
Detecting unacceptable behavior 
of an autonomous vehicle using 
electroencephalography
Maren A. K. Bertheau1,2 & Christoph S. Herrmann1,3,4

In the present study, we investigated event related potentials (ERPs) in the context of 
autonomous driving - specifically in left-turn situations through oncoming traffic. We recorded 
electroencephalography while participants (n = 33) observed a simulated autonomous vehicle 
executing a left turn maneuver through oncoming traffic. In the ERP, we observed an increased N2 (251 
to 431 ms) when the AV behaved incongruently to the participant’s assessment of the turn situation 
compared to when it behaved congruently. There were no significant effects in N1 (142 to 182 ms), P2 
(177 to 237 ms), nor P3 (439 to 689 ms). This suggests that, in human-AV interaction interaction, ERP-
based devices might, in the future, be able to identify critical situations. However, further research is 
needed to bring current findings from fundamental research closer to application.
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Highly autonomous vehicles (AVs) (SAE level 4) are becoming increasingly prevalent. Highly and fully AVs 
(SAE level 4 & 5) bear a great potential for increased road safety, energy efficiency, and social participation for 
people without driver’s licenses, for instance, underage, elderly, or individuals with disabilities1. However, even 
when federally approved for real-world traffic, an AV’s non-human nature may lead to behavior that is formally 
lawful, but not necessarily socially or humanly acceptable. For instance, unacceptable behavior by the AV ccould 
arise in novel circumstances that the AV has not encountered before2 or when its behavior would not fully align 
with the users’ individual attitudes, personality, risk aversion, driving experience, etc.3. Additionally, AVs can 
take information from sensors beyond human sensory abilities into account (e.g., radar, infrared, etc.)4,5. With 
these advantages, they would be able to perform certain traffic maneuvers more safely and swiftly than a human 
driver4,6. Consequently, the behavior of an AV, even with federal approval, could at times be unexpected or 
unpredictable and thus likely unacceptable to the human user.

In line with the ’Autonomous Vehicle Acceptance Model’7 such unexpected or unacceptable behavior could 
induce stress and anxiety8 and lead to distrust in AVs, and thus to a refrain from using AVs7. A system could 
attempt to remedy this by adequately and individually adjusting its behavior by, e.g., giving an explanation9. 
However, for these adjustments to be successful, timing is crucial10. Therefore, critical or unacceptable situations 
need to be identified, especially in time-critical maneuvers.

To translate this complex need into simplified experimental terms, we define unacceptable situations as 
those in which an AVs exhibits behavior incongruent with the user’s expectations. From an experimental design 
perspective, this is advantageous because it allows the creation of equal numbers of trials between experimental 
(incongruent) and control (congruent) conditions, independent of individual preferences.

In time-critical driving maneuvers, it is impractical to measure user perceptions (or ratings of 
acceptability) of AV behavior via questionnaires11. Physiological measures may provide an unobtrusive way 
to assess user perceptions of AV behavior during dynamic and complex driving situations11. In particular, 
electroencephalography (EEG) has cost-efficient mobile solutions, e.g.,12, and a high temporal resolution that is 
well suited to investigate human - AV interaction in time-critical traffic situations. A frequently used measure in 
the EEG is the event related potential (ERP),a brain response time-locked to an event such as the presentation of 
a stimulus. These signals occur within (ms) and precede any voluntary motor reaction13.
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When reviewing previous studies on the acceptability of decisions by AVs in traffic situations, to the best of 
our knowledge, EEG has never been thoroughly utilized before. Yet, there are several ERPs components with 
systematic amplitude modulations in tasks requiring similar cognitive processing as those required for assessing 
the incongruence of an AV’s behavior. In foundational ERP research, there is a wide variety of frequently 
used tasks to manipulate congruence and incongruence. In the visual domain, commonly used tasks are the 
Eriksen Flanker task14, the Stroop task15, as well as Decision Making or Estimation tasks, e.g.,16–19. Incongruent 
Eriksen Flanker (e.g., HHSHH click S) as well as incongruent Stroop trials (e.g., “red” printed in blue) evoke an 
increased fronto-central N220 and modulate the parietal P3 response in the ERP20,21. These ERPs might reflect 
the increased cognitive control20, specifically inhibitory control or response inhibition20,22. In loss trials from 
Decision Making or Estimation Tasks,16–19 (where the outcome was incongruent to a participant’s expectation), 
the ERP shows a feedback related negativity (FRN), a fronto-central negative deflection peaking around 200–300 
ms after negative feedback23–26, which is then followed by a frontal P3a at around 300-400 ms and a parietal P3b 
at around 400-500 ms26. The FRN is thought to play a central role in reinforcement learning processes26–28 and is 
functionally interpreted as tracking the difference between actual and expected outcomes, referred to as reward 
prediction errors28

