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In recent years, online examinations have been widely adopted because of their flexibility, but the
covert and diverse nature of cheating behaviour poses a serious challenge to the fairness and integrity
of examinations. Existing anti-cheating techniques are deficient in detecting diverse cheating
behaviours in real-time and ensuring the credibility of evidence. To address this problem, this paper
proposes an integrated solution for online exam cheating detection based on the lightweight YOLOv12
model and blockchain trusted depository. Firstly, we made targeted lightweight improvements to the
benchmarkYOLOv12n model by removing the computationally intensive Attention mechanism from
the backbone network and simplifying the module structure (modifying the A2C2f module), as well

as replacing the computationally heavy C3k2 module in the head network with the efficient C3Ghost
module. These modifications aim to reduce the model’s computational complexity and number of
parameters, increasing inference speed, thus making it more suitable for real-time detection tasks.
Secondly, to address the issue of credible evidence preservation concerning cheating, we constructed
a evidence preservation system based on the Hyperledger Fabric consortium blockchain, combined
with IPFS distributed storage technology. Key screenshots of suspected cheating behaviors are

stored on IPFS, and their content identifier (CID) along with detection metadata (such as timestamp,
detection type, confidence, etc.) is recorded on the blockchain through smart contracts, ensuring

the originality, integrity, and immutability of the evidence. Experiments conducted on an online
exam cheating dataset containing categories of ‘person’ and ‘electronic devices’ demonstrate that
the proposed lightweight YOLOv12NoAttn model exhibits competitive detection performance (with
slight improvements in mAP50 and Recall) while showing higher efficiency by significantly reducing
parameters (approximately 28%) and GFLOPs (approximately 13%). Ablation experiments further
verify the effectiveness of the lightweight improvements made to both the backbone and head
networks. This research provides an efficient, accurate, and trustworthy solution for cheating detection
and evidence management in online examinations, contributing to the maintenance of fairness and
integrity in online assessments.

Background and challenges of online examination cheating

In recent years, with the rapid development of information technology and the transformation of global
education models, online education and distance learning have become an important part of higher education
and vocational training. Especially under the influence of global events (e.g., the COVID-19 pandemic), online
examinations have been widely adopted as a flexible and efficient assessment method!. Online exams break the
time and space constraints of traditional offline exams and provide great convenience for learners.

However, the popularity of online exams has also brought a series of new challenges, one of the most
prominent and urgent problems is how to effectively prevent and detect cheating?. Compared with traditional
offline exams, online exams are usually conducted in uncontrolled remote environments, and candidates may be
more likely to cheat by using external resources, seeking assistance from others, or using unauthorised devices,
which greatly increases the covertness and diversity of cheating behaviours®. Cheating not only undermines
the fairness of examinations and the validity of assessment results, but also poses a serious threat to academic
integrity and the credibility of the education system?.
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The critical role of trust in online examination systems

Trust plays a pivotal role in online examination cheating detection systems, serving as the cornerstone for
maintaining system integrity and ensuring fair assessment practices. The importance of trust in this context can
be understood through several key dimensions that fundamentally impact the effectiveness and acceptance of
online examination systems.

Trust is essential for maintaining the credibility of online examination systems to ensure fairness and academic
integrity’. As educational institutions increasingly rely on digital platforms for assessment, the establishment of
trustworthy systems becomes paramount to preserve the fundamental principles of fair evaluation. Without
robust trust mechanisms, the entire foundation of online education and assessment could be undermined,
leading to a crisis of confidence in digital learning platforms.

A critical challenge in this domain is the phenomenon of behavior change, where new forms of cheating
behaviors often exceed the ability of traditional models to identify established cheating patterns®. As Azzedin
and Ridha demonstrated in their seminal work on peer-to-peer systems, behavioral changes can significantly
impact the performance of existing honesty checking mechanisms. This principle directly applies to online
examination contexts, where evolving cheating strategies continuously challenge the detection capabilities of
conventional systems. The dynamic nature of cheating behaviors necessitates adaptive trust models that can
accommodate and respond to these changes effectively.

By embedding behavioral trust concepts such as reputation assessment into examination systems,
institutions can significantly enhance system reliability and promote ethical examination practices”®. These
trust-based approaches can involve tracking students’ honest behavioral patterns over time or implementing
reputation-based scoring mechanisms. Such systems create a comprehensive profile of student behavior that
extends beyond individual examination sessions, enabling more accurate and contextual assessment of potential
cheating incidents’. The integration of reputation systems, as extensively studied in peer-to-peer environments,
provides valuable insights for developing trust-aware examination platforms that can distinguish between
genuine behavioral variations and deliberate cheating attempts.

The implementation of multi-layered trust frameworks serves a dual purpose: not only does it help deter
cheating behaviors, but it also provides institutions and students with confidence that the assessment process is
transparent and fair®. This comprehensive approach to trust ultimately enhances confidence in digital education
platforms by creating an environment where all stakeholders can rely on the integrity and reliability of the
assessment system. When students trust that the system fairly evaluates all participants and institutions trust
that the results accurately reflect student capabilities, the entire educational ecosystem benefits from increased
credibility and effectiveness.

Ensuring the integrity of online examinations faces multiple challenges. The uncontrolled nature of
the environment makes it difficult for invigilators to fully monitor the behaviour of candidates and their
surroundings, and candidates may cheat using multiple screens or using devices such as mobile phones. The
diversity and intelligence of cheating methods continue to evolve, making it difficult for traditional rule-based
or simple behavioural analysis methods to cope with the proliferation of new cheating methods. Real-time
detection presents another significant challenge, as abnormal behaviours need to be detected and warned
instantly during the examination process, which requires the detection system to have efficient and accurate
real-time processing capabilities. Obtaining and credibly documenting evidence of cheating remains a key
challenge. Even if suspected cheating is detected, how to obtain clear, objective and untamperable evidence for
subsequent identification and processing is an important part of safeguarding the fairness of the examination
and maintaining the reputation of the institution.

To address these challenges, academics and industry have proposed a variety of technical and management
measures. Common technological tools include identity verification (e.g., biometrics, knowledge quizzes),
browser locking (restricting candidates” access to computer resources), and remote invigilation based on video
surveillance®. However, each of these methods has its limitations. Identity verification mainly solves the problem
of "who is taking the test, but cannot effectively monitor cheating behaviour during the test!?. Locking the
browser can only restrict the internal operation of the computer, but not the use of external devices or seek help
from others to cheat. Manual remote invigilation, while providing some degree of monitoring, faces problems
such as high cost, poor scalability, invigilator fatigue, and subjective judgement. Automatic detection methods
based on early computer vision technologies may suffer from low accuracy, high false alarm and omission rates,
difficulty in identifying complex behaviours, etc., and how to ensure the authenticity and undeniability of the
evidence of detected cheating is still an under-solved problem!!.

Therefore, there is an urgent need for a more advanced and robust technological solution that can effectively
detect diverse cheating behaviours in online examinations in real time and provide a trustworthy mechanism to
securely store and manage the cheating evidence, in order to cope with the severe challenges posed by current
online examination cheating.

Limitations of existing anti-cheating technologies

A variety of technological and managerial measures have been proposed by academia and industry to address
the increasingly prominent problem of cheating in online examinations. These approaches mitigate the integrity
risk of online exams to a certain extent, but each has obvious limitations and fails to provide a comprehensive,
efficient and trustworthy solution. Existing mainstream anti-cheating technologies mainly include identity
verification, locked browsers, rule-based behavioural analysis, and manual remote invigilation.

First, identity verification-based technologies (e.g., biometrics, knowledge quizzes) are mainly used to
confirm that it is the registered student himself/herself who is taking the exam'2. However, the core of these
technologies is to solve the problem of ‘who is taking the test, and cannot effectively monitor the behaviour of
candidates during the test. Once authenticated, candidates may still use various means to cheat, such as accessing
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unauthorised materials, using assistive devices or seeking help from others. As some scholars have pointed out,
authentication does not address the more complex issue of ‘verifying that a candidate does not have the help of
others or the support of resources not permitted by the instructor’’®. Therefore, relying on authentication alone
cannot guarantee the integrity of the examination process.

