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Lung cancer ranks among the top causes of cancer-related deaths globally. Prompt diagnosis and 
timely intervention play a vital role in enhancing patient prognosis and increasing survival chances. 
Although C15ORF48 expression is generally elevated in tumor tissues, it is reduced in specific cancers 
like colorectal cancer, and its role across pan-cancer remains unclear. This research investigates the 
expression, immune infiltration, and predictive significance of C15ORF48 in pan-cancer using multiple 
databases, including TIMER2.0, GEPIA, and the Human Protein Atlas. Additionally, we use cBioPortal, 
PhosphoNET, and AlphaFold to analyze the distribution of genetic alterations, phosphorylation 
sites, and pathogenic hotspots in C15ORF48. C15ORF48 expression is generally elevated in tumor 
versus normal tissues, and its distribution in lung tissues is predominantly cytoplasmic. C15ORF48 
expression is positively correlated with the level of expression shows a positive association with the 
degree of CD8 + T cell infiltration.,etc. Furthermore, higher C15ORF48 expression is associated with 
poorer survival in lung adenocarcinoma, etc. Genetic alterations in C15orf48, including S29F, T38I, and 
K61N, and predicted phosphorylation sites such as S28, S29, T38, and T53, are identified across various 
cancers. Additionally, pathogenic hotspots, including G25D, S28K, and T38W, are highlighted. The 
results indicate that C15ORF48 could play a significant role in pan-cancer, particularly in lung cancer, 
and may serve as a potential biomarker for prognosis and targeted therapies.
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Cancer is the second leading cause of death in the United States and the primary cause among individuals 
under 85 years. Incidence rates rose gradually from 1975, peaking at approximately 500 per 100,000 around 
1990, before declining and stabilizing at about 470 per 100,000 by 20201. Lung cancer ranks as the second most 
prevalent malignancy globally and remains a primary contributor to cancer-associated mortality2. And lung 
cancer as the leading cause of cancer-related deaths, with an estimated 2.5 million new cases and 1.8 million 
deaths in 20223. In the United States alone, an estimated 234,580 new cases of lung and bronchial cancer are 
projected for 2024, with approximately 125,070 deaths attributed to these diseases, accounting for about 21% of 
all cancer-related mortality1. Cancer treatment has advanced from early surgical and radiotherapeutic approaches 
to contemporary multimodal strategies incorporating chemotherapy, targeted agents, and immunotherapies4. 
Looking ahead, future therapies will prioritize early detection, advanced immunotherapies, nanomedicines, 
stem cell interventions, and emerging techniques5. For lung cancer in particular, timely diagnosis and timely 
therapy of lung cancer are crucial for improving patient survival rates6. However, there is still a lack of reliable 
biomarkers for early diagnosis. Therefore, identifying new biomarkers and targeted therapeutic pathways 
remains an urgent research challenge.

C15ORF48 was initially discovered in studies of esophageal squamous cell carcinoma (ESCC)7 exhibits high 
expression levels in esophageal tissues and also significantly expressed in stomach and intestines8. The role of 
C15ORF48 remains unclear, but it has been identified as being associated with inflammatory responses9. Its 
expression has been shown to be reduced in colorectal cancer10. Methylation of C15orf48, which is associated 
with gene downregulation, has been confirmed in cervical squamous cell carcinoma cells11. Future studies could 
employ CRISPR screening to identify C15ORF48 as a drug resistance target, similar to approaches revealing 
key genes for trametinib resistance12. This could elucidate C15ORF48’s role in resistance mechanisms and guide 
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targeted therapies. Abnormal expression of this gene has also been observed in several other types of cancer13,14. 
Recent studies have advanced our understanding of tumor microenvironment (TME) dynamics and biomarker 
discovery in pan-cancer contexts, providing a robust framework for integrating multi-omics data to predict 
immunotherapy responses. For instance, tools like IOBR enable systematic TME deconvolution and signature 
scoring, facilitating the identification of immune-related patterns across malignancies15. Similarly, optimized 
dynamic network biomarkers have deciphered high-resolution heterogeneity in thyroid cancers, highlighting 
critical transitions in progression that could inform targeted interventions16. Furthermore, machine learning 
frameworks such as iMLGAM have demonstrated potential in predicting pan-cancer immunotherapy 
outcomes through genetic algorithm-driven multimatics analysis17. These approaches underscore the need for 
comprehensive analyses like ours, which integrate expression, mutations, and modifications for C15ORF48.