Admittedly, all of these tasks are extremely simplified in comparison to traffic situations. Nevertheless, the 
underlying mechanisms of cognitive control, such as conflict resolution and retrieval, are highly relevant to 
successfully assess complex traffic maneuvers such as turning left through oncoming traffic. When choosing 
whether to turn left through a specific gap, conflict resolution is highly relevant. Every new gap needs to be 
assessed so that users can expect how the specific gap will be handled by the AV. Subsequently, users would need 
to retrieve their expectations to assess whether it was congruent or incongruent to the AV’s behavior.

Folstein & van Petten20 summarized that both N2 and P3 are broadly speaking associated with the 
significance of events (e.g., relevant stimuli). The N2 is generated in three distinct brain regions that are believed 
to serve different cognitive functions. The anterior N2 is associated with novelty and mismatch in attended 
stimuli. Further, the fronto-central is N2 associated with response inhibition (Go-No Go task) and the posterior 
N2 is associated with visual attention20. However, while functionally distinct from the view of basic research, 
all these paradigms and mechanisms have in common that the N2 marks significant stimuli that are either 
new, rare, attended/awaited, or errors. The P3 is commonly separated into a more frontally generated P3a 
and a more parietally generated P3b. The P3a is usually associated with orienting attention to unexpected or 
significant events, whereas the P3b is associated with updating of working memory20. Since we are interested 
in the unexpected behavior of AVs, and based on our previous research29, we would expect an increased P3a 
in response to incongruent trials. Hence, we suspect that the ERP ccomponents N2 and P3 might play a role 
when an AV behaves incongruently to users’ expectations in traffic. Further, earlier components could also be 
involved. The N1 is thought to play a crucial role in visual attention and serves as an index of discrimination 
processes30. The prefrontal P2 is thought to play a role in stimulus-response mapping, in other words, classifying 
stimuli and matching them to the correct response31.

For the present study, we aimed to investigate the feasibility of using the ERP technique to capture 
participants’ acceptance of AV behavior in dynamic traffic situations simulated in a laboratory environment. Our 
results might open new avenues to unobtrusively evaluate reciprocal communication between human users and 
AVs. Thus, this work is at the intersection of basic psychophysiological research and applied human-machine 
interaction development.

Hence, we developed a left turn task using driving simulations in a laboratory environment to effectively 
investigate ERPs during autonomous driving maneuvers. Driving simulations are advantageous as they provide 
a high control over the whole experimental situation as compared to e.g., Wizard of Oz approaches, where 
participants believe to interact with an actual AV in the field, but which is actually (sometimes remotely) 
operated by an unseen human confederate: see e.g.,32. Further, the electrically shielded laboratory environment 
provides a higher EEG data quality as compared to field setups33.

We investigated left turn situations through oncoming traffic because they are (1) a frequently occurring 
traffic maneuver, (2) a high risk for accidents, (3) a known difficulty for AVs, and (4) allow for personal opinions 
or style. (1) The frequency of this maneuver is relevant, because for reliable ERP results it is necessary to plausibly 
repeat a certain task/situation numerous times33. (2) To exemplarily showcase the proneness for accidents of left 
turn maneuvers, note that in 2023 there were 97.481 turning, turning-in, and crossing accidents with personal 
injury on German roads, which accounts for 34% of total accidents that year34. (3) Furthermore, Wiegand, 
Eiband, Haubelt & Hussmann10 identified turning situations to cause existing AVs to behave unexpectedly using 
thematic analysis of real-world experience reports. (4) What makes turning left especially interesting to us, is 
that even if the maneuver is carried out without an accident, there is still room for personal preferences: Some 
vehicle users are more risk averse than others and therefore deem different gap sizes in the oncoming traffic as 
save enough, hence their assessment might frequently differ from the AV’s.

In our left turn task, participants indicated whether they would take a left turn when there were gaps of 
variable length in oncoming traffic in a left turn situation. Next, the participants observe the AV’s behavior as 
it either executes the turn or waits. This behavior can align (“congruent”) or conflict (“incongruent”) with the 
participant’s decision.