Second, Secure Browsers technology is designed to restrict candidates from accessing other applications,
websites, or copy-and-paste content on the computer during an exam'®. This method is useful in preventing
examinees from switching windows on the exam computer to search for answers or use local files. However,
its limitation is that it only controls the computer environment that the examinee is using. The lockdown
browser cannot do anything about cheating by using external devices (e.g., smartphones, tablets, smartwatches)
to communicate or access information. It is also possible for a candidate to be assisted by another computer
or by someone else in the room, and these behaviours are also beyond the scope of the Lockdown Browser’s
monitoring.

Behavioural analysis methods based on early computer vision or simple rules attempted to detect anomalous
behaviours by analysing the video stream of the examinee, such as prolonged periods of time when the eyes stray
away from the screen, a large head turn, or the detection of a second person in the room!”. Despite the potential
efficiency benefits of automated detection, these early methods often suffered from the following problems:

Insufficient accuracy and robustness Simple rules or models are difficult to cope with complex and changing
examination environments (e.g., light changes, background interference) and subtle behavioural changes of
examinees, which can easily lead to high false alarm rates (misclassifying normal behaviours as cheating) and
underreporting (failing to detect cheating behaviours that actually occur)'®.

Limited detection scope Most methods focus on head posture or face detection, making it difficult to effectively
identify specific cheating tools (e.g., mobile phones, headphones) or more subtle means of cheating (e.g., screen-
sharing, micro-cameras) used by candidates.

Difficulty in adapting to new forms of cheating With the development of technology, cheating methods continue
to evolve, such as the use of Al tools to assist in answering questions and the use of invisible headphones, etc.
These new types of cheating behaviour often exceed the ability of traditional rules or models to identify.

Manual remote invigilation is a widely used method of real-time monitoring by human invigilators remotely
viewing video streams of candidates!”. This method can provide more flexible and comprehensive monitoring to
some extent, but its drawbacks are also prominent:

High costs and poor scalability A single invigilator can usually only monitor a limited number of candidates
at the same time, and large-scale examinations require a large number of invigilators, leading to a sharp increase
in costs and difficulty in coping with unexpected large-scale examination demands.

Invigilator fatigue and subjectivity Prolonged, high-intensity monitoring can easily lead to invigilator fatigue
and reduced concentration, which can lead to missed cheating behaviour. At the same time, the subjective
judgements of different invigilators may lead to inconsistent detection standards.

privacy worry Constant video surveillance may trigger privacy concerns and discomfort for candidates.

Technology dependency and blind spots Dependent on a stable network connection and high-quality video
streaming, any technical glitch may affect the effectiveness of invigilation. In addition, there are blind spots in
the camera’s view, which may be exploited by candidates to cheat.

Finally, a pervasive and often overlooked limitation is the issue of credible deposit of evidence of cheating.
Even if suspected cheating is detected and videos or logs are recorded through one of the methods described
above, it is an important challenge to ensure the originality, integrity and inerrancy of such evidence for
subsequent impartial investigation and processing. The traditional way of storing evidence is susceptible to
tampering or forgery and lacks sufficient credibility, which may make it difficult for cheating to be effectively
recognised and punished, weakening the deterrent effect of anti-cheating measures.

Existing anti-cheating technologies for online exams each have obvious limitations. Whether it is identity
verification, locked browsers, early automated detection or manual invigilation, none of them can individually
or jointly provide a comprehensive, accurate, efficient and trustworthy solution to deal with the increasingly
complex and covert online exam cheating behaviours. In particular, the significant shortcomings of existing
technologies in detecting diverse cheating behaviours in real-time and ensuring the credibility of cheating
evidence provide the need and research space for this study.

Contribution of this article

In this study, we propose an integrated system for online exam cheating detection based on the lightweight
YOLOVI12 model and blockchain trusted depository to address the current challenges of online exam cheating
detection and the lack of credibility of cheating evidence. The main contributions of this paper are summarised
as follows:

Proposed YOLOvI2 Cheating Detection Model Based on Lightweight Improvement In this paper, based on
an in-depth analysis of the characteristics of online exam cheating behaviour, we make structural lightweight
improvements to the state-of-the-art target detection model YOLOv12n. Specifically, we optimise the A2C2f
module in the backbone network (by removing the Attention mechanism, simplifying the structure, and
reducing the number of stacking) and the C3k2 module in the head network (by replacing it with the more
efficient C3Ghost module). With these improvements, a detection model with higher computational efficiency
and significantly reduced number of parameters is successfully constructed. The experimental results show
that compared with the baseline YOLOv12n, the improved model maintains good performance on the cheat
detection task, especially in the mAP50 and Recall metrics, which verifies the effectiveness of the lightweight
strategy and its adaptability to the real-time and high-efficiency detection needs of online exams.

Constructed a blockchain-based credible deposit mechanism for cheating evidence Creatively applying
blockchain technology to the deposit of cheating evidence in online exams. In this paper, an evidence deposit
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system based on Hyperledger Fabric federation chain is designed. When suspected cheating is detected, the
relevant key screenshots are stored in the IPFS distributed file system, and the IPFS content identifier (CID) of
the screenshot is recorded on the blockchain along with the detection metadata (e.g., timestamps, detection type,
confidence level, etc.). This mechanism ensures the originality, integrity and non-tamperability of the evidence
of cheating, provides credible technical support for the subsequent identification and processing of cheating,
and effectively solves the problem that traditional evidence storage methods are easy to be tampered with and
lack credibility.

Realised an integrated system of cheating detection and credible deposit This paper seamlessly integrates the
real-time cheating detection module based on the lightweight YOLOv12 model with the blockchain-based
credible deposit mechanism to construct an end-to-end online examination integrity guarantee system. The
system is capable of real-time automated detection of cheating behaviours and automatically completes the
secure and reliable recording of evidence to form a complete evidence chain. This integrated solution provides
a comprehensive, efficient and highly credible anti-cheating solution for online exams, improving the efficiency
and credibility of online exam supervision.

The core contribution of this research lies in the targeted lightweight improvement of the YOLOv12 model
to adapt to the task of online exam cheating detection, and the creative introduction of blockchain technology to
solve the problem of credible evidence, which provides a new idea and technical support for constructing a more
secure, fair, and credible online exam environment.

Overview of relevant technologies

Target detection techniques and YOLO models in behaviour recognition

Computer vision is a central branch of the field of artificial intelligence, one of whose goals is to give machines
the ability to understand and interpret image and video content. Among the many computer vision tasks, Object
Detection (OD) occupies an important place, aiming at identifying specific classes of targets in an image or
a video frame and determining their precise location and size (usually represented by a bounding box). This
technique is not only fundamental to image understanding, but also an indispensable preprocessing step for
many advanced visual tasks such as target tracking, scene understanding and behaviour recognition. Meanwhile,
action recognition, as another important research direction, is dedicated to analysing and determining the
movements or activities of people or objects in video sequences, which has a wide range of application needs
in the fields of intelligent surveillance, human-computer interaction, and healthcare. Figure 1 is an example
diagram of target detection.

Early target detection methods mostly relied on hand-designed features and machine learning classifiers,
such as detectors based on Haar features and Adaboost!® or pedestrian detectors based on HOG features and
SVM?. With the rapid development of deep learning technology, breakthroughs have been made in the field of
target detection, and a large number of excellent models based on convolutional neural networks (CNNs) have
emerged. These models can be broadly classified into two categories: two-stage (Two-stage) detectors and one-
stage (One-stage) detectors. Two-stage methods, such as the R-CNN family (including Faster R-CNN?), first
generate candidate regions, and then perform classification and bounding-box regression on these regions, while
one-stage methods, such as the SSD?! and the YOLO family, directly predict the classes and locations of targets in
an image. Compared to two-stage methods, single-stage detectors typically have faster inference speeds, making
them more suitable for application scenarios that require high real-time performance. Figure 2 illustrates a
comparison of the two-stage and single-stage target detection method flow.

