
Online exam cheating detection 
and blockchain trusted deposit 
based on YOLOv12
Haoliang Wang1,2, Zarina Shukur1, Khairul Akram Zainol Ariffin1, Renhao Xiao2 & 
Lili Wang2

In recent years, online examinations have been widely adopted because of their flexibility, but the 
covert and diverse nature of cheating behaviour poses a serious challenge to the fairness and integrity 
of examinations. Existing anti-cheating techniques are deficient in detecting diverse cheating 
behaviours in real-time and ensuring the credibility of evidence. To address this problem, this paper 
proposes an integrated solution for online exam cheating detection based on the lightweight YOLOv12 
model and blockchain trusted depository. Firstly, we made targeted lightweight improvements to the 
benchmark YOLOv12n model by removing the computationally intensive Attention mechanism from 
the backbone network and simplifying the module structure (modifying the A2C2f module), as well 
as replacing the computationally heavy C3k2 module in the head network with the efficient C3Ghost 
module. These modifications aim to reduce the model’s computational complexity and number of 
parameters, increasing inference speed, thus making it more suitable for real-time detection tasks. 
Secondly, to address the issue of credible evidence preservation concerning cheating, we constructed 
a evidence preservation system based on the Hyperledger Fabric consortium blockchain, combined 
with IPFS distributed storage technology. Key screenshots of suspected cheating behaviors are 
stored on IPFS, and their content identifier (CID) along with detection metadata (such as timestamp, 
detection type, confidence, etc.) is recorded on the blockchain through smart contracts, ensuring 
the originality, integrity, and immutability of the evidence. Experiments conducted on an online 
exam cheating dataset containing categories of ’person’ and ’electronic devices’ demonstrate that 
the proposed lightweight YOLOv12NoAttn model exhibits competitive detection performance (with 
slight improvements in mAP50 and Recall) while showing higher efficiency by significantly reducing 
parameters (approximately 28%) and GFLOPs (approximately 13%). Ablation experiments further 
verify the effectiveness of the lightweight improvements made to both the backbone and head 
networks. This research provides an efficient, accurate, and trustworthy solution for cheating detection 
and evidence management in online examinations, contributing to the maintenance of fairness and 
integrity in online assessments.

Background and challenges of online examination cheating
In recent years, with the rapid development of information technology and the transformation of global 
education models, online education and distance learning have become an important part of higher education 
and vocational training. Especially under the influence of global events (e.g., the COVID-19 pandemic), online 
examinations have been widely adopted as a flexible and efficient assessment method1. Online exams break the 
time and space constraints of traditional offline exams and provide great convenience for learners.

However, the popularity of online exams has also brought a series of new challenges, one of the most 
prominent and urgent problems is how to effectively prevent and detect cheating2. Compared with traditional 
offline exams, online exams are usually conducted in uncontrolled remote environments, and candidates may be 
more likely to cheat by using external resources, seeking assistance from others, or using unauthorised devices, 
which greatly increases the covertness and diversity of cheating behaviours3. Cheating not only undermines 
the fairness of examinations and the validity of assessment results, but also poses a serious threat to academic 
integrity and the credibility of the education system4.
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The critical role of trust in online examination systems
Trust plays a pivotal role in online examination cheating detection systems, serving as the cornerstone for 
maintaining system integrity and ensuring fair assessment practices. The importance of trust in this context can 
be understood through several key dimensions that fundamentally impact the effectiveness and acceptance of 
online examination systems.

Trust is essential for maintaining the credibility of online examination systems to ensure fairness and academic 
integrity5. As educational institutions increasingly rely on digital platforms for assessment, the establishment of 
trustworthy systems becomes paramount to preserve the fundamental principles of fair evaluation. Without 
robust trust mechanisms, the entire foundation of online education and assessment could be undermined, 
leading to a crisis of confidence in digital learning platforms.

A critical challenge in this domain is the phenomenon of behavior change, where new forms of cheating 
behaviors often exceed the ability of traditional models to identify established cheating patterns6. As Azzedin 
and Ridha demonstrated in their seminal work on peer-to-peer systems, behavioral changes can significantly 
impact the performance of existing honesty checking mechanisms. This principle directly applies to online 
examination contexts, where evolving cheating strategies continuously challenge the detection capabilities of 
conventional systems. The dynamic nature of cheating behaviors necessitates adaptive trust models that can 
accommodate and respond to these changes effectively.

By embedding behavioral trust concepts such as reputation assessment into examination systems, 
institutions can significantly enhance system reliability and promote ethical examination practices7,8. These 
trust-based approaches can involve tracking students’ honest behavioral patterns over time or implementing 
reputation-based scoring mechanisms. Such systems create a comprehensive profile of student behavior that 
extends beyond individual examination sessions, enabling more accurate and contextual assessment of potential 
cheating incidents5. The integration of reputation systems, as extensively studied in peer-to-peer environments, 
provides valuable insights for developing trust-aware examination platforms that can distinguish between 
genuine behavioral variations and deliberate cheating attempts.

The implementation of multi-layered trust frameworks serves a dual purpose: not only does it help deter 
cheating behaviors, but it also provides institutions and students with confidence that the assessment process is 
transparent and fair8. This comprehensive approach to trust ultimately enhances confidence in digital education 
platforms by creating an environment where all stakeholders can rely on the integrity and reliability of the 
assessment system. When students trust that the system fairly evaluates all participants and institutions trust 
that the results accurately reflect student capabilities, the entire educational ecosystem benefits from increased 
credibility and effectiveness.

Ensuring the integrity of online examinations faces multiple challenges. The uncontrolled nature of 
the environment makes it difficult for invigilators to fully monitor the behaviour of candidates and their 
surroundings, and candidates may cheat using multiple screens or using devices such as mobile phones. The 
diversity and intelligence of cheating methods continue to evolve, making it difficult for traditional rule-based 
or simple behavioural analysis methods to cope with the proliferation of new cheating methods. Real-time 
detection presents another significant challenge, as abnormal behaviours need to be detected and warned 
instantly during the examination process, which requires the detection system to have efficient and accurate 
real-time processing capabilities. Obtaining and credibly documenting evidence of cheating remains a key 
challenge. Even if suspected cheating is detected, how to obtain clear, objective and untamperable evidence for 
subsequent identification and processing is an important part of safeguarding the fairness of the examination 
and maintaining the reputation of the institution.

To address these challenges, academics and industry have proposed a variety of technical and management 
measures. Common technological tools include identity verification (e.g., biometrics, knowledge quizzes), 
browser locking (restricting candidates’ access to computer resources), and remote invigilation based on video 
surveillance9. However, each of these methods has its limitations. Identity verification mainly solves the problem 
of ’who is taking the test’, but cannot effectively monitor cheating behaviour during the test10. Locking the 
browser can only restrict the internal operation of the computer, but not the use of external devices or seek help 
from others to cheat. Manual remote invigilation, while providing some degree of monitoring, faces problems 
such as high cost, poor scalability, invigilator fatigue, and subjective judgement. Automatic detection methods 
based on early computer vision technologies may suffer from low accuracy, high false alarm and omission rates, 
difficulty in identifying complex behaviours, etc., and how to ensure the authenticity and undeniability of the 
evidence of detected cheating is still an under-solved problem11.

Therefore, there is an urgent need for a more advanced and robust technological solution that can effectively 
detect diverse cheating behaviours in online examinations in real time and provide a trustworthy mechanism to 
securely store and manage the cheating evidence, in order to cope with the severe challenges posed by current 
online examination cheating.

Limitations of existing anti-cheating technologies
A variety of technological and managerial measures have been proposed by academia and industry to address 
the increasingly prominent problem of cheating in online examinations. These approaches mitigate the integrity 
risk of online exams to a certain extent, but each has obvious limitations and fails to provide a comprehensive, 
efficient and trustworthy solution. Existing mainstream anti-cheating technologies mainly include identity 
verification, locked browsers, rule-based behavioural analysis, and manual remote invigilation.