We hypothesized that participants would rate congruent trials as more acceptable than incongruent ones 
(Acceptability).

Regarding the physiological measure, EEG, we hypothesized that the amplitudes of the N2, and P3 components 
of the ERP would be greater after the presentation of the AV’s behavior in incongruent trials (see “Methods”) 
as compared to congruent trials. Additionally, since we use dynamic rather than static stimulus material, we 
wanted to ensure that we were replicating the temporal sequence of ERP components that are typically observed 
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in response to viewing static images. Hence, we also included earlier components in our analysis and expected 
increased N1 and P2 amplitudes in incongruent trials compared to congruent trials.

Results
Behavioral results
After artifact exclusion, 98.70%(x̄ = 197.39(standarddeviation(SD) = 2.62) per participant) trials went 
into analysis. In 69.95%(x̄ = 137.91(SD = 46.90)) of trials, participants indicated that they wanted to turn 
and vice versa in 30.05%(x̄ = 59.55(SD = 47.75)) that they wanted to wait (see supplementary Table 1).

Overall, participants rated the Acceptability of the AV’s behavior higher when it was congruent with their own 
decision (t(32) = 12.02, p < .001, d = 2.09) (see Fig. 1).

Regarding the question after debriefing, if they knew they were not interacting with a real artificial intelligence 
(AI), 23.5% indicated “yes”, 44.1% “not sure”, and 32.4% “no”.

EEG results
The task was designed such that out of a total of 200 trials, the AV behaved congruently with the participant’s 
decision in 50% and incongruently in 50% of the trials. Additionally, in 50% of the trials, the AV turned through 
the proposed gap in traffic while in the other 50%, it waited for another gap. This resulted in different numbers of 
trials in each combination in the final analysis: After artifact correction, in 34.86%(x̄ = 68.73(SD = 23.13)) 
the AV congruently turned, 14.92%(x̄ = 29.58(SD = 24.30)) the AV incongruently turned, 
15.13%(x̄ = 29.97(SD = 23.56)) the AV congruently waited, and 35.09%(x̄ = 69.18(SD = 23.88)) 
the AV incongruently waited (see supplementary Table 1). After artifact rejection, there were on average 
x̄ = 98.70(SD = 1.31) congruent trials, and x̄ = 98.76(SD = 1.75) incongruent trials (see supplementary 
Table 1) per participant for the final analysis.

The following section presents the results of the two analysis of variancess (ANOVAs) (Condition x Electrodes) 
conducted to analyze the N1, P2, N2, and P3 components of the ERP. To control the false discovery rate only 
p < 0.0167 is considered significant35.

N1 results
For the N1 (142 to 182 ms), we found no significant main effect of Condition on the amplitude (µV) 
(F(1,32) = 9.90, p = .27) (see supplementary Table 2). The standard errors (SEs) of the incongruent and 
congruent N1 amplitude overlap (see Fig. 2).

There was a significant main effect on Electrodes (F(2,96) = 48.24 p(Greenhouse − Geisser(GG)) < .001 
η2

p = .60) (see supplementary Table 2 & 3). This effect describes the topography over the midline electrodes. As 
typical for a N1 the amplitude was the lowest at parietal and occipital sites. (see Fig. 3)

Furthermore, there was no two-way interaction Condition x Electrodes (F(2,96) = .92, p(GG) < .43) in the 
N1 time window (see supplementary Table 2).

P2 Results
For the P2 (177 to 237 ms), we found no significant main effect of Condition on the amplitude (µV) 
(F(1,32) = .47, p = .50) (see supplementary Table 4). The SEs of the incongruent and congruent P2 amplitude 
overlap (see Fig. 3).

Fig. 1.  Acceptability ratings after each trial (see “Methods”). The Likert scale ranged from ’completely 
acceptable’ (7) to ’completely unacceptable’ (1). The Condition congruent is always shown in blue and 
incongruent in red. On each box, the central marks indicate the median, and the bottom and top edges of the 
boxes indicate the 25th and 75th percentiles, respectively. Statistical significance is indicated with *.
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There was a significant main effect on Electrodes (F(2,64) = 26.74, p(GG) < .001, η2
p = .50) (see 

supplementary Table 4 & 5), which again illustrates the topography of this component consisting of an increased 
amplitude over fronto-central electrodes (see Fig. 3).

Furthermore, there was no two-way interaction Condition x Electrodes (F(2,64) = .50, p(GG) < .52) in the 
P2 time window (see supplementary Table 4).

