763 | 0.000004 | 0.001845 | 0.000009 | 0.003576 | 0.000017 | |
30 | 0.000511 | 0.000003 | 0.001237 | 0.000006 | 0.002351 | 0.000015 | |
50 | 0.000302 | 0.000002 | 0.000731 | 0.000004 | 0.001414 | 0.000007 | |
200 | 0.000074 | 0.000001 | 0.000183 | 0.000001 | 0.000351 | 0.000002 | |
500 | 0.000029 | 0.000001 | 0.000074 | 0.000001 | 0.000142 | 0.000001 | |
− 0.95 | 10 | 0.001614 | 0.000007 | 0.003863 | 0.000017 | 0.007468 | 0.000032 |
20 | 0.000793 | 0.000004 | 0.001934 | 0.000008 | 0.003774 | 0.000016 | |
30 | 0.000248 | 0.000002 | 0.001297 | 0.000006 | 0.002491 | 0.000011 | |
50 | 0.000325 | 0.000002 | 0.000771 | 0.000003 | 0.001502 | 0.000006 | |
200 | 0.000079 | 0.000001 | 0.000196 | 0.000001 | 0.000371 | 0.000002 | |
500 | 0.000003 | 0.000001 | 0.000078 | 0.000001 | 0.000150 | 0.000001 |