Among single-stage target detectors, the YOLO (You Only Look Once) model has attracted much attention
due to its unique design concept and excellent real-time performance.The core idea of YOLO is to treat the
target detection task as a regression problem by predicting the bounding box and category probabilities directly
from the whole image through a single neural network?’. This end-to-end (End-to-End) detection approach
significantly improves the detection speed. Since YOLOv1 was proposed, the YOLO family of models has

Fig. 1. Target detection example diagram.
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Fig. 3. Network structure diagram of YOLOV1.

undergone continuous iterations and optimisations, including the introduction of Anchor Boxes*, multi-
scale prediction?, and the integration of various state-of-the-art training techniques and network structure
improvements*>%, to continuously achieve a better balance between detection accuracy and speed. This study
is based on the YOLOv12 model, a version that provides good detection performance while maintaining high
efficiency?’. Figure 3 shows the network structure of YOLOV.

Target detection techniques play a fundamental role in behaviour recognition. By accurately detecting key
targets in video frames, such as characters, hands, heads, and behaviourally relevant objects (e.g., mobile phones,
books, computers, etc.), we can obtain precise spatial information about the subjects in the scene and the objects
they interact with?%. These detection results can be used as inputs for subsequent behavioural analysis modules,
e.g., to analyse the posture and movement trajectory of a character by tracking its bounding box and keypoints®’;
to determine the presence of a specific behaviour (e.g., looking down at a mobile phone, flipping through a book)
by detecting a specific object and its relative position to the character®’; or to determine the presence of multi-
person collaborations by detecting the number of characters appearing in the frame, etc. situations®'. Therefore,
high-quality target detection is a key prerequisite for accurate behaviour recognition, especially for the detection
of complex or abnormal behaviours.

Target detection technology is one of the core technologies in the field of computer vision®?, and the YOLO
series of models has become a representative of single-stage target detection by virtue of its excellent real-time
performance and continuously improving detection accuracy. Applying YOLO models to behaviour recognition
tasks can effectively extract key target information from video streams and provide a reliable spatial basis
for subsequent behaviour analysis®>. Especially in scenarios that require real-time monitoring and abnormal
behaviour detection (e.g., online exam proctoring), YOLO-based target detection technology can quickly and
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accurately locate potential violating objects and behavioural subjects, which provides a solid technical support
for the construction of an efficient and reliable behavioural recognition system?*.

Application of blockchain technology to data depositories

Blockchain technology, as a decentralised, distributed ledger technology, was initially well known for its use in
cryptocurrencies®. However, its core characteristics - including Immutability, Transparency, Traceability, and
security through cryptography and consensus mechanisms - -allow it to go beyond the financial domain and
show great potential in scenarios that require a high degree of trust and data integrity>®. Data Notarisation, i.e.,
proving the existence and integrity of data at a specific point in time, is a key requirement in many application
domains (e.g., digital copyright protection, e-contracts, judicial evidence, supply chain traceability, etc.).
Traditional depository methods often rely on centralised third-party institutions, with problems of inefficiency,
high costs and trust risks. The emergence of blockchain technology provides a new mindset and technological
foundation to address these challenges. Figure 4 illustrates the architectural diagram of the blockchain and IPFS
data storage system.

The core of the application of blockchain in the data deposit lies in the use of its tamper-proof distributed
ledger to record the ‘fingerprint’ of the data, rather than the data itself. Specifically, the user first hashes the original
data to be deposited, generating a fixed-length, unique digital digest (Hash Value)¥. Even if the original data
undergoes minor alterations, its hash value will change significantly. Subsequently, this hash value is recorded
on the blockchain as part of the transaction information. Since blockchain transactions are extremely difficult
to tamper with or delete once they have been packed into a block and confirmed by a consensus mechanism,
the hash value recorded on the chain becomes a strong proof that the data existed at a particular point in time
and has not been tampered with. By querying the transaction records on the blockchain, it is possible to verify
whether a hash value has been recorded at a specific time, and thus verify the integrity of the corresponding data.

The use of blockchain for data deposit brings multiple advantages. First, it significantly enhances the
trustworthiness of data. Due to the decentralised nature of blockchain, the depository record does not depend
on any single institution, avoiding the single point of failure and the trust risk that may be associated with
centralised institutions®. Secondly, the tamperability provided by blockchain ensures that the depository records
cannot be maliciously modified once generated, providing a technical guarantee for the integrity of the data. In
addition, transactions on the blockchain are often accurately timestamped, providing verifiable proof of time for
the data. This technology-based rather than institutional trust mechanism makes the data deposit process more
efficient, transparent, and relatively low-cost, which is particularly suitable for large-scale and high-frequency
deposit requirements*’,

Blockchain technology provides an innovative and reliable solution for data deposit by virtue of its inherent
decentralised, tamper-proof and traceable characteristics. By recording the hash value of data on a distributed
ledger, blockchain can provide strong proof of existence and integrity for digital assets and information,
effectively addressing the challenges of traditional deposit methods. This application not only improves data
credibility and security, but also lays a solid foundation for the authentication, circulation and verification of all
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Fig. 4. Architecture diagram of data depository system for blockchain and IPFS.
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kinds of data in the digital economy era, showing broad application prospects in a variety of fields, such as digital
copyright, e-government, financial services, etc.*!.

Overview of IPFS distributed storage technology

Traditional Internet data access relies heavily on Location-addressed Hypertext Transfer Protocol (HTTP),
where data is fetched by specifying the domain name or IP address of a server. This model suffers from the
risk of a single point of failure, inefficiency (especially for popular content), and vulnerability to censorship. To
address these challenges, the InterPlanetary File System (IPFS) has been proposed, which is a Peer-to-Peer (P2P)
distributed file system that aims to connect all computing devices via Content-addressed, building a more robust
, persistent, and open network?2. The core idea of IPFS is to make the data itself the key to addressing, rather than
the location where the data is stored.

The key to enabling content addressing in IPFS is cryptographic hashing of the data. When a file is added to
an IPFS network, it is first split into several data blocks (Blocks). Then, a unique cryptographic hash is calculated
for each block. These hashes are called Content Identifier (CID). The root CID of a file is jointly determined by
the CIDs of all its data blocks and the linking relationships between them*. Thus, the CID not only identifies
the content of the data, but also implicitly contains the integrity checking information of the data. Any minor
changes to the content of the data will result in a change in its CID. When a user requests a CID, the IPFS
network looks up and fetches the corresponding block of data based on this CID in nodes around the world,
without needing to know exactly which server the data is stored on.

The network architecture of IPFS is based on a decentralised P2P network. Each node in the network
can store, request and provide data blocks. Relationships between data blocks are maintained through a data
structure called the Merkle Directed Acyclic Graph (Merkle DAG)**. The Merkle DAG ensures data integrity and
tamper-proofness, as well as supports data de-duplication (since blocks with the same content have the same
CID) and version control. When a node owns a block of data corresponding to a certain CID, it can participate
in data sharing by announcing to other nodes that it owns the data. Retrieval of data can be performed from any
node that owns that data block, and preference is usually given to the closest or most responsive node on the
network topology, which significantly improves the efficiency of data access and resistance to single points of
failure®. Figure 5 illustrates the data processing flowchart for blockchain and IPFS.

IPFS providesa distributed storage solution different from traditional HTTP by introducing content addressing
and building a decentralised P2P network. Its hash-based CID ensures data integrity and tamperability, while
the P2P network and Merkle DAG structure enhance data availability, transmission efficiency, and censorship
resistance®.IPFS technology shows broad application prospects, providing important technical support for
building a more robust and open Internet infrastructure.

In order to more clearly illustrate the limitations of existing technologies and the targeted contributions of
this study, we summarize the various technical gaps discussed above and explain how the integrated solution
proposed in this paper addresses these gaps. The specific details are shown in Table 1.
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Scientific Reports |

(2025) 15:33236 | https://doi.org/10.1038/541598-025-18412-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Existing technology

Identified gaps / limitations

How this paper addresses the gaps

Identity verification

Limited to pre-exam identity confirmation; fails to monitor in-exam
cheating behaviors.

The proposed system employs a lightweight YOLOv12 model for real-time
detection, continuously monitoring the video feed to automatically identify
suspicious objects and behaviors.

Secure browsers

Only restricts operations on the exam computer; cannot prevent the
use of external devices (e.g., smartphones) or receiving assistance from
others.

Our YOLOv12 model is specifically trained to detect electronic devices’ and
multiple *persons’ in the frame, directly addressing cheating via external aids
or assistance.