N2 results
For the N2 (251 to 431 ms) we found a significant main effect of Condition on the amplitude (µV) 
(F(1,32) = 15.14, p < .001, η2

p = .32) (see supplementary Table 6). The amplitude of the N2 was greater in 
incongruent vs. congruent trials (see Fig. 3).

There was also a significant main effect on Electrodes (F(2,64) = 34.68  
p(Greenhouse − Geisser(GG)) < .001  η2

p = .52) (see supplementary Table 6 & 7). This effect describes 
the topography in both conditions, showing the highest amplitude at Fz, and then in descending order at Cz 
and at Pz.

Furthermore, there was no two-way interaction Condition x Electrodes (F(2,64) = .54, p(GG) < .50) in the 
N2 time window (see supplementary Table 6).

Exploratorily, we conducted a correlation analysis to examine whether a difference in subjective acceptability 
between congruent and incongruent conditions is significantly associated with a difference in N2 amplitude 
between those two conditions. Frontally, we find a significant Pearson correlation (r = .47, p = .006), however 
not centrally (r = .25, p = .16), nor parietally (r = −.04, p = .83).

P3 results
Similarly to the N1 and P2, for the P3 (439 to 689 ms) we found no significant main effect of Condition on the 
amplitude (µV) (F(1,32) = .77, p = .39) (see supplementary Table 8). During the P3, the SEs of the incongruent 
and congruent amplitude overlap (see Fig. 3).

There was a significant main effect on Electrodes (F(2,64) = 35.32 p(Greenhouse − Geisser(GG)) < .001 
η2

p = .53) (see supplementary Table 8 & 9). In the topography, this is visible as the amplitude of the P3 
descriptively being higher at Fz and Cz than at Pz (see Fig. 3).

Furthermore, there was no two-way interaction Condition x Electrodes (F(2,64) = 3.39, p(GG) < .06) in the 
P3 time window (see supplementary Table 8).

Discussion
In the present study, we investigated modulations of the N1, P2, N2, and P3 components of the ERPs, when an 
AV maneuvers left turn situations through oncoming traffic.

Regarding the behavioral results, as we expected, participants rated trials where the AV behaved congruent to 
their assessment as more acceptable than trials with incongruent behavior (see Fig. 1). Note, that the distribution 
of acceptability rating in the incongruent condition was quite wide. Possibly since AV never produced an 
accident, some participants rated also incongruent trails as fairly acceptable. This pattern was also present when 
dividing trials with respect to whether the AV turned or waited: participants rated turning congruently as more 

Fig. 2.  The grand average ERPs at electrode Oz time-locked to the presentation of the AV’s decision (see 
“Methods”) for both conditions, incongruent (red), congruent (blue), as well as their difference (black), were 
filtered from 0.1 to 20 Hertz (Hz) and with a baseline from – 500 to 0 ms. The shaded error bars indicate 
the SE. The gray shading indicates the identified time interval of the N1 component corresponding to the 
topographies. The topographies show the N1 in the incongruent , and congruent condition, sharing one color 
bar.
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acceptable than turning incongruently, and they rated waiting congruently as more acceptable than waiting 
incongruently (see supplementary Fig. 1).

In the debriefing, less than one in four participants indicated that they at some point knew that they were 
not interacting with an AI but a random system. However, these participants could still agree or disagree with 
its behavior. Therefore, we kept these participants for the analysis to avoid suffering from a lower experimental 
power.

Overall, participants demonstrated expected behavior, which leads us to infer that participants engaged 
thoroughly with the task, thus serving as a foundation for the following EEG interpretation.

In the ERP time-locked to the AV’s decision (see Fig. 4), there was a significant main effect of Condition in 
the N2 component, but not in N1, P2, and P3. In the ERP components N2 descriptively, there was an increased 
negativity in the incongruent compared to the congruent Condition (see Fig. 3).