First, identity verification-based technologies (e.g., biometrics, knowledge quizzes) are mainly used to 
confirm that it is the registered student himself/herself who is taking the exam12. However, the core of these 
technologies is to solve the problem of ‘who is taking the test’, and cannot effectively monitor the behaviour of 
candidates during the test. Once authenticated, candidates may still use various means to cheat, such as accessing 

Scientific Reports |        (2025) 15:33236 2| https://doi.org/10.1038/s41598-025-18412-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


unauthorised materials, using assistive devices or seeking help from others. As some scholars have pointed out, 
authentication does not address the more complex issue of ‘verifying that a candidate does not have the help of 
others or the support of resources not permitted by the instructor’13. Therefore, relying on authentication alone 
cannot guarantee the integrity of the examination process.

Second, Secure Browsers technology is designed to restrict candidates from accessing other applications, 
websites, or copy-and-paste content on the computer during an exam14. This method is useful in preventing 
examinees from switching windows on the exam computer to search for answers or use local files. However, 
its limitation is that it only controls the computer environment that the examinee is using. The lockdown 
browser cannot do anything about cheating by using external devices (e.g., smartphones, tablets, smartwatches) 
to communicate or access information. It is also possible for a candidate to be assisted by another computer 
or by someone else in the room, and these behaviours are also beyond the scope of the Lockdown Browser’s 
monitoring.

Behavioural analysis methods based on early computer vision or simple rules attempted to detect anomalous 
behaviours by analysing the video stream of the examinee, such as prolonged periods of time when the eyes stray 
away from the screen, a large head turn, or the detection of a second person in the room15. Despite the potential 
efficiency benefits of automated detection, these early methods often suffered from the following problems:

Insufficient accuracy and robustness Simple rules or models are difficult to cope with complex and changing 
examination environments (e.g., light changes, background interference) and subtle behavioural changes of 
examinees, which can easily lead to high false alarm rates (misclassifying normal behaviours as cheating) and 
underreporting (failing to detect cheating behaviours that actually occur)16.

Limited detection scope Most methods focus on head posture or face detection, making it difficult to effectively 
identify specific cheating tools (e.g., mobile phones, headphones) or more subtle means of cheating (e.g., screen-
sharing, micro-cameras) used by candidates.

Difficulty in adapting to new forms of cheating With the development of technology, cheating methods continue 
to evolve, such as the use of AI tools to assist in answering questions and the use of invisible headphones, etc. 
These new types of cheating behaviour often exceed the ability of traditional rules or models to identify.

Manual remote invigilation is a widely used method of real-time monitoring by human invigilators remotely 
viewing video streams of candidates17. This method can provide more flexible and comprehensive monitoring to 
some extent, but its drawbacks are also prominent:

High costs and poor scalability A single invigilator can usually only monitor a limited number of candidates 
at the same time, and large-scale examinations require a large number of invigilators, leading to a sharp increase 
in costs and difficulty in coping with unexpected large-scale examination demands.

Invigilator fatigue and subjectivity Prolonged, high-intensity monitoring can easily lead to invigilator fatigue 
and reduced concentration, which can lead to missed cheating behaviour. At the same time, the subjective 
judgements of different invigilators may lead to inconsistent detection standards.

privacy worry Constant video surveillance may trigger privacy concerns and discomfort for candidates.
Technology dependency and blind spots Dependent on a stable network connection and high-quality video 

streaming, any technical glitch may affect the effectiveness of invigilation. In addition, there are blind spots in 
the camera’s view, which may be exploited by candidates to cheat.

Finally, a pervasive and often overlooked limitation is the issue of credible deposit of evidence of cheating. 
Even if suspected cheating is detected and videos or logs are recorded through one of the methods described 
above, it is an important challenge to ensure the originality, integrity and inerrancy of such evidence for 
subsequent impartial investigation and processing. The traditional way of storing evidence is susceptible to 
tampering or forgery and lacks sufficient credibility, which may make it difficult for cheating to be effectively 
recognised and punished, weakening the deterrent effect of anti-cheating measures.

Existing anti-cheating technologies for online exams each have obvious limitations. Whether it is identity 
verification, locked browsers, early automated detection or manual invigilation, none of them can individually 
or jointly provide a comprehensive, accurate, efficient and trustworthy solution to deal with the increasingly 
complex and covert online exam cheating behaviours. In particular, the significant shortcomings of existing 
technologies in detecting diverse cheating behaviours in real-time and ensuring the credibility of cheating 
evidence provide the need and research space for this study.

Contribution of this article
In this study, we propose an integrated system for online exam cheating detection based on the lightweight 
YOLOv12 model and blockchain trusted depository to address the current challenges of online exam cheating 
detection and the lack of credibility of cheating evidence. The main contributions of this paper are summarised 
as follows:

Proposed YOLOv12 Cheating Detection Model Based on Lightweight Improvement In this paper, based on 
an in-depth analysis of the characteristics of online exam cheating behaviour, we make structural lightweight 
improvements to the state-of-the-art target detection model YOLOv12n. Specifically, we optimise the A2C2f 
module in the backbone network (by removing the Attention mechanism, simplifying the structure, and 
reducing the number of stacking) and the C3k2 module in the head network (by replacing it with the more 
efficient C3Ghost module). With these improvements, a detection model with higher computational efficiency 
and significantly reduced number of parameters is successfully constructed. The experimental results show 
that compared with the baseline YOLOv12n, the improved model maintains good performance on the cheat 
detection task, especially in the mAP50 and Recall metrics, which verifies the effectiveness of the lightweight 
strategy and its adaptability to the real-time and high-efficiency detection needs of online exams.

Constructed a blockchain-based credible deposit mechanism for cheating evidence Creatively applying 
blockchain technology to the deposit of cheating evidence in online exams. In this paper, an evidence deposit 
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system based on Hyperledger Fabric federation chain is designed. When suspected cheating is detected, the 
relevant key screenshots are stored in the IPFS distributed file system, and the IPFS content identifier (CID) of 
the screenshot is recorded on the blockchain along with the detection metadata (e.g., timestamps, detection type, 
confidence level, etc.). This mechanism ensures the originality, integrity and non-tamperability of the evidence 
of cheating, provides credible technical support for the subsequent identification and processing of cheating, 
and effectively solves the problem that traditional evidence storage methods are easy to be tampered with and 
lack credibility.

Realised an integrated system of cheating detection and credible deposit This paper seamlessly integrates the 
real-time cheating detection module based on the lightweight YOLOv12 model with the blockchain-based 
credible deposit mechanism to construct an end-to-end online examination integrity guarantee system. The 
system is capable of real-time automated detection of cheating behaviours and automatically completes the 
secure and reliable recording of evidence to form a complete evidence chain. This integrated solution provides 
a comprehensive, efficient and highly credible anti-cheating solution for online exams, improving the efficiency 
and credibility of online exam supervision.

The core contribution of this research lies in the targeted lightweight improvement of the YOLOv12 model 
to adapt to the task of online exam cheating detection, and the creative introduction of blockchain technology to 
solve the problem of credible evidence, which provides a new idea and technical support for constructing a more 
secure, fair, and credible online exam environment.

Overview of relevant technologies
Target detection techniques and YOLO models in behaviour recognition
Computer vision is a central branch of the field of artificial intelligence, one of whose goals is to give machines 
the ability to understand and interpret image and video content. Among the many computer vision tasks, Object 
Detection (OD) occupies an important place, aiming at identifying specific classes of targets in an image or 
a video frame and determining their precise location and size (usually represented by a bounding box). This 
technique is not only fundamental to image understanding, but also an indispensable preprocessing step for 
many advanced visual tasks such as target tracking, scene understanding and behaviour recognition. Meanwhile, 
action recognition, as another important research direction, is dedicated to analysing and determining the 
movements or activities of people or objects in video sequences, which has a wide range of application needs 
in the fields of intelligent surveillance, human-computer interaction, and healthcare. Figure 1 is an example 
diagram of target detection.

Early target detection methods mostly relied on hand-designed features and machine learning classifiers, 
such as detectors based on Haar features and Adaboost18 or pedestrian detectors based on HOG features and 
SVM19. With the rapid development of deep learning technology, breakthroughs have been made in the field of 
target detection, and a large number of excellent models based on convolutional neural networks (CNNs) have 
emerged. These models can be broadly classified into two categories: two-stage (Two-stage) detectors and one-
stage (One-stage) detectors. Two-stage methods, such as the R-CNN family (including Faster R-CNN20), first 
generate candidate regions, and then perform classification and bounding-box regression on these regions, while 
one-stage methods, such as the SSD21 and the YOLO family, directly predict the classes and locations of targets in 
an image. Compared to two-stage methods, single-stage detectors typically have faster inference speeds, making 
them more suitable for application scenarios that require high real-time performance. Figure 2 illustrates a 
comparison of the two-stage and single-stage target detection method flow.