At present, research on this gene has mainly focused on adenosquamous carcinoma and colorectal cancer, 
with relatively little exploration in other types of cancer. In the future, additional investigations are required to 
broaden the research focus and clarify the involvement of C15ORF48 in pan-cancer. This will facilitate a deeper 
comprehension of its wider biological functions in oncology and assess its viability as a candidate for targeted 
therapy.

This study employs bioinformatics approaches, integrating multiple public databases, to explore the 
expression patterns of C15ORF48 across pan-cancer and its potential mechanisms of action.

Materials and methods
Analysis of C15ORF48 expression levels in normal and cancerous tissues by Timer2.0 and 
GEPIA
We used the TIMER2.0 database to assess C15orf48 expression differences between normal and cancerous tissues. 
TIMER 2.0 is a widely used web server in tumor immunology research. It employs a range of computational 
approaches to quantify immune cell infiltration within TCGA tumor samples or transcriptomic datasets. The 
platform assists users in identifying associations between different cancer types, as well as between clinical and 
genomic features, enabling comprehensive analysis and visualization of tumor-infiltrating immune cells.

The TIMER2.0 (http://timer.cistrome.org/) database was used to analyze differential gene expression of 
C15ORF48 across cancer types and normal tissues via the Gene DE module, which is primarily applied to 
investigate the differential expression levels of specific genes across multiple cancer types and normal tissues in 
TCGA18–20.

To validate these findings, the GEPIA database was employed, integrating TCGA and GTEx data.
GEPIA(http://gepia.cancer-pku.cn/) is a comprehensive data analysis tool that integrates information from 

TCGA and GTEx databases, specifically intended for analyzing gene expression between tumor and normal 
tissues21. Its capabilities include patient survival evaluation, identification of genes with similar profiles, 
correlation assessments, and dimensionality reduction techniques, along with various additional functions.

On the GEPIA homepage, we entered “C15ORF48” into the “Enter gene name” input box and clicked the “go 
pia” button to initiate the search. This operation generated a “Gene Expression Profile” across all tumor samples 
and paired normal tissues, allowing us to conduct further detailed analysis.

Using the human protein atlas database to investigate the localization of C15ORF48 in lung
Protein expression and localization were examined using the Human Protein Atlas ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​p​r​o​t​e​i​n​a​t​l​a​s​.​o​
r​g​/​​​​​)​, a comprehensive database offering detailed data on protein expression levels and their localization within 
human tissues and cells, including data on normal tissues, cancer tissues, cell lines, and subcellular locations22–28. 
We navigated to the platform’s homepage. In the search bar, input “C15ORF48” and click “Search” to proceed 
to the next page. Then, selected the entry for the C15ORF48 molecule to view detailed information. C15ORF48 
was searched, and lung tissue staining was reviewed under the “Tissue” tab. Subsequently, under the “LUNG 
-Antibody staining” section of the page, the corresponding image was located.

Relationship between C15ORF48 expression levels and immune infiltration
TIMER2.0’s “Immune” module analyzed associations between C15orf48 and immune alterations or clinical 
features. C15orf48 was input, and cells like CD8 + T cells, neutrophils, common lymphoid progenitors, and 
gamma-delta T cells were selected to evaluate infiltration correlations.

Association between C15ORF48 expression levels and patient survival
Survival impact was assessed via GEPIA’s “Survival” tab, with C15orf48 input, overall survival selected, median 
cutoff, hazard ratio/95% confidence interval enabled, months as axis units, and datasets like LUAD, LGG, LIHC, 
and SKCM chosen for plotting.

Investigating the association between C15orf48 and tumor mutations using cBioPortal
To further explore the connection between C15orf48 gene and tumors, the cBioPortal platform was employed 
to explore the association between C15orf48 and gene mutations. cBioPortal(https://www.cbioportal.org/) is a 
powerful online tool that enables the mining, transformation, and visualization of cancer genomics datasets29–31. 
“Quick Search” queried C15orf48 for alteration distributions. The “Mutations” tab added “Cancer Hotspots” and 
“Post-Translational Modifications (dbPTM)” annotations for locus mapping.