Early automated
detection

Insufficient accuracy and robustness, leading to high false positives and
negatives. Limited detection scope (e.g., only head pose) and difficulty
adapting to new cheating methods.

‘We use an advanced YOLOv12 model with targeted lightweight improvements,
enhancing real-time performance while maintaining high detection accuracy.
The model offers a broader and more reliable detection scope.

Manual remote
invigilation

High cost and poor scalability. Prone to proctor fatigue and subjective
judgment biases, leading to missed cheating behaviors.

The automated system provides continuous, objective, and scalable
monitoring, significantly reducing reliance on human proctors and eliminating
issues of subjectivity and fatigue.

Traditional evidence
storage

Evidence stored on centralized servers is vulnerable to tampering or
deletion, lacking sufficient credibility and legal validity.

We constructed an evidence depository system using Blockchain (Hyperledger
Fabric) and IPFS. The hash (CID) and metadata of cheating evidence are
recorded on-chain, ensuring it is immutable, traceable, and trustworthy.

Table 1. Summary of gaps in existing anti-cheating technologies and contributions of this paper.

Privacy-preserving technologies for online examination systems
Privacy protection has become a critical concern in online examination systems, where continuous video
monitoring raises significant privacy implications for students. Recent advances in privacy-preserving
technologies offer promising solutions to address these challenges while maintaining system effectiveness.
On-device Computing and Edge AI: On-device recommendation systems and processing have demonstrated
significant potential in preserving user privacy by keeping sensitive data locally”’. In the context of online
examinations, deploying lightweight detection models directly on students’ devices can minimize the
transmission of raw video data to central servers, thereby reducing privacy risks while maintaining real-time

detection capabilities.

Federated Learning for Privacy-Preserving Model Training: Federated learning enables the training of
machine learning models without centralizing sensitive data. Privacy-preserving data contribution methods,
such as those proposed in federated recommender systems*3, can be adapted for online examination scenarios.
This approach allows institutions to collaboratively improve cheating detection models while ensuring that
individual student data remains on local devices.

Differential Privacy: Differential privacy techniques can be integrated into the inference process to protect
individual identities while maintaining system utility. By adding calibrated noise to detection results, the system
can provide privacy guarantees without significantly compromising detection accuracy.

These privacy-preserving approaches represent essential directions for developing more ethical and compliant
online examination systems that balance security needs with fundamental privacy rights.

System design

YOLOv12n model lightweight improved design

To address the characteristics of the cheating behaviour detection task, we have made targeted improvements to
the structure of the benchmark YOLOv12n model. Through preliminary experiments, we found that the visual
features of cheating behaviours are relatively simple and do not require much extreme feature extraction and
fusion capability of the model, and the accuracy of the existing model can already meet the demand. Therefore,
the core of our optimisation focuses on reducing the computational complexity and number of parameters of
the model to achieve a lightweight model, which can significantly improve the inference speed and make it more
suitable for actual deployment scenarios. The improvement mainly focuses on the backbone network and the

header network.

Backbone Lightweighting

The original YOLOv12n model uses the A2C2f module in the deeper part of the backbone network, i.e., in the
processing of the P4/16 (Layer 6) and P5/32 (Layer 8) feature maps.The A2C2f module is designed to enhance
feature representation by combining region-based Attention blocks (ABlock) and convolutional blocks (C3k).
Considering the relative simplicity of cheating features, we believe that over-reliance on Attention mechanisms
imposes an unnecessary computational burden. In order to reduce the computational effort and the number of
parameters, we modify the internal structure of the two-layer A2C2f module:

Remove Attention mechanism: Remove the region-based Attention block (ABlock), which is computationally

expensive.

Simplify the structure: We replace the function of the original Attention block with the convolution-based
C3k block, so that the modified module contains only C3k blocks, and the Attention mechanism is no longer

introduced in the backbone network.

Reducing the number of stacking: we reduce the number of C3k blocks stacked inside the two-layer module

from the original 4-2 times.
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It is evident that these modifications result in a substantial reduction in the computational burden of layers
6 and 8 of the backbone network, while ensuring the retention of adequate feature extraction capability. The

configuration of the specific modified A2C2f module is illustrated in Fig. 6.

Head network lightweighting

In the head network of the model, layer 20, which is responsible for processing the maximum perceptual field
feature map (P5/32), the original design adopts the computationally intensive C3k2 module, and is configured
as c3k=True. According to the source code of the module, C3k2 is inherited from the C2f structure, and when
c3k=True, its internal processing sequence consists of n C3k modules. According to the module source code,
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Fig. 6. Structure of the original A2C2f module and the modified module.
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C3k2 inherits from C2f structure, when c3k=True, its internal processing sequence consists of n C3k modules.
This structure based on the C2f framework with multiple layers of internally nested C3k (containing 2 Bottleneck)
leads to a higher computational cost and number of parameters.

To further optimise the efficiency of the header network, we replaced the C3k2 (c3k=True) module at layer
20 with the lightweight C3Ghost module.

According to the source code of the module, C3Ghost inherits from the C3 structure, and its core lies in the
internal use of the GhostBottleneck module, which is an efficient convolutional module that generates ‘ghost’
feature maps to significantly reduce the number of features required for traditional convolutional operations
while maintaining feature diversity. GhostBottleneck is an efficient convolution module that significantly
reduces the amount of computation and number of parameters required by traditional convolution operations
while ensuring feature diversity. In this study, we use the C3Ghost module which contains one GhostBottleneck
module®. The structure of the C3k2 module and the C3Ghost module is shown in Fig. 7.

This substitution replaces the C3k2(c3k=True) module, which is based on the C3 structure and uses the
efficient GhostBottleneck, with the C3k2(c3k=True) module, which is based on the C2f structure and internally
nested with the standard Bottleneck, resulting in a significant reduction of the computational burden on the
header network, and a further increase in the efficiency of the model inference and training.

The improved YOLOV12 network structure is shown in Fig. 8. These improvement strategies are not blindly
deleting specific modules, but making targeted adjustments based on an in-depth analysis of the characteristics
of the cheat detection task. By replacing the computationally expensive Attention module with a more efficient
convolutional structure and employing the lightweight GhostBottleneck (C3Ghost), we successfully construct
a computationally more efficient model. The experimental results show that for a task like cheating detection,
which has relatively low feature complexity, the over-enhanced feature extraction and fusion module suffers from
over-performance, whereas through the structure lightweighting approach proposed in this paper, the inference
speed of the model can be effectively improved while maintaining sufficient detection accuracy, making it more
suitable for practical deployment scenarios.

4 C3k2 Module (n=1, c3k=True) ) C3Ghost Module (n=1)
Input Feature Map Input Feature Map
Ix1 Conv (C2f Branch) 1x1 Conv (C3 Branch 1)

Ix1 Conv (C3 Branch 2)
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Sequential Branch (y[1]) Concatenation
Parallel Branch (y[0])
\ 4
C3k Block (n=2 Bottleneck) || [1] 1x1 Conv (C3 Output)
3k Output
y ok Outp v
Concatenation Output Feature Map
1x1 Conv (C2f Output)
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\ /
Fig. 7. C3k2(c3k=True) module with C3Ghost module.
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Fig. 8. Lightweighted YOLOv12 model structure diagram.

IPFS storage and hash generation for detection result data

During the online exam cheating detection process, when the YOLO model identifies a suspected cheating
behaviour, it immediately captures the current screenshot as visual evidence. These screenshot image data are
usually large and unsuitable for direct storage on the blockchain. To address the limitations of blockchain storage
capacity and efficiency, and to ensure the integrity and traceability of the evidence images, this paper adopts
the InterPlanetary File System (IPFS, InterPlanetary File System) as the distributed storage scheme for these

screenshot images.

IPFS is a distributed file system based on content addressing. Its working principle is that any file uploaded
to IPFS will have a unique hash value calculated based on its content, i.e., Content Identifier (CID). This CID
is not only the address of the file on the IPFS network, but also a digital fingerprint of the file’s content. Any
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modification to the content of the file will result in a change of its CID, which fundamentally ensures the integrity
and tamper-proofness of the stored data.
Specific screenshot image storage and hash generation process is as follows:

o When the YOLO model detection triggers a ‘suspected cheating’ inference, the system captures a screenshot
of the current exam.