Among single-stage target detectors, the YOLO (You Only Look Once) model has attracted much attention 
due to its unique design concept and excellent real-time performance.The core idea of YOLO is to treat the 
target detection task as a regression problem by predicting the bounding box and category probabilities directly 
from the whole image through a single neural network22. This end-to-end (End-to-End) detection approach 
significantly improves the detection speed. Since YOLOv1 was proposed, the YOLO family of models has 

Fig. 1.  Target detection example diagram.
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undergone continuous iterations and optimisations, including the introduction of Anchor Boxes23, multi-
scale prediction24, and the integration of various state-of-the-art training techniques and network structure 
improvements25,26, to continuously achieve a better balance between detection accuracy and speed. This study 
is based on the YOLOv12 model, a version that provides good detection performance while maintaining high 
efficiency27. Figure 3 shows the network structure of YOLOv1.

Target detection techniques play a fundamental role in behaviour recognition. By accurately detecting key 
targets in video frames, such as characters, hands, heads, and behaviourally relevant objects (e.g., mobile phones, 
books, computers, etc.), we can obtain precise spatial information about the subjects in the scene and the objects 
they interact with28. These detection results can be used as inputs for subsequent behavioural analysis modules, 
e.g., to analyse the posture and movement trajectory of a character by tracking its bounding box and keypoints29; 
to determine the presence of a specific behaviour (e.g., looking down at a mobile phone, flipping through a book) 
by detecting a specific object and its relative position to the character30; or to determine the presence of multi-
person collaborations by detecting the number of characters appearing in the frame, etc. situations31. Therefore, 
high-quality target detection is a key prerequisite for accurate behaviour recognition, especially for the detection 
of complex or abnormal behaviours.

Target detection technology is one of the core technologies in the field of computer vision32, and the YOLO 
series of models has become a representative of single-stage target detection by virtue of its excellent real-time 
performance and continuously improving detection accuracy. Applying YOLO models to behaviour recognition 
tasks can effectively extract key target information from video streams and provide a reliable spatial basis 
for subsequent behaviour analysis33. Especially in scenarios that require real-time monitoring and abnormal 
behaviour detection (e.g., online exam proctoring), YOLO-based target detection technology can quickly and 

Fig. 3.  Network structure diagram of YOLOv1.

 

Fig. 2.  Two-stage versus single-stage target detection method flow comparison.
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accurately locate potential violating objects and behavioural subjects, which provides a solid technical support 
for the construction of an efficient and reliable behavioural recognition system34.

Application of blockchain technology to data depositories
Blockchain technology, as a decentralised, distributed ledger technology, was initially well known for its use in 
cryptocurrencies35. However, its core characteristics - including Immutability, Transparency, Traceability, and 
security through cryptography and consensus mechanisms - -allow it to go beyond the financial domain and 
show great potential in scenarios that require a high degree of trust and data integrity36. Data Notarisation, i.e., 
proving the existence and integrity of data at a specific point in time, is a key requirement in many application 
domains (e.g., digital copyright protection, e-contracts, judicial evidence, supply chain traceability, etc.). 
Traditional depository methods often rely on centralised third-party institutions, with problems of inefficiency, 
high costs and trust risks. The emergence of blockchain technology provides a new mindset and technological 
foundation to address these challenges. Figure 4 illustrates the architectural diagram of the blockchain and IPFS 
data storage system.

The core of the application of blockchain in the data deposit lies in the use of its tamper-proof distributed 
ledger to record the ‘fingerprint’ of the data, rather than the data itself. Specifically, the user first hashes the original 
data to be deposited, generating a fixed-length, unique digital digest (Hash Value)37. Even if the original data 
undergoes minor alterations, its hash value will change significantly. Subsequently, this hash value is recorded 
on the blockchain as part of the transaction information. Since blockchain transactions are extremely difficult 
to tamper with or delete once they have been packed into a block and confirmed by a consensus mechanism38, 
the hash value recorded on the chain becomes a strong proof that the data existed at a particular point in time 
and has not been tampered with. By querying the transaction records on the blockchain, it is possible to verify 
whether a hash value has been recorded at a specific time, and thus verify the integrity of the corresponding data.

The use of blockchain for data deposit brings multiple advantages. First, it significantly enhances the 
trustworthiness of data. Due to the decentralised nature of blockchain, the depository record does not depend 
on any single institution, avoiding the single point of failure and the trust risk that may be associated with 
centralised institutions39. Secondly, the tamperability provided by blockchain ensures that the depository records 
cannot be maliciously modified once generated, providing a technical guarantee for the integrity of the data. In 
addition, transactions on the blockchain are often accurately timestamped, providing verifiable proof of time for 
the data. This technology-based rather than institutional trust mechanism makes the data deposit process more 
efficient, transparent, and relatively low-cost, which is particularly suitable for large-scale and high-frequency 
deposit requirements40.

Blockchain technology provides an innovative and reliable solution for data deposit by virtue of its inherent 
decentralised, tamper-proof and traceable characteristics. By recording the hash value of data on a distributed 
ledger, blockchain can provide strong proof of existence and integrity for digital assets and information, 
effectively addressing the challenges of traditional deposit methods. This application not only improves data 
credibility and security, but also lays a solid foundation for the authentication, circulation and verification of all 

Fig. 4.  Architecture diagram of data depository system for blockchain and IPFS.
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kinds of data in the digital economy era, showing broad application prospects in a variety of fields, such as digital 
copyright, e-government, financial services, etc.41.

Overview of IPFS distributed storage technology
Traditional Internet data access relies heavily on Location-addressed Hypertext Transfer Protocol (HTTP), 
where data is fetched by specifying the domain name or IP address of a server. This model suffers from the 
risk of a single point of failure, inefficiency (especially for popular content), and vulnerability to censorship. To 
address these challenges, the InterPlanetary File System (IPFS) has been proposed, which is a Peer-to-Peer (P2P) 
distributed file system that aims to connect all computing devices via Content-addressed, building a more robust 
, persistent, and open network42.The core idea of IPFS is to make the data itself the key to addressing, rather than 
the location where the data is stored.

The key to enabling content addressing in IPFS is cryptographic hashing of the data. When a file is added to 
an IPFS network, it is first split into several data blocks (Blocks). Then, a unique cryptographic hash is calculated 
for each block. These hashes are called Content Identifier (CID). The root CID of a file is jointly determined by 
the CIDs of all its data blocks and the linking relationships between them43. Thus, the CID not only identifies 
the content of the data, but also implicitly contains the integrity checking information of the data. Any minor 
changes to the content of the data will result in a change in its CID. When a user requests a CID, the IPFS 
network looks up and fetches the corresponding block of data based on this CID in nodes around the world, 
without needing to know exactly which server the data is stored on.

The network architecture of IPFS is based on a decentralised P2P network. Each node in the network 
can store, request and provide data blocks. Relationships between data blocks are maintained through a data 
structure called the Merkle Directed Acyclic Graph (Merkle DAG)44.The Merkle DAG ensures data integrity and 
tamper-proofness, as well as supports data de-duplication (since blocks with the same content have the same 
CID) and version control. When a node owns a block of data corresponding to a certain CID, it can participate 
in data sharing by announcing to other nodes that it owns the data. Retrieval of data can be performed from any 
node that owns that data block, and preference is usually given to the closest or most responsive node on the 
network topology, which significantly improves the efficiency of data access and resistance to single points of 
failure45. Figure 5 illustrates the data processing flowchart for blockchain and IPFS.

IPFS provides a distributed storage solution different from traditional HTTP by introducing content addressing 
and building a decentralised P2P network. Its hash-based CID ensures data integrity and tamperability, while 
the P2P network and Merkle DAG structure enhance data availability, transmission efficiency, and censorship 
resistance46.IPFS technology shows broad application prospects, providing important technical support for 
building a more robust and open Internet infrastructure.

In order to more clearly illustrate the limitations of existing technologies and the targeted contributions of 
this study, we summarize the various technical gaps discussed above and explain how the integrated solution 
proposed in this paper addresses these gaps. The specific details are shown in Table 1.