Prediction of C15orf48 phosphorylation sites using the PhosphoNET database
Post-translational modifications, particularly phosphorylation, represent a crucial mechanism for regulating 
protein function. To predict whether C15orf48 contains phosphorylation sites and to identify their locations, the 
PhosphoNET database is utilized. PhosphoNET is a comprehensive platform designed to explore and analyze 
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protein phosphorylation sites and their potential biological roles32. Navigate to the PhosphoNET website ​(​​​h​t​t​p​:​/​
/​w​w​w​.​p​h​o​s​p​h​o​n​e​t​.​c​a​/​​​​​)​, “C15orf48” was queried for results.

Forecast the three-dimensional configuration and pathogenic hotspots of C15orf48 by 
AlphaFold
To predict the three-dimensional structure and pathogenic hotspots of C15orf48, start by accessing the AlphaFold 
database (https://alphafold.com/). AlphaFold is an AI system capable of predicting a protein’s three-dimensional 
structure based on its amino acid sequence33–35. Access the AlphaFold database and enter “C15orf48” to query 
its predicted structure. From the results, select the entry with “Source Organism” as Homo sapiens to obtain 
the predicted structure and pathogenicity heatmap. Next, integrate phosphorylation sites from PhosphoNET 
and tumor hotspots from cBioPortal. From the pathogenicity heatmap, select key sites such as G25D, S28K, 
S29K, T38W, and K61N. Clicking “AlphaMissense Pathogenicity” will automatically highlight the corresponding 
amino acid locations on the 3D structure.

Results
The expression level of C15ORF48 is generally higher in cancerous tissues compared to 
normal tissues
As illustrated in the Figure S1A, the box plot enables a clear depiction of the median expression, range, and 
significant differences between cancer and normal samples. Overall, this diagram presents the distribution of 
mRNA expression levels of the C15ORF48 gene in cancer tissues and normal tissues across various cancer types. 
A total of 33 cancer types is included in the analysis, with 19 of them showing significant statistical differences. 
Notably, in these 19 cancer types, the expression level of the C15ORF48 gene is markedly higher in cancer 
tissues in comparison with the corresponding normal tissues in 14 of the cases. In summary, the expression of 
C15ORF48 is typically elevated in tumor tissues relative to normal counterparts.

In Figure S1B, A total of 33 cancer types is included. Among these, 23 cancer types exhibit statistically 
significant differences in gene expression, with 20 of them showing significantly higher C15ORF48 gene 
expression levels within tumor samples relative to matched normal tissues.

In Figure S1C, Among the 31 cancer types analyzed, a statistically significant difference was observed in 
several cases. Notably, in 26 of these cancer types, the level of gene expression of the C15ORF48 gene was 
markedly elevated in tumor tissues relative to their matched normal counterparts.

C15ORF48 exhibits low expression levels in lung tissue, characterized by weak staining 
signals overall
Figure S2 reveals that C15ORF48 shows weak expression in airway epithelial cells, with minimal or no detectable 
staining in the surrounding alveolar regions. Prior investigations have shown that C15ORF48 is predominantly 
expressed in the gastrointestinal tract, which aligns with these findings.

C15ORF48 expression shows a notable positive relationship with the infiltration levels of 
several immune cell types
Figure S3 illustrates the association between the C15ORF48 gene and infiltration of different immune cells. From 
the figure, it can be concluded that a significant association exists between C15ORF48 gene expression and the 
infiltration levels of various immune cell populations.

The expression level of C15ORF48 is negatively correlated with the survival rates of patients 
with LUAD, LGG, LIHC, and SKCM
Figure S4A demonstrates the correlation between C15ORF48 gene expression and overall survival in LUAD 
cases. The blue and red curves indicate the low and high C15ORF48 expression groups, respectively. Survival 
analysis revealed a statistically significant disparity between groups, with patients exhibiting elevated C15ORF48 
expression demonstrating poorer survival outcomes. These findings indicate an inverse relationship between 
C15ORF48 expression and overall survival, though disease-free survival showed no statistically significant 
association. Additionally, the following Figure S4B、S4C、S4D indicate that C15ORF48 expression levels 
in cancers such as LGG, LIHC, and SKCM are also negatively correlated with patient survival. Whether this 
phenomenon reflects a general trend warrants further research and validation.