In contrast to the majority of ERP studies, we used dynamic instead of static stimulus material, specifically 
videos generated in a driving simulation environment showing left turn maneuvers by an AV through oncoming 

Fig. 3.  The grand average ERP at electrode Fz time-locked to the presentation of the AV’s decision (see 
“Methods”) for both conditions, incongruent(red), congruent (blue), as well as their difference (black), were 
filtered from 0.1 to 20 Hz and with a baseline from − 500 to 0 ms. The shaded error bars indicate the SE. The 
gray shading indicates the time intervals of the components P2, N2, and P3 corresponding to the topographies 
below. * indicate significant time intervals. The topographies show the ERP components P2, N2, and P3 
column-wise in the given time intervals. The first row shows topographies from the incongruent, and the 
second row from the congruent condition. The third shows their difference. Note, that the two conditions share 
one color bar, whereas we used a smaller color bar for the difference between conditions.
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traffic. Therefore, we analyzed early components to confirm if we can obtain stable ERPs with our material. Even 
though there was no difference between conditions in the N1, the topographies (see Fig. 2) reveal the typical 
pattern of an occipital negativity36. We interpret this as a strong indicator of the credibility of our ERP data. The 
N1 is thought to play a crucial role in visual attention and as an index of discrimination processes30. Further, 
it is associated with the processing of spatial visual information37, which is relevant to successfully assessing 
traffic situations. However, as the N1 is an early ERP component, in this case, it likely reflects differences in the 
physicality of the stimulus material (size, position, contrast, etc.)38,39, and therefore, here needs to be interpreted 
with caution.

Regarding the subsequent components, P2, N2, and P3, their topographies (see Fig. 3) all showed increased 
amplitudes in fronto-central sites, whereas the amplitudes in parietal and occipital sites appeared lower. Visibly, 
these topographies resemble the typical topographies of a P3a40 and this dominant topography already builds 
up during the earlier components. Hence, when further interpreting the N2 we concentrated on the difference 
topography contrasting incongruent - congruent trials (see Fig. 3) because in the ERP plot (see Fig. 3) the 
N2 negativity is only prominently visible in the incongruent condition (red line) but not in the congruent 
(blue line). Therefore, the difference topography incongruent - congruent of the N2 likely reflects the actual 
N2 topography, isolated from the ramping up towards the P3a. The observed N2 shows a central distribution 
spreading widely over frontal, parietal, as well as lateralized sites (see Fig. 3). Additioally, we showed a positive 
correlation between N2 difference and Acceptibility rating difference. Participants who rate incongruent trails 
as less acceptable display a more negative N2 amplitude. The N2 ERP component was shown to have different 
generators and functions with distinct topographies depending on specific task modalities20. Roughly, the N2 
is frequently subdivided into (1) the anterior or fronto-central N2 in response to deviating non-targets, and 
response inhibition, (2) the posterior N2, in response to deviant targets, and (3) the posterior contra-lateral 
N2 (N2pc), a marker of spatial visual attention20,33. The wide distribution in the present topography, however, 
suggests that not one isolated function was necessary to solve our task, but rather a combination of anterior and 
posterior N2 was at play. As the N2 is especially sensitive to incongruent stimuli and task modalities20,41–47, and 
significantly correlated with the Acceptability ratings we would argue that the N2 might be a helpful indicator 
when identifying critical situations, even in complex stimulus material such as traffic using ERPs.

Fig. 4.  Schematic overview of an exemplary trial in the LT task. The flow chart illustrates the trial’s time 
course, with all relevant events marked by vertically labeled ticks. For each relevant event, a screenshot from a 
corresponding video and a schematic drawing of the traffic situation at that moment are provided. The videos 
show the driver’s perspective of the red vehicle in the schematic drawings. Each trial begins with a cross at 
the center of the screen, then the AV approaches the crossing (start) and stops (stop). At the first possible gap 
between oncoming vehicles (blue vehicles in the schematic drawings), participants were asked to indicate via 
button press whether they wanted to turn left through the gap (Turn?). As illustrated in the table, in congruent 
trials the AV’s decision complies, in incongruent trials it diverges from the participants’ decision. The AV either 
turns (turn 1) or waits (wait) for the next possible gap, where it eventually turns (turn 2). The videos ended 
after a successful turn (end). At the end of each trial, participants were asked to rate the acceptability of the 
AV’s behavior (Acceptable?). See supplementary Methods for the exact wording of the used items. On each 
section of the timeline, the mean duration of each phase is indicated in s.
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Contrary to our hypothesis, there were no differences between the Conditions regarding the amplitudes of 
both ERP components P2 and P3. In both conditions, the P2 and P3 peaks are located fronto-centrally (see Fig. 
3). The prefrontal P2 is thought to play a role in stimulus-response mapping, in other words, classifying stimuli 
and matching them to the correct response31. The lack of differences in P2 amplitudes in our conditions suggests 
that this functionality was equally important during congruent as well as during incongruent trials.