Fig. 5.  Data processing flowchart for blockchain and IPFS.
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Privacy-preserving technologies for online examination systems
Privacy protection has become a critical concern in online examination systems, where continuous video 
monitoring raises significant privacy implications for students. Recent advances in privacy-preserving 
technologies offer promising solutions to address these challenges while maintaining system effectiveness.

On-device Computing and Edge AI: On-device recommendation systems and processing have demonstrated 
significant potential in preserving user privacy by keeping sensitive data locally47. In the context of online 
examinations, deploying lightweight detection models directly on students’ devices can minimize the 
transmission of raw video data to central servers, thereby reducing privacy risks while maintaining real-time 
detection capabilities.

Federated Learning for Privacy-Preserving Model Training: Federated learning enables the training of 
machine learning models without centralizing sensitive data. Privacy-preserving data contribution methods, 
such as those proposed in federated recommender systems48, can be adapted for online examination scenarios. 
This approach allows institutions to collaboratively improve cheating detection models while ensuring that 
individual student data remains on local devices.

Differential Privacy: Differential privacy techniques can be integrated into the inference process to protect 
individual identities while maintaining system utility. By adding calibrated noise to detection results, the system 
can provide privacy guarantees without significantly compromising detection accuracy.

These privacy-preserving approaches represent essential directions for developing more ethical and compliant 
online examination systems that balance security needs with fundamental privacy rights.

System design
YOLOv12n model lightweight improved design
To address the characteristics of the cheating behaviour detection task, we have made targeted improvements to 
the structure of the benchmark YOLOv12n model. Through preliminary experiments, we found that the visual 
features of cheating behaviours are relatively simple and do not require much extreme feature extraction and 
fusion capability of the model, and the accuracy of the existing model can already meet the demand. Therefore, 
the core of our optimisation focuses on reducing the computational complexity and number of parameters of 
the model to achieve a lightweight model, which can significantly improve the inference speed and make it more 
suitable for actual deployment scenarios. The improvement mainly focuses on the backbone network and the 
header network.

Backbone Lightweighting
The original YOLOv12n model uses the A2C2f module in the deeper part of the backbone network, i.e., in the 
processing of the P4/16 (Layer 6) and P5/32 (Layer 8) feature maps.The A2C2f module is designed to enhance 
feature representation by combining region-based Attention blocks (ABlock) and convolutional blocks (C3k).

Considering the relative simplicity of cheating features, we believe that over-reliance on Attention mechanisms 
imposes an unnecessary computational burden. In order to reduce the computational effort and the number of 
parameters, we modify the internal structure of the two-layer A2C2f module:

Remove Attention mechanism: Remove the region-based Attention block (ABlock), which is computationally 
expensive.
Simplify the structure: We replace the function of the original Attention block with the convolution-based 
C3k block, so that the modified module contains only C3k blocks, and the Attention mechanism is no longer 
introduced in the backbone network.
Reducing the number of stacking: we reduce the number of C3k blocks stacked inside the two-layer module 
from the original 4–2 times.

Existing technology Identified gaps / limitations How this paper addresses the gaps

Identity verification Limited to pre-exam identity confirmation; fails to monitor in-exam 
cheating behaviors.

The proposed system employs a lightweight YOLOv12 model for real-time 
detection, continuously monitoring the video feed to automatically identify 
suspicious objects and behaviors.

Secure browsers
Only restricts operations on the exam computer; cannot prevent the 
use of external devices (e.g., smartphones) or receiving assistance from 
others.

Our YOLOv12 model is specifically trained to detect ’electronic devices’ and 
multiple ’persons’ in the frame, directly addressing cheating via external aids 
or assistance.

Early automated 
detection

Insufficient accuracy and robustness, leading to high false positives and 
negatives. Limited detection scope (e.g., only head pose) and difficulty 
adapting to new cheating methods.

We use an advanced YOLOv12 model with targeted lightweight improvements, 
enhancing real-time performance while maintaining high detection accuracy. 
The model offers a broader and more reliable detection scope.

Manual remote 
invigilation

High cost and poor scalability. Prone to proctor fatigue and subjective 
judgment biases, leading to missed cheating behaviors.

The automated system provides continuous, objective, and scalable 
monitoring, significantly reducing reliance on human proctors and eliminating 
issues of subjectivity and fatigue.

Traditional evidence 
storage

Evidence stored on centralized servers is vulnerable to tampering or 
deletion, lacking sufficient credibility and legal validity.

We constructed an evidence depository system using Blockchain (Hyperledger 
Fabric) and IPFS. The hash (CID) and metadata of cheating evidence are 
recorded on-chain, ensuring it is immutable, traceable, and trustworthy.

Table 1.  Summary of gaps in existing anti-cheating technologies and contributions of this paper.
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It is evident that these modifications result in a substantial reduction in the computational burden of layers 
6 and 8 of the backbone network, while ensuring the retention of adequate feature extraction capability. The 
configuration of the specific modified A2C2f module is illustrated in Fig. 6.

Head network lightweighting
In the head network of the model, layer 20, which is responsible for processing the maximum perceptual field 
feature map (P5/32), the original design adopts the computationally intensive C3k2 module, and is configured 
as c3k=True. According to the source code of the module, C3k2 is inherited from the C2f structure, and when 
c3k=True, its internal processing sequence consists of n C3k modules. According to the module source code, 

Fig. 6.  Structure of the original A2C2f module and the modified module.
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C3k2 inherits from C2f structure, when c3k=True, its internal processing sequence consists of n C3k modules. 
This structure based on the C2f framework with multiple layers of internally nested C3k (containing 2 Bottleneck) 
leads to a higher computational cost and number of parameters.

To further optimise the efficiency of the header network, we replaced the C3k2 (c3k=True) module at layer 
20 with the lightweight C3Ghost module.

According to the source code of the module, C3Ghost inherits from the C3 structure, and its core lies in the 
internal use of the GhostBottleneck module, which is an efficient convolutional module that generates ‘ghost’ 
feature maps to significantly reduce the number of features required for traditional convolutional operations 
while maintaining feature diversity. GhostBottleneck is an efficient convolution module that significantly 
reduces the amount of computation and number of parameters required by traditional convolution operations 
while ensuring feature diversity. In this study, we use the C3Ghost module which contains one GhostBottleneck 
module49.The structure of the C3k2 module and the C3Ghost module is shown in Fig. 7.

This substitution replaces the C3k2(c3k=True) module, which is based on the C3 structure and uses the 
efficient GhostBottleneck, with the C3k2(c3k=True) module, which is based on the C2f structure and internally 
nested with the standard Bottleneck, resulting in a significant reduction of the computational burden on the 
header network, and a further increase in the efficiency of the model inference and training.

The improved YOLOv12 network structure is shown in Fig. 8. These improvement strategies are not blindly 
deleting specific modules, but making targeted adjustments based on an in-depth analysis of the characteristics 
of the cheat detection task. By replacing the computationally expensive Attention module with a more efficient 
convolutional structure and employing the lightweight GhostBottleneck (C3Ghost), we successfully construct 
a computationally more efficient model. The experimental results show that for a task like cheating detection, 
which has relatively low feature complexity, the over-enhanced feature extraction and fusion module suffers from 
over-performance, whereas through the structure lightweighting approach proposed in this paper, the inference 
speed of the model can be effectively improved while maintaining sufficient detection accuracy, making it more 
suitable for practical deployment scenarios.

Fig. 7.  C3k2(c3k=True) module with C3Ghost module.
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IPFS storage and hash generation for detection result data
During the online exam cheating detection process, when the YOLO model identifies a suspected cheating 
behaviour, it immediately captures the current screenshot as visual evidence. These screenshot image data are 
usually large and unsuitable for direct storage on the blockchain. To address the limitations of blockchain storage 
capacity and efficiency, and to ensure the integrity and traceability of the evidence images, this paper adopts 
the InterPlanetary File System (IPFS, InterPlanetary File System) as the distributed storage scheme for these 
screenshot images.

IPFS is a distributed file system based on content addressing. Its working principle is that any file uploaded 
to IPFS will have a unique hash value calculated based on its content, i.e., Content Identifier (CID). This CID 
is not only the address of the file on the IPFS network, but also a digital fingerprint of the file’s content. Any 

Fig. 8.  Lightweighted YOLOv12 model structure diagram.
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modification to the content of the file will result in a change of its CID, which fundamentally ensures the integrity 
and tamper-proofness of the stored data.