« This uploads the captured screenshot image file to the IPFS network.

o The image file is received and processed by the IPFS network to calculate its unique CID.

« This generated CID (hash value) represents the unique identity and content checksum of that particular
screenshot image.

By storing suspected cheating screenshot images on IPFS, we can effectively strip a large amount of image data
from the blockchain while leveraging the content addressing capabilities of IPFS to ensure the authenticity and
integrity of this off-chain stored image evidence. Subsequently, this lightweight IPFS CID will be stored on the
blockchain, through which the original screenshot images can be retrieved and verified from the IPFS network
when needed.An overview of the IPFS storage and hash generation process is shown in Fig. 9.

Hyperledger fabric chain code design and testing results on the chain process

Hyperledger Fabric’s federation chain architecture and its provision of privilege management, smart contracts
(Chaincode), and efficient consensus mechanisms make it well suited for applications in scenarios such as online
exams, which require trust and collaboration among multiple parties™.

The core lies in the design and implementation of Chaincode. We design a special Chaincode for the deposit
of cheating detection results, which defines the data structure of cheating event records and the logic of creating,
querying and other operations on these records. The chain code will serve as a bridge between the cheat detection
system and the blockchain ledger.

The data structure (or asset model) defined in the Chain Code shall contain the core metadata of the cheating
event and links to the original evidence data in the IPFS.

The key information contained in the cheating event records defined in the chain code is shown in Table 2.

The process of uploading detection results is as follows:

Cheating Detection Module

Outputs Screenshot Data
Y

Suspected Cheating
Screenshot Data

Submitted to IPFS Client
\2

IPFS Client Software

Invokes 'add’ Operation

Y

IPFS 'add' Operation
(Hashing & Chunking)

Stores Data Chunks on Network \Returns Generated CID

IPFS Network Generated IPFS CID
(Distributed Storage) (Content Identifier)

Fig. 9. IPFS storage and hash generation flowchart for suspected cheating screenshots.
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examId Unique identifier for the exam
studentId Unique identifier of the candidate for whom cheating has been detected.
timestamp Timestamp of the suspected cheating incident.
ipfsCID Content identifier/hash on IPFS corresponding to the suspected cheating screenshot image for off-chain retrieval of original evidence.
oloResults The result of the YOLO model’s inference on the screenshot, including details such as the bounding box coordinates and confidence
Y level of the detected target (i.e., the ‘suspected cheating’ object).
g P! g ob)
cheatingType | Type of cheating, fixed to ‘suspected cheating’

Table 2. Form for logging cheating events defined in the chain code.

« Subsequent to the capture of a screenshot by the system designed for the detection of academic dishonesty
and its subsequent upload to the IPFS system to obtain the ipfsCID (refer to Section “Hyperledger fabric chain
code design and testing results on the chain process”), the system will consolidate all the relevant information
pertaining to the detection event, including the examID, the studentID, the timestamp, the ipfsCID obtained,
and the detailed inference results of the screenshot by the YOLO model yoloResults.

o The system’s function as a client application entails the generation of a transaction proposal, which subse-
quently invokes the chain code. The proposal calls a function predefined in the chaincode for logging cheating
events and passes the above integrated information as parameters.

o The transaction proposal is then transmitted to an endorsement node in the Hyperledger Fabric network
for simulated execution. The chaincode operates on the endorsing node, constructs a cheating event record
object based on the received parameters, and verifies the validity of the transaction.

o The endorsing node is responsible for the endorsement of the transaction proposal, and the return of a signed
response to the client application.

« The client application is responsible for collecting sufficient endorsements and submitting the transaction to
the Orderer.

« The system’s ordering service functions by sorting the transactions from disparate clients and subsequently
arranging them into blocks.

o The ordering service transmits the block to the Peer node, which performs the following functions: it validates
the transactions contained within the block, it performs chaining (if required), and it writes valid transactions
to the local distributed ledger.

As shown in the flowchart in Fig. 10, the key metadata of the suspected cheating event, the YOLO inference
result, and the IPFS hash value pointing to the evidence of the original screenshot are permanently stored as
a tamper-evident record on the distributed ledger of Hyperledger Fabric. Any authorised party can query the
record on the chain to obtain the event details and IPFS CID, then retrieve the original screenshot from the IPFS
network for review, and verify the authenticity of the screenshot by comparing the hash values, thus building a
trustworthy chain of evidence of online exam cheating.

Experimental design

Introduction to the dataset

The dataset utilised in this study for the training and evaluation of online examination cheating detection
models originates from the open-source project of Flying Paddle AI Studio. This dataset comprises surveillance
photographs captured during online invigilation at Donghua University. The dataset was created in response
to the demand for invigilation that has arisen due to the increasing number of online examination scenarios in
the post-epidemic era. The aim of the creation of the dataset was to provide basic data support for research into
cheating detection in related fields.

The original dataset contains 623 images. In the context of training deep learning target detection models,
particularly in scenarios where multiple complex and potentially confounding cheating behaviours must be
identified, this scale is considered to be inadequate. This limitation can result in the model overfitting during
the training process, thereby compromising its capacity to generalise on actual, unseen data. In order to
effectively expand the size of the dataset, improve the training effect of the model and enhance its robustness
to changes in different scenarios, we performed data enhancement on the original dataset. A range of common
data enhancement techniques was applied, including random rotation, scaling, horizontal flipping, brightness
adjustment, etc., with the objective of expanding the dataset size tenfold to 6230 images. Figure 11 illustrates a
partial sample image dataset.

The expanded dataset has been labelled in detail for key targets in the online examination scenario. Unlike
the direct labelling of specific cheating behaviours, the labelling categories in this dataset are designed to be
more basic and flexible, with two main categories: ‘person’ and ‘electronic devices. The design concept is to focus
the target detection task on identifying the presence of a person or an electronic device in the picture, while the
final judgement of cheating is adjusted in the inference stage based on the detection results and the specific test
regulations. For example, for exams that allow the use of specific electronic devices, the presence of electronic
devices can be controlled in the reasoning process not to be recognised as cheating; similarly, only one person is
allowed to participate in the exam by default, and cheating is only recognised when multiple ‘person’ targets are
detected. This flexible rule based on the basic target detection results allows the model to adapt to different exam
formats and supervision requirements.
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Fig. 10. Hyperledger Fabric chain code design and testing results on the chain flow diagram.

Fig. 11. Example of dataset image.
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Fig. 12. Al core architecture diagram.
Environment Specific
GPU Huawei Ascend 910B 64GB
CPU Huawei Kunpeng 920 CPU @ 2.60GHz 24-core processor
Memory DDR4 220GB RAM
Operating System Ubuntu 22.04
Python Version Python 3.10
Deep learning framework | PyTorch 2.0.1 combined with CANN 8.0.0

Table 3. Software and hardware environment.

For effective model training, tuning and preliminary performance evaluation, we divide the expanded dataset
into training and validation sets. According to the commonly used division strategy, we adopted a 9:1 ratio for
division, i.e., the training set contains 5607 images and the validation set contains 623 images. The training set
is used for parameter learning of the model, while the validation set is used for monitoring the training process,
tuning the hyperparameters, and evaluating the performance of the model on unseen data during training to
avoid overfitting.

Experimental environment and parameter settings

In order to ensure the fairness and reproducibility of the experimental results, this study standardised the
training of all models based on a uniform hardware environment and consistent initial training parameters. The
subsequent section provides a comprehensive account of the hardware and software environment configurations
employed in the experimental setup. In addition, it delineates the specific parameter settings that were utilised
during the training and evaluation of the model. This information is indispensable for comprehending the
experimental conditions and conducting a thorough analysis of the results.

It is noteworthy that the computing platform for this experiment is the Huawei Rise Ascend 910B, and
the training and validation of the models is accelerated and deployed through Huaweis CANN (Compute
Architecture for Neural Networks) software stack, as opposed to the NVIDIA CUDA platform.

The core computing power of the Ascend 910B processor is mainly provided by its built-in AI Core.
Unlike traditional CPUs and GPUs that support general-purpose computing, or ASICs (Application Specific
Integrated Circuit) that are dedicated to a specific algorithm, the AI Core architecture is essentially designed
to accommodate common applications and algorithms in a specific domain (i.e., AI computing), and is often
referred to as a ‘Domain Specific Architecture (DSA)™!.