Frequency of C15orf48 alterations across various cancer types
The figure S5A demonstrates the distribution of different genetic alterations in the C15orf48 gene in multiple 
cancer types. The highest observed frequency of genetic alterations reaches approximately 4%. In total, 32 cancer 
types are represented, with genetic alterations detected in 22 of them. Notably, genetic alterations are present in 
both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC).

Distribution and characteristics of C15orf48 mutation sites in cancer
In Figure S5B, key mutations include S29F in colon adenocarcinoma, T38I in melanoma, and K61N in rectal 
adenocarcinoma (full list in Supplementary Table S1).

These mutation sites may have significant impacts on protein function, and further research could help 
elucidate the specific roles these mutations play in cancer development. Epigenetic modifications also play a 
crucial role in gene expression and the progression of diseases. Key types of epigenetic modifications include 
acetylation, phosphorylation, and glycosylation. In the C15orf48 gene, acetylation is observed at position 9, 
while glycosylation occurs at positions 38, 53, and 57. Mutations at these sites could also contribute to disease 
and represent potential pathogenic targets for future studies.
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Phosphorylation sites of C15orf48 and their research significance
From Figure S6, it can be observed that C15orf48 contains five potential phosphorylation sites: S28, S29, T38, 
T53, and T57. Among these, S28 and S29 have been experimentally validated in mammals, providing robust 
evidence for their phosphorylation. Although T38, T53, and T57 lack direct experimental validation, they 
have been predicted as likely phosphorylation sites, warranting further investigation. Additionally, analysis 
via cBioPortal reveals that T38, T53, and T57 are mutation hotspots in tumors and overlap with regulatory 
phosphorylation sites, suggesting their potential significance. These sites may serve as promising candidates for 
tumor screening and warrant detailed exploration in future studies.

The modeled 3D structure of C15orf48 and its potential pathogenic sites
From Figure S7A, it indicates that the majority of the predicted model is colored blue, indicating a high level of 
confidence in the predictions. From Fig. 7B, it can be observed that the red-marked sites represent amino acid 
residues with higher pathogenicity, including critical sites such as G25, S28, S29, T38, and K61. These sites are 
likely closely associated with the regulation of protein function and disease mechanisms, warranting further 
investigation. From Figure S7C, it can be seen that when glycine (G) at position 25 is replaced by aspartic acid 
(D), the pathogenicity score is 0.765, the pLDDT score is 97.99, and the AlphaMissense Pathogenicity score 
is 0.415. This indicates that the G25 mutation has a moderate level of pathogenic potential, while the high 
structural stability score suggests it may significantly impact protein function. From Figure S7D, it is evident 
that when serine (S) at position 28 is replaced by lysine (K), the pathogenicity score is 0.969, the pLDDT score is 
97.48, and the AlphaMissense Pathogenicity score is 0.443. This result suggests that the S28 mutation exhibits a 
high pathogenic potential. Moreover, the predictive model indicates that this site is structurally stable, implying 
its potential role in protein activity. From Figure S7E, it can be seen that when serine (S) at position 29 is replaced 
by lysine (K), the pathogenicity score is 0.918, the pLDDT score is 95.54, and the AlphaMissense Pathogenicity 
score is 0.400. This indicates a significant pathogenic potential for the mutation. Combined with the stability 
prediction, S29 is likely to influence the functional domain of C15orf48. From Figure S7F, it can be observed that 
when threonine (T) at position 38 is replaced by tryptophan (W), the pathogenicity score is 0.597, the pLDDT 
score is 83.02, and the AlphaMissense Pathogenicity score is 0.280. This result suggests that the T38 mutation 
has a certain level of pathogenicity, and its structural changes may have potential impacts on the local structure 
or interaction interface of the protein.From Figure S7G, it can be seen that when threonine (T) at position 38 
is again replaced by tryptophan (W), the pathogenicity score increases to 0.913, the pLDDT score is 89.75, and 
the AlphaMissense Pathogenicity score rises to 0.872. This high pathogenicity score Implies that T38 may play a 
critical role in disease occurrence under specific environmental or functional contexts.