Specific screenshot image storage and hash generation process is as follows:

•	 When the YOLO model detection triggers a ‘suspected cheating’ inference, the system captures a screenshot 
of the current exam.

•	 This uploads the captured screenshot image file to the IPFS network.
•	 The image file is received and processed by the IPFS network to calculate its unique CID.
•	 This generated CID (hash value) represents the unique identity and content checksum of that particular 

screenshot image.

By storing suspected cheating screenshot images on IPFS, we can effectively strip a large amount of image data 
from the blockchain while leveraging the content addressing capabilities of IPFS to ensure the authenticity and 
integrity of this off-chain stored image evidence. Subsequently, this lightweight IPFS CID will be stored on the 
blockchain, through which the original screenshot images can be retrieved and verified from the IPFS network 
when needed.An overview of the IPFS storage and hash generation process is shown in Fig. 9.

Hyperledger fabric chain code design and testing results on the chain process
Hyperledger Fabric’s federation chain architecture and its provision of privilege management, smart contracts 
(Chaincode), and efficient consensus mechanisms make it well suited for applications in scenarios such as online 
exams, which require trust and collaboration among multiple parties50.

The core lies in the design and implementation of Chaincode. We design a special Chaincode for the deposit 
of cheating detection results, which defines the data structure of cheating event records and the logic of creating, 
querying and other operations on these records. The chain code will serve as a bridge between the cheat detection 
system and the blockchain ledger.

The data structure (or asset model) defined in the Chain Code shall contain the core metadata of the cheating 
event and links to the original evidence data in the IPFS.

The key information contained in the cheating event records defined in the chain code is shown in Table 2.
The process of uploading detection results is as follows:

Fig. 9.  IPFS storage and hash generation flowchart for suspected cheating screenshots.
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•	 Subsequent to the capture of a screenshot by the system designed for the detection of academic dishonesty 
and its subsequent upload to the IPFS system to obtain the ipfsCID (refer to Section “Hyperledger fabric chain 
code design and testing results on the chain process”), the system will consolidate all the relevant information 
pertaining to the detection event, including the examID, the studentID, the timestamp, the ipfsCID obtained, 
and the detailed inference results of the screenshot by the YOLO model yoloResults.

•	 The system’s function as a client application entails the generation of a transaction proposal, which subse-
quently invokes the chain code. The proposal calls a function predefined in the chaincode for logging cheating 
events and passes the above integrated information as parameters.

•	 The transaction proposal is then transmitted to an endorsement node in the Hyperledger Fabric network 
for simulated execution. The chaincode operates on the endorsing node, constructs a cheating event record 
object based on the received parameters, and verifies the validity of the transaction.

•	 The endorsing node is responsible for the endorsement of the transaction proposal, and the return of a signed 
response to the client application.

•	 The client application is responsible for collecting sufficient endorsements and submitting the transaction to 
the Orderer.

•	 The system’s ordering service functions by sorting the transactions from disparate clients and subsequently 
arranging them into blocks.

•	 The ordering service transmits the block to the Peer node, which performs the following functions: it validates 
the transactions contained within the block, it performs chaining (if required), and it writes valid transactions 
to the local distributed ledger.

As shown in the flowchart in Fig. 10, the key metadata of the suspected cheating event, the YOLO inference 
result, and the IPFS hash value pointing to the evidence of the original screenshot are permanently stored as 
a tamper-evident record on the distributed ledger of Hyperledger Fabric. Any authorised party can query the 
record on the chain to obtain the event details and IPFS CID, then retrieve the original screenshot from the IPFS 
network for review, and verify the authenticity of the screenshot by comparing the hash values, thus building a 
trustworthy chain of evidence of online exam cheating.

Experimental design
Introduction to the dataset
The dataset utilised in this study for the training and evaluation of online examination cheating detection 
models originates from the open-source project of Flying Paddle AI Studio. This dataset comprises surveillance 
photographs captured during online invigilation at Donghua University. The dataset was created in response 
to the demand for invigilation that has arisen due to the increasing number of online examination scenarios in 
the post-epidemic era. The aim of the creation of the dataset was to provide basic data support for research into 
cheating detection in related fields.

The original dataset contains 623 images. In the context of training deep learning target detection models, 
particularly in scenarios where multiple complex and potentially confounding cheating behaviours must be 
identified, this scale is considered to be inadequate. This limitation can result in the model overfitting during 
the training process, thereby compromising its capacity to generalise on actual, unseen data. In order to 
effectively expand the size of the dataset, improve the training effect of the model and enhance its robustness 
to changes in different scenarios, we performed data enhancement on the original dataset. A range of common 
data enhancement techniques was applied, including random rotation, scaling, horizontal flipping, brightness 
adjustment, etc., with the objective of expanding the dataset size tenfold to 6230 images. Figure 11 illustrates a 
partial sample image dataset.

The expanded dataset has been labelled in detail for key targets in the online examination scenario. Unlike 
the direct labelling of specific cheating behaviours, the labelling categories in this dataset are designed to be 
more basic and flexible, with two main categories: ‘person’ and ‘electronic devices’. The design concept is to focus 
the target detection task on identifying the presence of a person or an electronic device in the picture, while the 
final judgement of cheating is adjusted in the inference stage based on the detection results and the specific test 
regulations. For example, for exams that allow the use of specific electronic devices, the presence of electronic 
devices can be controlled in the reasoning process not to be recognised as cheating; similarly, only one person is 
allowed to participate in the exam by default, and cheating is only recognised when multiple ‘person’ targets are 
detected. This flexible rule based on the basic target detection results allows the model to adapt to different exam 
formats and supervision requirements.

examId Unique identifier for the exam

studentId Unique identifier of the candidate for whom cheating has been detected.

timestamp Timestamp of the suspected cheating incident.

ipfsCID Content identifier/hash on IPFS corresponding to the suspected cheating screenshot image for off-chain retrieval of original evidence.

yoloResults The result of the YOLO model’s inference on the screenshot, including details such as the bounding box coordinates and confidence 
level of the detected target (i.e., the ‘suspected cheating’ object).

cheatingType Type of cheating, fixed to ‘suspected cheating’.

Table 2.  Form for logging cheating events defined in the chain code.
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Fig. 11.  Example of dataset image.

 

Fig. 10.  Hyperledger Fabric chain code design and testing results on the chain flow diagram.
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For effective model training, tuning and preliminary performance evaluation, we divide the expanded dataset 
into training and validation sets. According to the commonly used division strategy, we adopted a 9:1 ratio for 
division, i.e., the training set contains 5607 images and the validation set contains 623 images. The training set 
is used for parameter learning of the model, while the validation set is used for monitoring the training process, 
tuning the hyperparameters, and evaluating the performance of the model on unseen data during training to 
avoid overfitting.

Experimental environment and parameter settings
In order to ensure the fairness and reproducibility of the experimental results, this study standardised the 
training of all models based on a uniform hardware environment and consistent initial training parameters. The 
subsequent section provides a comprehensive account of the hardware and software environment configurations 
employed in the experimental setup. In addition, it delineates the specific parameter settings that were utilised 
during the training and evaluation of the model. This information is indispensable for comprehending the 
experimental conditions and conducting a thorough analysis of the results.

It is noteworthy that the computing platform for this experiment is the Huawei Rise Ascend 910B, and 
the training and validation of the models is accelerated and deployed through Huawei’s CANN (Compute 
Architecture for Neural Networks) software stack, as opposed to the NVIDIA CUDA platform.

The core computing power of the Ascend 910B processor is mainly provided by its built-in AI Core. 
Unlike traditional CPUs and GPUs that support general-purpose computing, or ASICs (Application Specific 
Integrated Circuit) that are dedicated to a specific algorithm, the AI Core architecture is essentially designed 
to accommodate common applications and algorithms in a specific domain (i.e., AI computing), and is often 
referred to as a ‘Domain Specific Architecture (DSA)’51.

As shown in Fig. 12, the computational core of the AI Core consists of three main underlying computational 
resources: the Matrix Computing Unit (Cube Unit), the Vector Unit, and the Scalar Unit. Each of these three 
computing units has its own role, forming three independent execution pipelines, which cooperate with each 
other under the unified scheduling of the system software (i.e., CANN) to efficiently execute AI algorithmic 
tasks. The Cube Unit performs intensive matrix computations such as matrix multiplication; the Vector Unit 
performs parallel vector computations such as vector addition, subtraction, multiplication and division; and the 
Scalar Unit handles control flow and scalar computations.