For the P3a, we found a fronto-central topography that did not differ between conditions. The P3a is usually 
associated with orienting attention to significant events, whereas the P3b is associated with updating of working 
memory20. This might suggest that an AV executing a left turn through oncoming traffic by itself represents a 
significant event.

To address some limitations, in the present study, we focused on plausible traffic situations for an AV with 
approval for road use. Hence, our simulation did not entail truly failed traffic maneuvers (accidents), since for 
those it is unambiguously clear that they are unacceptable. Further, accidents are difficult to plausibly simulate, 
and they should already be minimized by manufacturers, especially since there is evidence showing that for 
future AV users adoption is tied to substantially increased safety (4–5 times safer) in comparison to human 
drivers48. The simulated AV in this study always turns successfully and never has an accident. Over time, 
participants more frequently indicated that they wanted to turn even through the smaller gaps between vehicles. 
This suggests that over system usage time, participants showed increased trust towards the AV, which could be 
interpreted as a positive sign for future acceptance of AV. Additionally, the fact that the AV always performed a 
successful turn maneuver resulted in a wide distribution of acceptability ratings in the incongruent condition. 
Hence, there might be different levels of acceptability in such human-AV interaction situations. Thus, it might 
be worthwhile to differentiate those in a future experimental design. Further, this study was designed in such a 
fashion that the AV behaved congruently to the participant’s assessment in 50% of trials and incongruently in 
50%. Consequently, in the congruent condition, there was an increased number of trials where the AV turned, 
whereas, in the incongruent condition, there was an increased number of trials where the AV waited for another 
gap. Therefore, the observed increase of the N2 response is particularly noteworthy: It occurred when the AV did 
not show the expected behavior (turning), which would have resulted in immense changes in the visual field, but 
waited - so participants’ visual perspective remained the same in most incongruent trials. However, the impact 
of the changes in the visual field on our effect could be a subject for further study. Taken together, the significant 
event was the AV not showing an action but remaining inactive. We find this a promising indication that in the 
future successful ERP-based brain computer interface (BCI) applications in the context of AVs.

To give some future outlook, in the present study, we set out to investigate the usefulness of ERPs in the 
context of identifying critical situations with AVs. For this purpose, we decided to start in a rather controlled 
laboratory environment. We could show that it is possible to find high-quality ERPs even in complex moving 
stimulus material. In the next steps, the reliability of our findings would need to be tested in setups closer to 
field application: e.g., in a Wizard of Oz environment in an actual car and using smaller, mobile EEG devices. 
Further, to develop an actual ERP based device to identify unacceptable traffic situations, it would be necessary 
to employ single-trial classifiers (e.g.,25,49–53). In all those studies, the classifiers have been fed with training 
data from situations providing clear wrong and right outcomes. Since traffic is often more ambiguous, it might 
be advisable to include data from more frequently occurring stimulus material, such as ours, in these lines of 
research. However, this was beyond the scope of the current study and is a wide field for further research.

In conclusion, we investigated the usefulness of of ERPs in the context of AVs. In our controlled laboratory 
environment driving simulation study, we could show that it is possible to find high quality ERPs even in moving 
stimulus material. When observing an AV executing a traffic maneuver in a fashion that contradicts participants’ 
assessment, we find increased amplitudes in the ERP components N1 and N2, but no significant difference in P2 
and P3. This suggests that in human-AV interactions, it might be possible to use ERP based devices to identify 
critical situations. However, further research is needed to bring current findings from fundamental research 
closer to application.

Methods
Note, that this is the same set of participants, procedure, and apparatus than in our previous Moral Machine 
(MM) study29 (under revision), because both studies were recorded simultaneously.

Participants
Thirty-six volunteers were recruited to participate in this study to achieve sufficient statistical power in our 
design. Participants were included in the study if they were over 18 years old, right-handed, native German 
speakers, had normal or corrected to normal vision, and had no psychiatric or neurological diseases. Additionally, 
participants were required to have a valid German driver’s license and be legally fit to drive under German 
regulations (§31 StVZO, and §316 StGB) at the time of the experiment. All participants gave written informed 
consent and received 10 € per hour for participation. The research protocols were approved by the Commission 
for Research Impact Assessment and Ethics (“Kommission für Forschungsfolgenabschätzung und Ethik”) at the 
Carl von Ossietzky University of Oldenburg and complied with all relevant ethical regulations. Two participants 
were excluded because they participated in only one of the two recording sessions. Another participant was 
excluded because they clicked ’turn’ in all trials. Hence, there were no ’congruent wait’ and ’incongruent turn’ 
trials for that participant. Therefore, the data of 33 participants (mean age = 24.455, SD = 3.042, age = 3.042, age 
range = 19–34 years, male = 18) were included in the analysis.