Discussion
This study systematically applied bioinformatics tools to comprehensively analyze the expression patterns, 
genetic mutations, phosphorylation modifications of C15ORF48 across multiple cancer types, uncovering its 
potential biological functions and clinical relevance in cancer.

Our study reveals elevated C15ORF48 expression in cancer tissues versus normal tissues across multiple 
cancer types, suggesting its involvement in tumorigenesis and progression. These findings are consistent with 
the study by Chen et al., which reported elevated C15ORF48 expression in various cancers and its association 
with macrophage infiltration in thyroid cancer (THCA)14. Furthermore, our study observed that C15ORF48 is 
expressed at relatively low levels in lung tissues and is primarily localized to the cytoplasm. This result aligns 
with earlier research indicating that C15ORF48 is predominantly expressed in healthy gastrointestinal tissues7 
suggesting a tissue-specific regulatory role for C15ORF48. In terms of the immune microenvironment, it reveals 
a significant positive correlation between C15ORF48 and the infiltration levels of various immune cells, such as 
CD8 + T cells, neutrophils, common lymphoid progenitors, and gamma-delta T cells. The phosphorylation sites 
S28.

C15ORF48 may regulate immune infiltration through cytokine signaling pathways or immune checkpoint 
modulation, potentially by influencing ligand-receptor interactions that alter the recruitment and function 
of immune cells in the tumor microenvironment. Studies on similar genes have demonstrated immune 
evasion mechanisms in cancer, where dysregulated cell-to-cell networks—driven by specific ligand-receptor 
pairs—enable tumors to evade CD8 + T-cell surveillance or enhance regulatory cell activity, as predicted 
in computational frameworks for multicellular interactions36. In this context, C15ORF48’s overexpression 
in tumors might parallel such evasion strategies, suggesting a role in checkpoint-like inhibition, though 
experimental validation in immune co-culture models is essential to confirm these inferences. This suggests 
that C15ORF48 may influence the tumor immune microenvironment by modulating immune cell infiltration 
or activity. These findings are in agreement with the study by Su-Su Zheng et al., which identified C15ORF48 
as a potential prognostic target for hepatocellular carcinoma, with its high expression associated with advanced 
tumor staging and poorer survival37. Similarly, the study by Shaodi Wen et al. indicated that the C15orf48 
gene might play a role in lung cancer immunotherapy and impact patient prognosis38. Our study further 
found that C15ORF48’s high expression in LUAD (lung adenocarcinoma), LGG (low-grade glioma), LIHC, 
and SKCM (skin cutaneous melanoma) is significantly negatively correlated with patient survival, reinforcing 
its value as a potential prognostic biomarker. These findings align with contemporary research emphasizing 
TME heterogeneity and biomarker utility in guiding immunotherapy. For example, IOBR-based analyses have 
revealed intricate antitumor immunity patterns, enabling refined TME characterization that complements our 
multi-dimensional integration of C15ORF48 data15. Similarly, dynamic network biomarkers have uncovered 
progression tipping points in thyroid cancers, paralleling our identification of mutation-phosphorylation 
overlaps as drivers of pan-cancer advancement16. Moreover, predictive models like iMLGAM highlight machine 
learning’s role in forecasting immunotherapy responses, which may extend our insights into C15ORF48’s 
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immune-modulatory functions for personalized strategies17. In this context, our study innovatively combines 
expression profiling, genetic alterations, and post-translational modifications for C15ORF48, unlike prior single-
aspect investigations, revealing novel hotspots (e.g., S29, T38) that may underpin tumorigenesis. Practically, 
this could inform prognostic tools and targeted therapies, such as inhibitors disrupting these sites to enhance 
immune infiltration, potentially improving outcomes in resistant tumors like lung adenocarcinoma—though 
rigorous validation in diverse cohorts is required.