The hardware and software environments are specified in Table 3.

Environment Specific

GPU Huawei Ascend 910B 64GB

CPU Huawei Kunpeng 920 CPU @ 2.60GHz 24-core processor

Memory DDR4 220GB RAM

Operating System Ubuntu 22.04

Python Version Python 3.10

Deep learning framework PyTorch 2.0.1 combined with CANN 8.0.0

Table 3.  Software and hardware environment.

 

Fig. 12.  AI core architecture diagram.
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The training configuration is as follows:

Number of training rounds: model training was set to 50 epochs to ensure that the model could fully learn 
the data features.
Batch size: each batch was automatically configured with 50% of the graphics memory (32G) of Huawei’s Rise 
Ascend 910B, a setting that balances memory usage and training efficiency.
Input image size: All input images were uniformly resized to 640 pixels to fit the input requirements of the 
model.
Optimiser: The AdamW optimiser is used, which performs well in deep learning model training due to its 
adaptive learning rate adjustment strategy.
Learning rate: the initial learning rate is set to 0.01, which is adjusted by the learning rate scheduling strategy 
to promote model convergence.
Momentum: the momentum parameter is set to 0.937, which helps accelerate the convergence during the 
training process.
Weight decay: a weight decay of 0.0005 was applied to prevent model overfitting.
Warm-up rounds: the first 3 epochs are used as a warm-up phase to gradually increase the learning rate, 
which helps the model to be trained stably.
Data augmentation: Automatic data augmentation using RandAugment strategy combined with Mosaic data 
augmentation technique (Mosaic is turned off in the last 10 epochs).
NMS (Non-Maximum Suppression) Threshold: set to 0.7, used to filter out the optimal bounding box in the 
detection results and reduce overlapping detections.

The above hardware and software environments were carefully configured, along with meticulously set training 
parameters, in order to ensure that the improvements could be effectively validated in a controlled and consistent 
environment. These preparations aim to provide an efficient, stable and reproducible experimental platform 
for the training and evaluation of the YOLOv12 detection model, so that the impact of different algorithmic 
modules on the model performance can be reliably measured and compared.

We acknowledge the inherent stochasticity in the deep learning training process (e.g., from weight 
initialization and data augmentation). To ensure the reproducibility of our reported results, we fixed the random 
seeds across all experiments and configured PyTorch to use deterministic algorithms. Therefore, all performance 
metrics reported in this paper are stably reproducible under this controlled setup. While a single run does not 
provide statistical confidence intervals, we validate the robustness of our conclusions from multiple perspectives 
through the comprehensive comparative and ablation studies that follow.

Evaluation indicators
In evaluating the overall performance of the neural network model, we considered two key metrics, the size of 
the model and the detection accuracy.

The size of the model is measured by the number of parameters, which refers to the sum of parameters to be 
trained in the model. The smaller the number of parameters, the more suitable the model is for deployment on 
mobile devices, and also reflects the complexity and computational requirements of the model.

In evaluating the accuracy of target detection algorithms, we use metrics such as Precision (P), Recall (R), 
Mean Accuracy (mAP50) and Mean Average Precision (mAP50-95).

The precision rate P measures the proportion of all samples predicted to be in the positive category that are 
actually in the positive category, and is calculated as shown in Eq. 1.

	
P = T P

T P + F P
� (1)

Recall R, on the other hand, is the ratio of samples correctly predicted to be positively classified to all actual 
positively classified samples and is calculated as shown in Eq. 2.

	
R = T P

T P + F N
� (2)

Since there is a negative correlation between precision rate and recall rate, we usually plot the PR curve with 
recall rate as the horizontal axis and precision rate as the vertical axis, and the area under the PR curve is the AP 
value, as shown in Eq. 3.

	
AP =

∫ 1

0
p(r) dr� (3)

In this experiment, we will use metrics such as those presented in Table 4 to further refine the performance 
evaluation of the model.

Through the comprehensive analysis of these evaluation indexes, we are able to make a comprehensive 
assessment of the detection performance, complexity and applicability of the model, so as to provide a basis for 
the optimisation and selection of the model.
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Comparative experiments
In order to comprehensively evaluate the performance of the detection module in the online exam cheating 
detection system based on YOLOv12 proposed in this paper and to compare it with other versions of YOLO 
target detection models, we designed and conducted a series of comparison experiments. The experiments are 
conducted on a specially constructed dataset of online exam cheating behaviours, and the key performance 
metrics of each model on the cheat detection task are documented in detail, including Precision (P), Recall (R), 
Average Precision mAP50, Average Precision mAP50-95 for IoU thresholds in the range of 0.5–0.95, as well as a 
measure of the efficiency of the model, the Parameters and GFLOPs.

The focus is on comparing the benchmark model YOLOv12n with the optimisation model YOLOv12NoAttn 
proposed in this paper, while YOLOv5n, YOLOv8n, YOLOv9t, and YOLOv10n, YOLOv11n are introduced as 
references. By systematically comparing these models, we aim to quantify the specific impact of the optimisation 
strategy in this paper on cheat detection performance and model efficiency, and explore the reasons for these 
performance differences. The specific experimental results are shown in Table 4.

As can be seen from the comparative experimental results in Table 4, the optimised model YOLOv12NoAttn 
proposed in this paper achieves competitive performance on the online exam cheating detection task and 
demonstrates significant advantages in terms of model efficiency.

Detection performance analysis: Compared with the benchmark model YOLOv12n, the optimised model 
YOLOv12NoAttn shows a small improvement in both mAP50 (0.98208 vs 0.98156) and Recall (0.95647 
vs 0.94978). This suggests that the optimised model is able to detect cheating more effectively, reduce 
underreporting (i.e., increase recall), and has a higher average detection precision at an IoU threshold of 
0.5. However, its precision rate Precision (0.93019 vs. 0.93823) and mAP50-95 (0.75436 vs. 0.75631) slightly 
decreases. In a cheating detection scenario, a high precision rate means fewer false positives (less interference 
with normal examinees), and a high recall rate means fewer missed positives (not missing cheating behaviours). 
The optimised model improves recall and mAP50 at the expense of precision and mAP50-95, which is a trade-
off between detection coverage and detection accuracy. Considering the actual needs of online exams, a high 
recall rate is crucial for timely detection of cheating behaviours, while the slightly lower precision rate can be 
compensated by subsequent manual review and other means.

Model Efficiency Analysis: YOLOv12NoAttn performs well in terms of model complexity. The number of 
parameters is only 1,840,350, which is about 28% less than the benchmark YOLOv12n’s 2,557,118. The number 
of floating-point operations GFLOPs is also reduced from 6.3 to 5.5, a reduction of about 13%. This significantly 
reduces the computation and storage overheads of the model, making the detection module more suitable for 
deployment on devices with limited computational resources or to support higher density concurrent detection 
on the server side, which is especially important for large-scale online exam scenarios.

Comparison with other models: Compared with other mainstream YOLO models, YOLOv12NoAttn has 
the lowest number of parameters and GFLOPs among all the models in the table, while maintaining similar 
or even better detection performance than YOLOv12n in some metrics. For example, compared to YOLOv8n, 
YOLOv12NoAttn is slightly lower on mAP50-95, but has a significant advantage on the number of parameters 
and GFLOPs. This highlights the effectiveness of the optimisation strategy in this paper in achieving model 
lightweighting, which provides a more efficient solution for online exam cheating detection.

In addition, by reporting both mAP50 and mAP50-95, we conduct a sensitivity analysis of the model’s 
performance with respect to the evaluation criteria. mAP50 represents performance under a lenient IoU 
threshold, while mAP50-95 measures average performance across multiple, stricter IoU thresholds. Our model 
(YOLOv12NoAttn) maintains a highly competitive mAP50 score (0.98208), indicating that its core capability to 
’detect the target’ is reliable. The slight decrease in the more stringent mAP50-95 metric clearly illustrates the 
trade-off between efficiency and high-precision localization. This consistent performance across varying levels 
of evaluation stringency also indirectly corroborates the reliability of our results.