Procedure
The experiment consisted of two sessions, conducted on different days (days between sessions: mean=6.618, 
SD=8.707). Each session took ∼ 150 − 200 min.

Scientific Reports |        (2025) 15:32462 7| https://doi.org/10.1038/s41598-025-18305-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


During the first experimental session, participants gave written informed consent and filled in the 
demographic questionnaires. In both sessions, the EEG and the peripheral physiological sensors were positioned. 
Participants were then seated in an electrically shielded, dimly lit chamber at ∼ 120 cm distance in front of a 
display. First, participants were familiarized with the two tasks, Left Turn (LT), and MM, in a short training. To 
achieve somewhat similar training times, for the LT task there were three congruent trials, and for the MM task 
there were six congruent trials.

The main experiment consisted of both tasks. The order of the tasks was counterbalanced both between 
sessions and participants. The current paper discusses the data from the LT task. For results from the MM task 
see29 (under revision). The LT task of the main experiment was divided into four (∼ 20 min) blocks. Between 
blocks, participants had the opportunity to take short, self-paced breaks. After the second session, they were 
debriefed that they did not interact with an AI but a deterministic abstract machine. Then they were asked if 
they knew they were not interacting with a real AI, with the answering options “yes”, “not sure”, and “no”. Table 
1 summarizes the overall procedure.

Left turn task
For both tasks, there was a cover story that the AV would make elaborate, data-driven decisions. In the 
debriefing at the end of the last experimental session, it was clarified that all of the AV’s supposed decisions were 
predetermined by a random number generator.

Each trial began with a cross that was presented at the center of the screen for 1000 ms. Then, participants 
saw short video sequences from the driver’s perspective of an AV approaching an intersection with oncoming 
traffic. At the stop line, the simulation was interrupted and participants were asked to assess whether they would 
turn left in the next gap between oncoming vehicles or whether they would prefer to wait. Participants were 
instructed to ’answer from their gut’ when they were ready and to indicate their opinion using the left and 
right arrow buttons on a standard keyboard. After pressing an arrow, participants viewed a video in which the 
AV behaved either congruently or incongruently with their decision. After each trial, participants rated the 
acceptability of the AV ’s decision on a Likert scale ranging from 1, completely unacceptable, to 7, completely 
acceptable. This range was chosen to include a neutral middle point (4) while ensuring that differences remain 
distinguishable in the human working memory54. See Fig. 4 for an overview of the task.

We created 30 different vignettes. Each participant performed 200 trials in total in random order. Half of 
the trials were presented in the congruent setting, and half in the incongruent setting. Thus, each scenario was 
presented at least 3x in a congruent and 3x in an incongruent setting (see Table 1).

Apparatus
Hardware
The stimulus material was presented on a Samsung SyncMaster display: P247GH, 1920 x 1080 pixels, 60 Hz 
refresh rate.

The EEG data were recorded using a 32-channel actiCAP snap electrode system with the standard 10-10 
layout (BrainProducts GmbH, Gilching, Germany). The reference electrode was placed on the tip of the nose 
and a vertical electro ecculogramm (EOG) electrode was placed under the right eye. The ground electrode was 
placed at electrode location FPz. Thus, the final EEG signal was acquired from 30 active Ag-AgCl electrodes. 
Impedance was measured before recording and kept below 20 kΩ. EEG signals were digitized at a rate of 1000 
Hz by a 16-bit ActiChamp EEG amplifier.

Software
The task was programmed using the Psychtoolbox55–57 in MATLAB 2021a (The MathWorks, Inc., Natick, MA, 
USA).

The video sequences (see Fig. 4 for screenshots) were created in the commercial driving simulation software 
SILAB Version 6 (WIVW GmbH, Würzburg, Germany).

Physiological signals were recorded using BrainVision Pycorder software (BrainProducts GmbH, Gilching, 
Germany).

Data preprocessing and plotting were performed using the FieldTrip toolbox (58; http://fieldtriptoolbox.org) 
in MATLAB 2022b (The MathWorks, Inc., Natick, MA, USA).