As shown in Fig. 12, the computational core of the AI Core consists of three main underlying computational
resources: the Matrix Computing Unit (Cube Unit), the Vector Unit, and the Scalar Unit. Each of these three
computing units has its own role, forming three independent execution pipelines, which cooperate with each
other under the unified scheduling of the system software (i.e., CANN) to efficiently execute AI algorithmic
tasks. The Cube Unit performs intensive matrix computations such as matrix multiplication; the Vector Unit
performs parallel vector computations such as vector addition, subtraction, multiplication and division; and the
Scalar Unit handles control flow and scalar computations.

The hardware and software environments are specified in Table 3.

Scientific Reports |

(2025) 15:33236 | https://doi.org/10.1038/541598-025-18412-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

The training configuration is as follows:

Number of training rounds: model training was set to 50 epochs to ensure that the model could fully learn
the data features.

Batch size: each batch was automatically configured with 50% of the graphics memory (32G) of Huawei’s Rise
Ascend 910B, a setting that balances memory usage and training efficiency.

Input image size: All input images were uniformly resized to 640 pixels to fit the input requirements of the
model.

Optimiser: The AdamW optimiser is used, which performs well in deep learning model training due to its
adaptive learning rate adjustment strategy.

Learning rate: the initial learning rate is set to 0.01, which is adjusted by the learning rate scheduling strategy
to promote model convergence.

Momentum: the momentum parameter is set to 0.937, which helps accelerate the convergence during the
training process.

Weight decay: a weight decay of 0.0005 was applied to prevent model overfitting.

Warm-up rounds: the first 3 epochs are used as a warm-up phase to gradually increase the learning rate,
which helps the model to be trained stably.

Data augmentation: Automatic data augmentation using RandAugment strategy combined with Mosaic data
augmentation technique (Mosaic is turned off in the last 10 epochs).

NMS (Non-Maximum Suppression) Threshold: set to 0.7, used to filter out the optimal bounding box in the
detection results and reduce overlapping detections.

The above hardware and software environments were carefully configured, along with meticulously set training
parameters, in order to ensure that the improvements could be effectively validated in a controlled and consistent
environment. These preparations aim to provide an efficient, stable and reproducible experimental platform
for the training and evaluation of the YOLOvV12 detection model, so that the impact of different algorithmic
modules on the model performance can be reliably measured and compared.

We acknowledge the inherent stochasticity in the deep learning training process (e.g., from weight
initialization and data augmentation). To ensure the reproducibility of our reported results, we fixed the random
seeds across all experiments and configured PyTorch to use deterministic algorithms. Therefore, all performance
metrics reported in this paper are stably reproducible under this controlled setup. While a single run does not
provide statistical confidence intervals, we validate the robustness of our conclusions from multiple perspectives
through the comprehensive comparative and ablation studies that follow.

Evaluation indicators
In evaluating the overall performance of the neural network model, we considered two key metrics, the size of
the model and the detection accuracy.

The size of the model is measured by the number of parameters, which refers to the sum of parameters to be
trained in the model. The smaller the number of parameters, the more suitable the model is for deployment on
mobile devices, and also reflects the complexity and computational requirements of the model.

In evaluating the accuracy of target detection algorithms, we use metrics such as Precision (P), Recall (R),
Mean Accuracy (mAP50) and Mean Average Precision (mAP50-95).

The precision rate P measures the proportion of all samples predicted to be in the positive category that are
actually in the positive category, and is calculated as shown in Eq. 1.

TP

P=7p1Fp W)
Recall R, on the other hand, is the ratio of samples correctly predicted to be positively classified to all actual
positively classified samples and is calculated as shown in Eq. 2.

TP
R= —F++ (2)
TP+ FN
Since there is a negative correlation between precision rate and recall rate, we usually plot the PR curve with
recall rate as the horizontal axis and precision rate as the vertical axis, and the area under the PR curve is the AP
value, as shown in Eq. 3.

1
AP:/ p(r) dr (3
0

In this experiment, we will use metrics such as those presented in Table 4 to further refine the performance
evaluation of the model.

Through the comprehensive analysis of these evaluation indexes, we are able to make a comprehensive
assessment of the detection performance, complexity and applicability of the model, so as to provide a basis for
the optimisation and selection of the model.
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Indicator | Description

Precision The Precision indicator measures the proportion of samples predicted by the model to be in the positive category that are actually in the positive category. It
reflects the model’s ability to avoid misclassifying non-positive samples as positive.

Recall The Recall metric measures the proportion of samples correctly predicted by the model to be in the positive category as a proportion of all samples that are
actually in the positive category. It measures the model’s ability to identify all positively classified samples.

mAP50 The average precision calculated at an IoU (Intersection over Union) threshold of 0.5 is used to evaluate the detection performance of the model at moderate
overlap. mAP50 is a commonly used evaluation metric in target detection that combines precision and recall.

mAP50-95 This metric is the average precision calculated over a range of IoU thresholds from 0.5 to 0.95. It provides a more comprehensive performance evaluation because
different IoU thresholds require different precision for the detection frames, which enables a more nuanced evaluation of the model’s detection capability.

Parameters The number of parameters is the total number of all trainable parameters in the model. This metric reflects the complexity of the model, and usually the lower the
number of parameters, the simpler the model and the lower the computational requirements, making it easier to deploy in resource-constrained environments.

Table 4. Introduction to performance indicators.

Comparative experiments

In order to comprehensively evaluate the performance of the detection module in the online exam cheating
detection system based on YOLOvV12 proposed in this paper and to compare it with other versions of YOLO
target detection models, we designed and conducted a series of comparison experiments. The experiments are
conducted on a specially constructed dataset of online exam cheating behaviours, and the key performance
metrics of each model on the cheat detection task are documented in detail, including Precision (P), Recall (R),
Average Precision mAP50, Average Precision mAP50-95 for IoU thresholds in the range of 0.5-0.95, as well as a
measure of the efficiency of the model, the Parameters and GFLOPs.

The focus is on comparing the benchmark model YOLOv12n with the optimisation model YOLOv12NoAttn
proposed in this paper, while YOLOv5n, YOLOv8n, YOLOvV9t, and YOLOv10n, YOLOv11n are introduced as
references. By systematically comparing these models, we aim to quantify the specific impact of the optimisation
strategy in this paper on cheat detection performance and model efficiency, and explore the reasons for these
performance differences. The specific experimental results are shown in Table 4.

As can be seen from the comparative experimental results in Table 4, the optimised model YOLOv12NoAttn
proposed in this paper achieves competitive performance on the online exam cheating detection task and
demonstrates significant advantages in terms of model efficiency.

Detection performance analysis: Compared with the benchmark model YOLOv12n, the optimised model
YOLOvVI2NoAttn shows a small improvement in both mAP50 (0.98208 vs 0.98156) and Recall (0.95647
vs 0.94978). This suggests that the optimised model is able to detect cheating more effectively, reduce
underreporting (i.e., increase recall), and has a higher average detection precision at an IoU threshold of
0.5. However, its precision rate Precision (0.93019 vs. 0.93823) and mAP50-95 (0.75436 vs. 0.75631) slightly
decreases. In a cheating detection scenario, a high precision rate means fewer false positives (less interference
with normal examinees), and a high recall rate means fewer missed positives (not missing cheating behaviours).
The optimised model improves recall and mAP50 at the expense of precision and mAP50-95, which is a trade-
off between detection coverage and detection accuracy. Considering the actual needs of online exams, a high
recall rate is crucial for timely detection of cheating behaviours, while the slightly lower precision rate can be
compensated by subsequent manual review and other means.

Model Efficiency Analysis: YOLOv12NoAttn performs well in terms of model complexity. The number of
parameters is only 1,840,350, which is about 28% less than the benchmark YOLOv12n’s 2,557,118. The number
of floating-point operations GFLOPs is also reduced from 6.3 to 5.5, a reduction of about 13%. This significantly
reduces the computation and storage overheads of the model, making the detection module more suitable for
deployment on devices with limited computational resources or to support higher density concurrent detection
on the server side, which is especially important for large-scale online exam scenarios.