Experimental results show that the optimised model YOLOv12NoAttn proposed in this paper successfully 
strikes a good balance between detection performance (especially on mAP50 and Recall) and model efficiency 
in the online exam cheating detection task. By reducing the model complexity, it is made more suitable for 
real-world deployment requirements while maintaining a high cheating detection capability. This analysis not 
only validates the effectiveness of the optimisation strategy, but also provides a solid practical basis for further 
optimising the detection module for online exam cheating detection in the future.

Indicator Description

Precision The Precision indicator measures the proportion of samples predicted by the model to be in the positive category that are actually in the positive category. It 
reflects the model’s ability to avoid misclassifying non-positive samples as positive.

Recall The Recall metric measures the proportion of samples correctly predicted by the model to be in the positive category as a proportion of all samples that are 
actually in the positive category. It measures the model’s ability to identify all positively classified samples.

mAP50 The average precision calculated at an IoU (Intersection over Union) threshold of 0.5 is used to evaluate the detection performance of the model at moderate 
overlap. mAP50 is a commonly used evaluation metric in target detection that combines precision and recall.

mAP50-95 This metric is the average precision calculated over a range of IoU thresholds from 0.5 to 0.95. It provides a more comprehensive performance evaluation because 
different IoU thresholds require different precision for the detection frames, which enables a more nuanced evaluation of the model’s detection capability.

Parameters The number of parameters is the total number of all trainable parameters in the model. This metric reflects the complexity of the model, and usually the lower the 
number of parameters, the simpler the model and the lower the computational requirements, making it easier to deploy in resource-constrained environments.

Table 4.  Introduction to performance indicators.
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Ablation experiments
In order to systematically evaluate the impact of the lightweight improvement strategies proposed in this 
paper for the backbone and header networks on the performance and efficiency of the YOLOv12n model, a 
series of ablation experiments are conducted. By comparing the performance metrics under different model 
configurations, the ablation experiments aim to quantify the contribution of each improvement module and 
verify its effectiveness.

Based on the lightweight improvement proposed in Section “YOLOv12n model lightweight improved 
design”, we designed the following four sets of experimental configurations for the study:

•	 Baseline Model: The original YOLOv12n-n architecture is used. This configuration uses the standard A2C2f 
module at layers 6 and 8 of the backbone network and the standard C3k2 (c3k=True) module at layer 20 of 
the header network. This configuration serves as a performance and parametric quantitative reference base 
for all subsequent experiments.

•	 Backbone Lightweight Only: Based on the baseline model, only the backbone lightweight improvements de-
scribed in Section “Backbone lightweighting” are applied, i.e., the modification of the module structure at lay-
ers 6 and 8 (removal of Attention, replacement with C3k, reduction of the number of stacks). Layer 20 of the 
header network still uses the standard C3k2 module. This configuration is used to evaluate the independent 
effect of the backbone network lightweighting improvements.

•	 Head Lightweight Only: Based on the baseline model, only the Head Lightweight improvements described 
in Section “Head network lightweighting” are applied, i.e., the C3k2 (c3k=True) module is replaced by the 
C3Ghost module at layer 20 of the Head Network. Layers 6 and 8 of the backbone network still use the 
standard A2C2f module. This configuration is used to evaluate the independent effect of the header network 
lightweighting improvements.

•	 Full Lightweight Model: The lightweight improvements are applied to both the backbone and headend net-
works, i.e., the final model structure proposed in this paper. This configuration is used to evaluate the overall 
performance and efficiency of all the improved modules working together.

All experimental configurations were trained and evaluated under the same dataset, training hyperparameters 
(e.g., learning rate strategy, optimiser, batch size, etc.), and hardware environments to ensure comparable results. 
We recorded the Precision (P), Recall (R), mAP@0.5:0.95 (mAP), and Model Parameters (Parameters) for each 
configuration. The experimental results are summarised in Table 6.

By comparing the results of different configurations, we can analyse the respective impact of the backbone 
and head network lightweight improvements on the model performance and the number of parameters, and 
verify the effectiveness of the joint improvements.

Table 5 summarizes the results of the ablation experiment, clearly showing the impact of different lightweight 
strategies on model performance and parameter count. As a benchmark for performance and efficiency, the 
original YOLOv12n model (baseline model) achieved 93.823% precision (P), 94.978% recall (R), and 98.156% 
mAP@0.5, with approximately 2.56M parameters.

After only the backbone network was lightweighted (only the backbone network lightweight model), the 
number of model parameters was significantly reduced to about 2.04M, which is about 20% less than the baseline 
model. This shows that the optimization of the backbone network is one of the key contributors to the significant 
reduction in model parameters. In terms of performance, the recall rate (R) increased to 96.251%, while the 

Configuration
Backbone (Layers 
6 & 8) Head (Layer 20) P (%) R (%)

mAP50 
(%)

Parameters 
(M) Description

Baseline YOLOv12n Original A2C2f Original C3k2 93.823 94.978 98.156 2,557,118 Original baseline model

Baseline + Backbone Light Modified Module Original C3k2 93.769 96.251 98.234 2,043,070 Lightweight improvements for backbone network 
applications only

Baseline + Head Light Original A2C2f C3Ghost 94.816 94.545 98.342 2,354,398 Lightweight improvements for head-only web applications

Full Lightweight Model Modified Module C3Ghost 93.019 95.647 98.208 1,840,350 Complete lightweight model (improvements applied to 
both backbone and header networks)

Table 6.  Results of ablation experiments.

 

Models Precision Recall mAP50 mAP50-95 Parameters GFLOPs

YOLOv5n 0.93855 0.95840 0.98088 0.75466 2,503,334 7.1

YOLOv8n 0.91304 0.97604 0.98513 0.79401 3,006,038 8.1

YOLOv9t 0.92883 0.94797 0.98123 0.73676 1,971,174 7.6

YOLOv10n 0.92774 0.94099 0.97988 0.77188 2,695,196 8.2

YOLOv11n 0.92852 0.96561 0.98199 0.76616 2,582,542 6.3

YOLOv12n 0.93823 0.94978 0.98156 0.75631 2,557,118 6.3

YOLOv12NoAttn 0.93019 0.95647 0.98208 0.75436 1,840,350 5.5

Table 5.  Performance comparison of different YOLO models on online exam cheat detection tasks.
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precision rate (P) decreased slightly to 93.769%, and mAP@0.5 remained at 98.234%, which is comparable to or 
slightly improved from the baseline model. This shows that the lightweight backbone network has little impact 
on the detection performance while greatly compressing the model, and even has a gain in recall rate, reflecting 
the efficiency of the improved module.

The experiment of only making lightweight improvements to the head network (only the lightweight model 
of the head network) shows that the number of parameters of the model is reduced to about 2.35M, which is 
a smaller reduction (about 8.7%) than the improvement of the backbone network. In terms of performance, 
the precision (P) is increased to 94.816%, the recall (R) is slightly reduced to 94.545%, and the mAP@0.5 is 
increased to 98.342%. This shows that the lightweighting of the head network has a positive impact on the 
model’s precision and overall mAP while reducing the number of parameters to a certain extent, especially in 
improving the precision.

The complete lightweight model that simultaneously applies the backbone network and head network 
lightweight improvements achieves the maximum parameter compression, which is only about 1.84M. Compared 
with the baseline model, the number of parameters is reduced by about 28%. In terms of performance, the model 
achieved a precision (P) of 93.019%, a recall (R) of 95.647%, and a mAP@0.5 of 98.208%. Compared with the 
baseline model, the complete lightweight model has a substantially reduced number of parameters, and the 
mAP@0.5 is basically the same (or even slightly improved), the recall rate is improved, and the precision rate 
is slightly reduced. This shows that the backbone network and head network lightweight strategies proposed in 
this paper can work together, while significantly reducing the complexity of the model, effectively maintaining 
or even optimizing key detection performance indicators (especially mAP and R), and achieving a good balance 
between efficiency and performance.

More importantly, the ablation study (Table 5) provides strong support for the reliability of our conclusions. 
The experiment clearly demonstrates that the lightweight modifications to the backbone and head networks 
each contributed quantifiable and positive effects (e.g., the backbone modification significantly reduced 
parameters by  20% while improving recall; the head modification improved precision). The final balance of 
performance and efficiency achieved by the full lightweight model is a direct consequence of these systematic 
improvements working in concert, rather than a random artifact of a single training run. This systematic cause-
and-effect relationship itself serves as evidence for the robustness of our findings, mitigating concerns about the 
stochasticity of a single experiment.