Moreover, this study is the first to systematically integrate the expression patterns, genetic mutations, and 
phosphorylation modifications of C15orf48. We found that C15orf48 undergoes genetic alterations in 22 out of 32 
cancer types, with multiple critical mutation sites (e.g., S29F, and T38I) potentially altering C15orf48’s structure 
and function, thereby driving tumorigenesis and progression. Notably, there is significant overlap between 
mutation sites, phosphorylation sites, and pathogenicity predictions, with hotspot regions such as positions 
S29 and T38 identified as critical for genetic mutation, phosphorylation modification, and pathogenicity. The 
phosphorylation sites S28 and T38 in C15ORF48 may have functional implications in cancer pathways, such 
as the MAPK/ERK cascade, where phosphorylation events typically regulate kinase activity and downstream 
signaling to influence cell proliferation, survival, and metastasis. For instance, databases like KinaseNET, which 
map human kinase networks, indicate that similar serine/threonine sites can be targeted by upstream kinases 
in the MAPK family, potentially leading to altered protein conformation and enhanced signal transduction 
that promotes tumor progression. In cancer contexts, aberrant phosphorylation within this pathway often 
activates transcription factors like c-Fos or Elk-1, driving oncogenic processes including immune evasion and 
angiogenesis, as observed in models where sustained ERK signaling suppresses apoptosis and facilitates matrix 
degradation39. Accordingly, phosphorylation at S28 and T38 could mimic these mechanisms in C15ORF48, 
possibly modulating inflammatory responses or immune cell recruitment in the tumor microenvironment, 
although direct kinase-substrate interactions and pathway-specific effects require empirical validation through 
site-directed mutagenesis and phosphoproteomic assays. These findings highlight these key sites as potential 
core regions for functional regulation and underscore C15ORF48’s translational potential as a therapeutic target 
in cancer, particularly given its associations with poor prognosis and immune infiltration, which may enable 
precision interventions akin to those for established biomarkers like PD-L1. For instance, while PD-L1 serves 
as a predictive marker for immune checkpoint inhibitors by facilitating T-cell exhaustion and tumor evasion, 
C15ORF48 could similarly inform targeted therapies aimed at disrupting phosphorylation-driven signaling or 
mutation hotspots to restore immune responsiveness and inhibit tumor progression. Ongoing clinical trials 
targeting immune-related genes, such as NCT03568097—a phase II study evaluating phased avelumab (an 
anti-PD-L1 antibody) combined with chemotherapy in extensive-stage small cell lung cancer—demonstrate 
the feasibility of such approaches, where modulating immune checkpoints improves outcomes in immune-
dysregulated tumors40. In this framework, C15ORF48’s overexpression and genetic alterations suggest it may 
parallel PD-L1’s role in immunotherapy resistance, warranting preclinical models and basket trials to assess 
inhibitors targeting its key sites for enhanced therapeutic efficacy.

Despite these insights, this study has some limitations. The identified genetic mutations, phosphorylation 
modifications, and pathogenic sites have not yet been experimentally validated. Although these insights are 
derived from comprehensive database analyses, they require rigorous experimental validation to substantiate 
their biological relevance, such as through knockdown or overexpression assays in lung cancer cell lines to 
assess impacts on proliferation, migration, and immune infiltration. Future investigations may incorporate 
patient-derived xenograft (PDX) models to evaluate in vivo tumor dynamics and therapeutic responses, 
providing a more clinically translatable platform for confirming C15ORF48’s role in pan-cancer progression. 
Previous studies have successfully utilized xenograft models in cancer research; for example, one investigation 
employed a breast cancer xenograft model to demonstrate that volatile anesthetics like sevoflurane promote 
metastasis by enhancing angiogenesis, contrasting with intravenous agents like propofol that reduce vessel 
density41. Another study used colorectal cancer xenografts to show that BCAT2 deficiency in branched-chain 
amino acid catabolism accelerates tumor growth and metastasis via metabolic reprogramming42. Similarly, in 
non-small cell lung cancer xenografts, overexpression of hsa-miR-CHA2 suppressed tumor growth by targeting 
cyclin E1 and inducing G1/S arres43. These models highlight the utility of xenografts for mechanistic validation, 
though challenges like immune system differences necessitate complementary immunocompetent systems 
for comprehensive assessment. Future studies should integrate cell and animal models, along with large-scale 
clinical samples, to confirm the functional roles of these mutations and modifications and elucidate their specific 
mechanisms in cancer.