All statistical analyses were computed using SPSS 29 (IBM, Armonk, NY, USA).

Data analysis
EEG preprocessing
The EEG data were then demeaned, detrended, and filtered between 1 and 35 Hz using a Butterworth filter 
(ft_preprocessing)58. The data were then segmented into 1000 ms epochs without overlap. Epochs containing 

Session I Session II

Task LT training LT MM training MM MM training MM LT training LT

Conditions con con & inc con con & inc con con & inc con con & inc

Trials 3 100 (in 4 blocks) 6 100 (in 2 blocks) 6 100 (in 2 blocks) 3 100 (in 4 blocks)

Time [min] ∼3 ∼80 (in 4 blocks) ∼1 ∼20 (in 2 blocks) ∼1 ∼20 (in 2 blocks) ∼3 ∼80 (in 4 blocks)

Table 1.  Overview of procedure.
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data that exceeded a threshold of 1000 µV were rejected. Then, an independent component analysis (ICA) 
was performed, and components containing eye and muscle movement artifacts were visually identified and 
rejected. The remaining components were projected back onto the raw EEG data.

The raw data were then filtered from 0.1 to 35 Hz, and cut around the trigger at “AV’s decision” from − 2500 to 
2500 ms (see Fig. 4). This trigger marked the first frame in the video where the motion of the vehicle differed in 
either the car remaining still or starting to move. Using accumulated z-score thresholding (ft_artifact_zvalue)58, 
trials with a z ≥ 20 were rejected. The trials from the two experimental sessions were merged, and the data 
were downsampled to 250 Hz. Since our stimulus material was dynamic throughout, which might have caused 
the baseline to be unstable, we accounted for this by applying a wide baseline correction window from -500 to 
0 ms. For the ERPs, we averaged the epochs from each AV’s decision (see Fig. 4) for each participant. Then we 
calculated a grand average over participants for each condition separately (congruent, and incongruent).

To identify the ’N1’, ’P2’, ’N2’, and ’P3’ components of the ERP, we applied a peak picking algorithm 
(findpeaks()) on the grand average collapsed over all conditions. For each component, we defined a time 
window and target electrodes for identifying the peak or trough amplitudes (µV) respectively: N1 (100-200 ms 
at Oz)33, P2 (150-250 ms at Fz)59, N2 (200-350 ms at Fz)20, and P3 (250-500 ms at Cz)40. For each component, 
we defined a relevant time window around the identified peaks or troughs: N1 (162 ± 20 ms), P2 (207 ± 30 
ms), N2 (341 ± 90 ms), and P3 (489 − 50 + 200 ms). Note, that the windows’ widths were chosen to ensure 
that they covered the whole component. Subsequently, the P3 time window was shifted to the right to ensure that 
there was no overlap with the N2 window and to better capture the skewed shape of the P3 (see gray shadings 
in Fig. 3). These four component windows were then applied to the previously calculated grand averages for the 
conditions (congruent and incongruent) All samples in one time window were collapsed for the three relevant 
electrodes (Fz, Cz, Pz) and exported for inference statistical analyses.

Statistical analysis
To examine the differences in acceptability ratings between conditions, we conducted a repeated measures t-test.

To examine the differences in the ERP components between conditions, we conducted four two-way repeated 
measures ANOVAs with the factors Condition (congruent, incongruent) x Electrodes (Fz, Cz, Pz), one for each 
relevant component N1, P2, N2, and P3. Note that for N1, we also included Oz in the analysis. To account for 
the sphericity problem GG corrections were used to correct the df. Within each of these four ANOVAs, we 
controlled the false discovery rate35. Accordingly, we applied adjusted α levels to the three ANOVA effects to 
determine significance: .0500 for the largest p value, .0333 for the middle p value, and .0167 for the smallest p 
value35.

Each ANOVA archives a strong statistical power of 1 − β ≥ .94 with 33 complete datasets, and a 
conservatively assumed correlation between repeated measures of r = .2, and a conventionally medium-sized 
effect (f = .25)60–62 (see supplementary Methods for details).

Furthermore, as a post-hoc procedure to further disentangle significant three-level main effects and 
interaction effects, we employed Bonferroni corrected t-tests for C relevant comparisons on the simple main 
effects.

Exploratorily, we performed a Pearson correlation analysis between N2 amplitude differences 
(N2incongruent − N2congruent) and difference acceptability ratings (incongruent − congruent).

Data availability
The data are available from the corresponding author upon reasonable request.
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