The results of the ablation experiments strongly demonstrate the effectiveness of the lightweight improvement 
strategies for the backbone and head networks proposed in this paper. The improvement of the backbone network 
is the key to achieve a significant compression of the number of model parameters, while the improvement of 
the head network has a positive effect on enhancing the accuracy and mAP of the model. The joint application 
of these improvements can significantly reduce the number of parameters and computational complexity of 
the model while guaranteeing high detection performance (especially mAP and R), making it more suitable for 
online examination environments with limited resources.

Limitations of the Proposed Solution
While the proposed integrated system demonstrates significant advancements in online exam cheating detection 
and evidence validation, it is crucial to acknowledge its inherent limitations, which also highlight avenues for 
future research.

The performance evaluation in this study is based on a single training and testing run, which limits the 
statistical robustness of our findings. To enhance the reliability of the assessment, future work should involve 
multiple runs with different random seeds to report averaged results and confidence intervals, thereby providing 
a more comprehensive evaluation of the model’s performance stability and consistency.

The detection methodology is predominantly vision-based and relies on identifying specific objects 
(e.g., ’person’, ’electronic devices’) in conjunction with predetermined rules. This approach has limitations in 
identifying more subtle, complex, or non-visual cheating methods, such as the use of AI-powered assistance 
for answering questions or communication via micro-earpieces. The system currently does not incorporate 
complementary technologies like audio analysis or data from IoT sensors, which could create a more holistic 
and robust multi-modal detection framework.

Despite data augmentation, the dataset employed for model training is comparatively limited in size (6,230 
images) and scope. It may not fully represent the vast diversity of real-world cheating scenarios, environmental 
conditions, and subtle behaviors. This constraint could potentially limit the model’s generalization capability 
when deployed in more complex or previously unseen examination settings, affecting its effectiveness across 
different institutional contexts and examination formats.

The system’s reliance on continuous video monitoring and the storage of student screenshots raises 
multifaceted privacy implications that extend beyond technical considerations. Drawing insights from privacy-
preserving technologies in distributed systems47, we recognize that centralized video processing inherently 
creates privacy vulnerabilities. While the current approach secures evidence integrity through blockchain 
technology, it does not address the fundamental privacy concern of sensitive biometric and behavioral data 
collection, which remains a critical limitation in the system’s design.

The absence of advanced privacy-preserving techniques that have proven effective in related domains 
further compounds these concerns. Federated learning approaches, as demonstrated in privacy-preserving 
data contribution systems48, could enable model training without centralizing sensitive student data, yet such 
mechanisms are not incorporated in the current system. Similarly, the lack of differential privacy mechanisms 
during inference means that individual student identities remain inadequately protected from potential 
reconstruction attacks, creating additional vulnerabilities in the privacy framework.
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Future iterations must address these privacy challenges through a comprehensive approach that integrates 
on-device processing capabilities to minimize raw data transmission while implementing federated learning 
protocols for collaborative model improvement across institutions. The incorporation of differential privacy 
guarantees becomes essential to protect individual privacy while maintaining detection effectiveness. Beyond 
technical improvements, the system requires comprehensive compliance frameworks that address GDPR, 
FERPA, and other relevant data protection regulations to ensure ethical deployment in educational environments.

Conclusion and future work
This study presents a novel solution for enhancing online examination integrity by integrating a lightweight 
YOLOv12 model with blockchain technology, addressing the dual challenges of real-time detection and trusted 
evidence preservation. Our key achievement is the development of the YOLOv12NoAttn model, which, through 
targeted structural optimizations, strikes a thoughtful balance between high performance and computational 
efficiency. The model reduces parameters by approximately 28% and GFLOPs by 13% compared to its baseline, 
while delivering a strong mAP50 of 98.21% and an improved recall of 95.65%. Concurrently, our implementation 
of a Hyperledger Fabric and IPFS framework effectively addresses the long-standing challenge of creating 
tamper-proof evidentiary records, ensuring the originality and integrity of cheating evidence. Our work delivers 
a practical, efficient, and credible end-to-end system that significantly advances the state of online examination 
security.

Building on the foundation of this study, our future work will focus on several key extension directions to 
enhance the system’s intelligence, scalability, and trustworthiness.

Advanced Cheating Behavior Recognition: A primary objective is to transition from the current object-based 
detection to a more sophisticated, end-to-end cheating behavior recognition model. While our system effectively 
identifies prohibited objects, it relies on rule-based logic to infer cheating. Future research will therefore explore 
spatio-temporal deep learning models (e.g., 3D-CNNs or Video Transformers) to directly learn and identify 
complex, subtle actions such as whispering or illicit human-computer interactions. This necessitates a significant 
effort in constructing a more comprehensive dataset annotated with fine-grained temporal action labels.

Edge Computing Architecture and Real-time Scalability: To address the practical challenges of real-time 
processing and scalability in large-scale deployments, we will investigate an architectural shift towards edge 
computing. Deploying the lightweight detection model directly on the candidate’s device (the edge) can 
significantly reduce network latency, lower central server load, and enhance data privacy by minimizing raw 
video transmission. This direction logically extends our current work on model lightweighting, aiming for a 
truly distributed and efficient proctoring architecture.

Comprehensive Privacy-Preserving Architecture and Compliance Enhancement: A critical priority for 
future development is the implementation of comprehensive privacy-preserving mechanisms that address 
the fundamental ethical concerns raised by continuous video monitoring. Inspired by advances in on-device 
computing and federated systems47, we will investigate the deployment of lightweight detection models directly 
on student devices to minimize sensitive data transmission while maintaining detection effectiveness. This 
approach aligns seamlessly with our current lightweighting efforts and represents a natural evolution toward 
privacy-by-design architecture.

Furthermore, we will explore federated learning protocols adapted from privacy-preserving data contribution 
frameworks48 to enable collaborative model improvement across educational institutions without sharing raw 
student data. This federated approach will allow institutions to benefit from collective intelligence while ensuring 
that sensitive biometric and behavioral data remains locally protected. The integration of differential privacy 
techniques during model inference will provide mathematical guarantees for individual privacy protection, 
adding calibrated noise to detection results to prevent potential reconstruction attacks while maintaining system 
utility.

The blockchain evidence system will also be enhanced with privacy-preserving smart contracts that can process 
encrypted evidence metadata, ensuring that even the stored evidence maintains privacy protection throughout 
its lifecycle. Advanced cryptographic techniques such as zero-knowledge proofs may be integrated to enable 
evidence verification without revealing sensitive content details. Additionally, we will develop comprehensive 
compliance frameworks to ensure adherence to international data protection regulations including GDPR, 
FERPA, and regional privacy laws, incorporating automated compliance monitoring and reporting mechanisms.

Enhanced Blockchain Infrastructure and Decentralized Identity: The blockchain component itself presents 
significant opportunities for enhancement. Future iterations will involve designing more advanced smart 
contracts to automate the entire evidence lifecycle, including appeal mechanisms, dispute resolution tracking, 
and automated evidence expiration. We will also investigate integration with Decentralized Identity (DID) 
systems to create a more robust, privacy-preserving authentication process for all participants, eliminating the 
need for centralized identity management while maintaining security and accountability.

Multi-modal Detection and Experimental Rigor: To address current detection limitations, future work will 
explore multi-modal approaches integrating audio analysis, keystroke dynamics, and IoT sensor data to create 
a more comprehensive understanding of the examination environment. Simultaneously, we will implement 
more rigorous experimental protocols involving multiple independent runs with different random seeds to 
provide statistically robust performance assessments with confidence intervals, enhancing the reliability and 
reproducibility of our findings.

These integrated research directions will collectively advance toward a next-generation online examination 
integrity system that balances security, privacy, efficiency, and ethical considerations, providing a foundation for 
trustworthy digital assessment in the evolving landscape of online education.
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Data Availability
The dataset used in this study is a publicly available open source dataset with the access link: ​h​t​t​p​s​:​/​/​a​i​s​t​u​d​i​o​.​b​a​i​
d​u​.​c​o​m​/​d​a​t​a​s​e​t​d​e​t​a​i​l​/​1​2​8​0​3​5​​​​​. The dataset is released under the GPL-2.0 open source agreement with no ethical 
implications.
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