Our reliance on TCGA data for pan-cancer analysis aligns with a rich history of biomarker studies utilizing 
this resource, where Liu’s laboratory has been a pioneer since its early adoption, developing innovative 
bioinformatic strategies for identifying prognostic genes across tumor types. For instance, their work has 
systematically explored voltage-gated sodium channel β3 subunit (SCN3B) as a potential glioma biomarker, 
cyclin-dependent kinase 2 (CDK2) in glioma progression, aminoacyl tRNA synthetase complex interacting 
multifunctional protein 1 (AIMP1) for head-neck squamous cell carcinoma prognosis, cornichon family AMPA 
receptor auxiliary protein 4 (CNIH4) in head and neck squamous cell carcinoma, and RAD50 for breast cancer 
diagnosis and prognosis44–48. Although this body of work appears highly productive, the batch-like generation 
of similar analyses may suggest a templated approach that prioritizes volume over nuanced interpretation, 
potentially limiting depth in individual studies. Furthermore, while TCGA offers unparalleled advantages 
such as large-scale multi-omics data for cross-tumor comparisons and biomarker discovery, it is susceptible 
to technical biases (e.g., batch effects in sequencing) and biological limitations (e.g., bulk profiling masking 
intratumor heterogeneity), as detailed in recent critiques49,50. These factors warrant caution in over-relying on 
TCGA-derived findings, underscoring the need for orthogonal validation in diverse cohorts to mitigate such 
biases and enhance generalizability.
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Although the expression and functional roles of C15ORF48 across various cancers have been comprehensively 
analyzed, its specific roles in certain cancer types remain underexplored. In particular, the detailed mechanisms by 
which C15ORF48 regulates the tumor immune microenvironment, metabolic pathways, and signal transduction 
warrant further investigation. Future studies may explore the establishment of specialized cell models tailored 
to this project, such as immortalized lung cancer cell lines overexpressing or knocking down C15ORF48, to 
dissect its roles in mutation-driven phosphorylation and immune modulation under controlled conditions. For 
instance, patient-derived cell lines could be engineered to mimic pan-cancer hotspots like S29 and T38, enabling 
high-throughput screening of inhibitors targeting these sites. As an example, one study successfully established 
breast phyllodes tumor cell lines via lentiviral immortalization with HPV-16 E6/E7 or SV40-T, preserving key 
morphological and functional features of the original tumors, including proliferation, migration, and invasion 
capacities, which facilitated mechanistic investigations. Such models highlight the potential for creating disease-
specific platforms, though challenges like maintaining genetic fidelity and heterogeneity necessitate rigorous 
validation through comparative genomics and functional assays to ensure translational relevance51. Future 
studies should prioritize exploring the potential of key mutation and phosphorylation sites as molecular targets 
for therapeutic intervention, providing new directions for precision medicine.

In conclusion, C15ORF48’s elevated expression, immune infiltration correlations, and mutation-
phosphorylation overlaps position it as a promising biomarker and therapeutic target for precision oncology, 
particularly in lung cancer.

Data availability
This study analyzed publicly available datasets, which can be accessed at the following location: ​(​h​t​t​p​:​​/​/​t​i​m​e​​r​.​c​i​
s​t​​r​o​m​e​.​o​​r​g​/​,​h​t​t​p​:​/​/​g​e​p​i​a​.​c​a​n​c​e​r​-​p​k​u​.​c​n​/​, ​h​t​t​p​s​:​​/​/​w​w​w​.​​p​r​o​t​e​i​​n​a​t​l​a​​s​.​o​r​g​/​​,​h​t​t​p​s​​:​/​/​w​w​w​​.​c​b​i​o​​p​o​r​t​a​l​.​o​r​g​/​,​h​t​t​p​:​/​/​w​w​w​.​
p​h​o​s​p​h​o​n​e​t​.​c​a​/​,​h​t​t​p​s​:​/​/​a​l​p​h​a​f​o​l​d​.​c​o​m​/​)​.​​
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