Comparison with other models: Compared with other mainstream YOLO models, YOLOv12NoAttn has
the lowest number of parameters and GFLOPs among all the models in the table, while maintaining similar
or even better detection performance than YOLOv12n in some metrics. For example, compared to YOLOv8n,
YOLOVI2NoAttn is slightly lower on mAP50-95, but has a significant advantage on the number of parameters
and GFLOPs. This highlights the effectiveness of the optimisation strategy in this paper in achieving model
lightweighting, which provides a more efficient solution for online exam cheating detection.

In addition, by reporting both mAP50 and mAP50-95, we conduct a sensitivity analysis of the model’s
performance with respect to the evaluation criteria. mAP50 represents performance under a lenient IoU
threshold, while mAP50-95 measures average performance across multiple, stricter IoU thresholds. Our model
(YOLOV12NoAttn) maintains a highly competitive mAP50 score (0.98208), indicating that its core capability to
detect the target’ is reliable. The slight decrease in the more stringent mAP50-95 metric clearly illustrates the
trade-off between efficiency and high-precision localization. This consistent performance across varying levels
of evaluation stringency also indirectly corroborates the reliability of our results.

Experimental results show that the optimised model YOLOv12NoAttn proposed in this paper successfully
strikes a good balance between detection performance (especially on mAP50 and Recall) and model efficiency
in the online exam cheating detection task. By reducing the model complexity, it is made more suitable for
real-world deployment requirements while maintaining a high cheating detection capability. This analysis not
only validates the effectiveness of the optimisation strategy, but also provides a solid practical basis for further
optimising the detection module for online exam cheating detection in the future.
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Models Precision | Recall | mAP50 | mAP50-95 | Parameters | GFLOPs
YOLOvV5n 0.93855 0.95840 | 0.98088 | 0.75466 2,503,334 7.1
YOLOv8n 0.91304 0.97604 | 0.98513 | 0.79401 3,006,038 8.1
YOLOvOt 0.92883 0.94797 | 0.98123 | 0.73676 1,971,174 7.6
YOLOv10n 0.92774 0.94099 | 0.97988 | 0.77188 2,695,196 8.2
YOLOvlln 0.92852 0.96561 | 0.98199 | 0.76616 2,582,542 6.3
YOLOvI12n 0.93823 0.94978 | 0.98156 | 0.75631 2,557,118 6.3
YOLOvVI12NoAttn | 0.93019 0.95647 | 0.98208 | 0.75436 1,840,350 55

Table 5. Performance comparison of different YOLO models on online exam cheat detection tasks.

Backbone (Layers mAP50 | Parameters
Configuration 6 & 8) Head (Layer 20) | P (%) | R (%) | (%) M) Description
Baseline YOLOv12n Original A2C2f Original C3k2 93.823 | 94.978 | 98.156 | 2,557,118 Original baseline model

Lightweight improvements for backbone network

Baseline + Backbone Light | Modified Module | Original C3k2 93.769 | 96.251 | 98.234 | 2,043,070 R
applications only

Baseline + Head Light Original A2C2f C3Ghost 94.816 | 94.545 | 98.342 | 2,354,398 Lightweight improvements for head-only web applications

Complete lightweight model (improvements applied to

Full Lightweight Model Modified Module | C3Ghost 93.019 | 95.647 | 98.208 | 1,840,350 both backbone and header networks)

Table 6. Results of ablation experiments.

Ablation experiments
In order to systematically evaluate the impact of the lightweight improvement strategies proposed in this
paper for the backbone and header networks on the performance and efficiency of the YOLOv12n model, a
series of ablation experiments are conducted. By comparing the performance metrics under different model
configurations, the ablation experiments aim to quantify the contribution of each improvement module and
verify its effectiveness.

Based on the lightweight improvement proposed in Section “YOLOv12n model lightweight improved
design’, we designed the following four sets of experimental configurations for the study:

« Baseline Model: The original YOLOv12n-n architecture is used. This configuration uses the standard A2C2f
module at layers 6 and 8 of the backbone network and the standard C3k2 (c3k=True) module at layer 20 of
the header network. This configuration serves as a performance and parametric quantitative reference base
for all subsequent experiments.

« Backbone Lightweight Only: Based on the baseline model, only the backbone lightweight improvements de-
scribed in Section “Backbone lightweighting” are applied, i.e., the modification of the module structure at lay-
ers 6 and 8 (removal of Attention, replacement with C3k, reduction of the number of stacks). Layer 20 of the
header network still uses the standard C3k2 module. This configuration is used to evaluate the independent
effect of the backbone network lightweighting improvements.

+ Head Lightweight Only: Based on the baseline model, only the Head Lightweight improvements described
in Section “Head network lightweighting” are applied, i.e., the C3k2 (c3k=True) module is replaced by the
C3Ghost module at layer 20 of the Head Network. Layers 6 and 8 of the backbone network still use the
standard A2C2f module. This configuration is used to evaluate the independent effect of the header network
lightweighting improvements.

« Full Lightweight Model: The lightweight improvements are applied to both the backbone and headend net-
works, i.e., the final model structure proposed in this paper. This configuration is used to evaluate the overall
performance and efficiency of all the improved modules working together.

All experimental configurations were trained and evaluated under the same dataset, training hyperparameters
(e.g., learning rate strategy, optimiser, batch size, etc.), and hardware environments to ensure comparable results.
We recorded the Precision (P), Recall (R), mAP@0.5:0.95 (mAP), and Model Parameters (Parameters) for each
configuration. The experimental results are summarised in Table 6.

By comparing the results of different configurations, we can analyse the respective impact of the backbone
and head network lightweight improvements on the model performance and the number of parameters, and
verify the effectiveness of the joint improvements.

Table 5 summarizes the results of the ablation experiment, clearly showing the impact of different lightweight
strategies on model performance and parameter count. As a benchmark for performance and efficiency, the
original YOLOv12n model (baseline model) achieved 93.823% precision (P), 94.978% recall (R), and 98.156%
mAP@O.5, with approximately 2.56M parameters.

After only the backbone network was lightweighted (only the backbone network lightweight model), the
number of model parameters was significantly reduced to about 2.04M, which is about 20% less than the baseline
model. This shows that the optimization of the backbone network is one of the key contributors to the significant
reduction in model parameters. In terms of performance, the recall rate (R) increased to 96.251%, while the
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precision rate (P) decreased slightly to 93.769%, and mAP@0.5 remained at 98.234%, which is comparable to or
slightly improved from the baseline model. This shows that the lightweight backbone network has little impact
on the detection performance while greatly compressing the model, and even has a gain in recall rate, reflecting
the efficiency of the improved module.

The experiment of only making lightweight improvements to the head network (only the lightweight model
of the head network) shows that the number of parameters of the model is reduced to about 2.35M, which is
a smaller reduction (about 8.7%) than the improvement of the backbone network. In terms of performance,
the precision (P) is increased to 94.816%, the recall (R) is slightly reduced to 94.545%, and the mAP®@0.5 is
increased to 98.342%. This shows that the lightweighting of the head network has a positive impact on the
model’s precision and overall mAP while reducing the number of parameters to a certain extent, especially in
improving the precision.

The complete lightweight model that simultaneously applies the backbone network and head network
lightweight improvements achieves the maximum parameter compression, which is only about 1.84M. Compared
with the baseline model, the number of parameters is reduced by about 28%. In terms of performance, the model
achieved a precision (P) of 93.019%, a recall (R) of 95.647%, and a mAP@0.5 of 98.208%. Compared with the
baseline model, the complete lightweight model has a substantially reduced number of parameters, and the
mAP@O.5 is basically the same (or even slightly improved), the recall rate is improved, and the precision rate
is slightly reduced. This shows that the backbone network and head network lightweight strategies proposed in
this paper can work together, while significantly reducing the complexity of the model, effectively maintaining
or even optimizing key detection performance indicators (especially mAP and R), and achieving a good balance
between efficiency and performance.

More importantly, the ablation study (Table 5) provides strong support for the reliability of our conclusions.
The experiment clearly demonstrates that the lightweight modifications to the backbone and head networks
each contributed quantifiable and positive effects (e.g., the backbone modification significantly reduced
parameters by 20% while improving recall; the head modification improved precision). The final balance of
performance and efficiency achieved by the full lightweight model is a direct consequence of these systematic
improvements working in concert, rather than a random artifact of a single training run. This systematic cause-
and-effect relationship itself serves as evidence for the robustness of our findings, mitigating concerns about the
stochasticity of a single experiment.

The results of the ablation experiments strongly demonstrate the effectiveness of the lightweight improvement
strategies for the backbone and head networks proposed in this paper. The improvement of the backbone network
is the key to achieve a significant compression of the number of model parameters, while the improvement of
the head network has a positive effect on enhancing the accuracy and mAP of the model. The joint application
of these improvements can significantly reduce the number of parameters and computational complexity of
the model while guaranteeing high detection performance (especially mAP and R), making it more suitable for
online examination environments with limited resources.

Limitations of the Proposed Solution

While the proposed integrated system demonstrates significant advancements in online exam cheating detection
and evidence validation, it is crucial to acknowledge its inherent limitations, which also highlight avenues for
future research.

The performance evaluation in this study is based on a single training and testing run, which limits the
statistical robustness of our findings. To enhance the reliability of the assessment, future work should involve
multiple runs with different random seeds to report averaged results and confidence intervals, thereby providing
a more comprehensive evaluation of the model’s performance stability and consistency.

The detection methodology is predominantly vision-based and relies on identifying specific objects
(e.g., 'person, electronic devices’) in conjunction with predetermined rules. This approach has limitations in
identifying more subtle, complex, or non-visual cheating methods, such as the use of Al-powered assistance
for answering questions or communication via micro-earpieces. The system currently does not incorporate
complementary technologies like audio analysis or data from IoT sensors, which could create a more holistic
and robust multi-modal detection framework.

Despite data augmentation, the dataset employed for model training is comparatively limited in size (6,230
images) and scope. It may not fully represent the vast diversity of real-world cheating scenarios, environmental
conditions, and subtle behaviors. This constraint could potentially limit the model’s generalization capability
when deployed in more complex or previously unseen examination settings, affecting its effectiveness across
different institutional contexts and examination formats.

The system’s reliance on continuous video monitoring and the storage of student screenshots raises
multifaceted privacy implications that extend beyond technical considerations. Drawing insights from privacy-
preserving technologies in distributed systems?’, we recognize that centralized video processing inherently
creates privacy vulnerabilities. While the current approach secures evidence integrity through blockchain
technology, it does not address the fundamental privacy concern of sensitive biometric and behavioral data
collection, which remains a critical limitation in the system’s design.

The absence of advanced privacy-preserving techniques that have proven effective in related domains
further compounds these concerns. Federated learning approaches, as demonstrated in privacy-preserving
data contribution systems*, could enable model training without centralizing sensitive student data, yet such
mechanisms are not incorporated in the current system. Similarly, the lack of differential privacy mechanisms
during inference means that individual student identities remain inadequately protected from potential
reconstruction attacks, creating additional vulnerabilities in the privacy framework.
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Future iterations must address these privacy challenges through a comprehensive approach that integrates
on-device processing capabilities to minimize raw data transmission while implementing federated learning
protocols for collaborative model improvement across institutions. The incorporation of differential privacy
guarantees becomes essential to protect individual privacy while maintaining detection effectiveness. Beyond
technical improvements, the system requires comprehensive compliance frameworks that address GDPR,
FERPA, and other relevant data protection regulations to ensure ethical deployment in educational environments.

Conclusion and future work

This study presents a novel solution for enhancing online examination integrity by integrating a lightweight
YOLOV12 model with blockchain technology, addressing the dual challenges of real-time detection and trusted
evidence preservation. Our key achievement is the development of the YOLOv12NoAttn model, which, through
targeted structural optimizations, strikes a thoughtful balance between high performance and computational
efficiency. The model reduces parameters by approximately 28% and GFLOPs by 13% compared to its baseline,
while delivering a strong mAP50 of 98.21% and an improved recall of 95.65%. Concurrently, our implementation
of a Hyperledger Fabric and IPFS framework effectively addresses the long-standing challenge of creating
tamper-proof evidentiary records, ensuring the originality and integrity of cheating evidence. Our work delivers
a practical, efficient, and credible end-to-end system that significantly advances the state of online examination
security.

Building on the foundation of this study, our future work will focus on several key extension directions to
enhance the system’s intelligence, scalability, and trustworthiness.

Advanced Cheating Behavior Recognition: A primary objective is to transition from the current object-based
detection to a more sophisticated, end-to-end cheating behavior recognition model. While our system effectively
identifies prohibited objects, it relies on rule-based logic to infer cheating. Future research will therefore explore
spatio-temporal deep learning models (e.g., 3D-CNNs or Video Transformers) to directly learn and identify
complex, subtle actions such as whispering or illicit human-computer interactions. This necessitates a significant
effort in constructing a more comprehensive dataset annotated with fine-grained temporal action labels.

Edge Computing Architecture and Real-time Scalability: To address the practical challenges of real-time
processing and scalability in large-scale deployments, we will investigate an architectural shift towards edge
computing. Deploying the lightweight detection model directly on the candidate’s device (the edge) can
significantly reduce network latency, lower central server load, and enhance data privacy by minimizing raw
video transmission. This direction logically extends our current work on model lightweighting, aiming for a
truly distributed and efficient proctoring architecture.

Comprehensive Privacy-Preserving Architecture and Compliance Enhancement: A critical priority for
future development is the implementation of comprehensive privacy-preserving mechanisms that address
the fundamental ethical concerns raised by continuous video monitoring. Inspired by advances in on-device
computing and federated systems?’, we will investigate the deployment of lightweight detection models directly
on student devices to minimize sensitive data transmission while maintaining detection effectiveness. This
approach aligns seamlessly with our current lightweighting efforts and represents a natural evolution toward
privacy-by-design architecture.

Furthermore, we will explore federated learning protocols adapted from privacy-preserving data contribution
frameworks*® to enable collaborative model improvement across educational institutions without sharing raw
student data. This federated approach will allow institutions to benefit from collective intelligence while ensuring
that sensitive biometric and behavioral data remains locally protected. The integration of differential privacy
techniques during model inference will provide mathematical guarantees for individual privacy protection,
adding calibrated noise to detection results to prevent potential reconstruction attacks while maintaining system
utility.

Theblockchain evidence system will also be enhanced with privacy-preserving smart contracts that can process
encrypted evidence metadata, ensuring that even the stored evidence maintains privacy protection throughout
its lifecycle. Advanced cryptographic techniques such as zero-knowledge proofs may be integrated to enable
evidence verification without revealing sensitive content details. Additionally, we will develop comprehensive
compliance frameworks to ensure adherence to international data protection regulations including GDPR,
FERPA, and regional privacy laws, incorporating automated compliance monitoring and reporting mechanisms.

Enhanced Blockchain Infrastructure and Decentralized Identity: The blockchain component itself presents
significant opportunities for enhancement. Future iterations will involve designing more advanced smart
contracts to automate the entire evidence lifecycle, including appeal mechanisms, dispute resolution tracking,
and automated evidence expiration. We will also investigate integration with Decentralized Identity (DID)
systems to create a more robust, privacy-preserving authentication process for all participants, eliminating the
need for centralized identity management while maintaining security and accountability.

Multi-modal Detection and Experimental Rigor: To address current detection limitations, future work will
explore multi-modal approaches integrating audio analysis, keystroke dynamics, and IoT sensor data to create
a more comprehensive understanding of the examination environment. Simultaneously, we will implement
more rigorous experimental protocols involving multiple independent runs with different random seeds to
provide statistically robust performance assessments with confidence intervals, enhancing the reliability and
reproducibility of our findings.

These integrated research directions will collectively advance toward a next-generation online examination
integrity system that balances security, privacy, efficiency, and ethical considerations, providing a foundation for
trustworthy digital assessment in the evolving landscape of online education.
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Data Availability

The dataset used in this study is a publicly available open source dataset with the access link: https://aistudio.bai
du.com/datasetdetail/128035. The dataset is released under the GPL-2.0 open source agreement with no ethical
implications.
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