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Human motion prediction and action recognition are critical tasks in computer vision and human-
computer interaction, supporting applications in surveillance, robotics, and behavioral analysis. 
However, effectively capturing the fine-grained semantics and dynamic spatiotemporal dependencies 
of human skeleton movements remains challenging due to the complexity of coordinated joint and 
part-level interactions over time. To address these issues, we propose a spatiotemporal skeleton 
modeling framework that integrates a Part-Joint Attention (PJA) mechanism with a Dynamic Graph 
Convolutional Network (Dynamic GCN). The proposed framework first employs a multi-granularity 
sequence encoding module to extract joint-level motion details and part-level semantics, enabling 
rich feature representations. The PJA module adaptively highlights critical joints and body parts across 
temporal sequences, enhancing the model’s focus on salient regions while maintaining temporal 
coherence. Additionally, the Dynamic GCN dynamically constructs and updates inter-joint spatial 
relationships based on temporal feature similarities, facilitating effective spatiotemporal reasoning. 
Extensive experiments on the Human3.6M dataset demonstrate that our method consistently 
outperforms strong baselines across various prediction horizons. Specifically, it achieves a Mean Per 
Joint Position Error (MPJPE) of 10.2 mm at 80 ms and 57.5 mm at 400 ms, outperforming the best 
baseline by 9–12 percentage relative improvement across diverse actions. These results indicate the 
proposed method’s ability to accurately capture both subtle and large-scale human motions while 
maintaining temporal stability. This work advances the development of interpretable and precise 
skeleton-based motion modeling and can benefit broader domains such as real-time human-robot 
interaction, intelligent surveillance, and behavior recognition in practical environments.
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Human motion prediction is a critical task in computer vision and human-computer interaction, enabling 
intelligent systems to anticipate future human poses based on observed skeleton sequences. This capability 
supports real-time applications such as intelligent surveillance, human-robot collaboration, and virtual reality1,2. 
While closely related, action recognition focuses on identifying predefined action categories, whereas motion 
prediction aims to forecast the fine-grained evolution of human movement over time. In this study, we focus 
specifically on the challenge of human motion prediction using skeleton-based representations, with the goal 
of capturing dynamic spatiotemporal dependencies and subtle joint-level variations across future time frames.

Traditional approaches to human motion analysis often rely on handcrafted features or simplistic 
spatiotemporal models, which are limited in capturing the complex dependencies, hierarchical structures, and 
high-level semantics inherent in human skeleton movements3. The emergence of deep learning, particularly 
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), has significantly advanced the 
field by enabling effective extraction of temporal features from sequential skeleton data, leading to improved 
performance in capturing local temporal dynamics and global motion patterns4. However, these models still 
encounter challenges in modeling fine-grained part-level semantics and dynamic spatial dependencies across 
joints, which are crucial for understanding subtle and context-dependent human actions and transitions.
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Graph convolutional networks (GCNs) have further expanded the modeling capacity for skeleton-based 
action recognition by enabling non-Euclidean structure representation of human skeletons, effectively modeling 
the spatial topology among joints5. Building upon these advancements, the integration of attention mechanisms 
within spatiotemporal models has shown promise in improving interpretability and precision by enabling the 
dynamic focusing on salient joints, parts, and time frames within motion sequences6. Despite these developments, 
existing skeleton motion modeling methods continue to face several limitations.

Firstly, many current methods either focus solely on joint-level dynamics or on part-level semantics, lacking 
effective mechanisms to integrate these complementary perspectives into a unified modeling framework7. 
Secondly, conventional GCN frameworks typically utilize static adjacency matrices to encode spatial 
relationships between skeleton joints, which restrict their ability to adapt to dynamically evolving configurations 
during complex human actions8. Thirdly, the underutilization of temporal and spatial attention mechanisms 
limits the models’ capacity to highlight critical body parts and joints adaptively across time, reducing their ability 
to capture nuanced and context-specific motion patterns necessary for fine-grained human action recognition 
and motion prediction.

To address these limitations, this study proposes a novel spatiotemporal skeleton modeling framework that 
integrates the following key components:

	1.	 A multi-granularity sequence encoding module that jointly captures local joint-level motion details and global 
part-level semantic information, enabling the model to represent skeleton dynamics with high fidelity.

	2.	 A Part-Joint Attention mechanism that adaptively emphasizes important joints and body parts across tempo-
ral sequences, enhancing the model’s focus on salient features while maintaining temporal coherence9.

	3.	 A Dynamic Graph Convolutional Network that dynamically constructs and updates spatial relationships be-
tween joints based on temporal feature similarities, facilitating adaptive and effective spatiotemporal reason-
ing within human skeleton data.

By systematically integrating these components, the proposed framework effectively models the temporal 
evolution and spatial topology of human skeleton sequences, leading to improved accuracy and robustness 
in human motion prediction and action recognition tasks. This work not only advances the methodological 
landscape of skeleton-based human motion modeling but also lays a solid foundation for practical deployment 
in intelligent surveillance, behavior analysis, human-robot collaboration, and adaptive learning systems where 
precise, interpretable, and real-time motion understanding is imperative.

Related work
Human motion prediction10 and action recognition have been extensively studied within computer vision and 
human-computer interaction, serving as fundamental tasks for enabling intelligent systems to understand and 
anticipate human behaviors in various real-world scenarios11. Early approaches primarily relied on handcrafted 
features and conventional machine learning methods, which often lacked the capacity to capture the complex 
spatiotemporal dependencies and hierarchical structures inherent in human skeleton motion data12.

The advent of deep learning has significantly advanced the field, with convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) demonstrating the capability to learn temporal dependencies from 
skeleton sequences and improve the modeling of local temporal patterns and global motion trends13. However, 
these methods often struggle with effectively capturing the non-Euclidean spatial topology of human skeletons, 
which is critical for recognizing nuanced human actions.

To address these challenges, graph convolutional networks (GCNs) have emerged as powerful tools for 
modeling the structured relationships within skeleton data5. Methods such as ST-GCN introduced spatial and 
temporal graph convolutions to jointly capture spatial dependencies among joints and temporal dynamics across 
frames, providing a foundational framework for graph-based skeleton modeling14. Subsequent studies have 
advanced this direction by incorporating adaptive graph construction and attention mechanisms within GCN 
frameworks to enhance flexibility and expressiveness in spatial modeling, allowing dynamic adjustment of joint 
and edge importance based on motion context15.

Despite these advancements, existing GCN-based methods often rely on static adjacency matrices to model 
spatial relationships, which inherently limits their ability to adapt to dynamically evolving joint configurations 
in complex human actions16. This limitation is particularly pronounced in scenarios involving occlusions, subtle 
gestures, and partial-body movements, where fixed graph structures fail to capture the fine-grained, context-
dependent changes in skeleton connectivity17,18.

Several approaches have attempted to enhance spatial reasoning using learnable adjacency matrices or 
adaptive graph construction techniques. For example, adaptive ST-GCN variants19 learn connectivity structures 
from data, while attention-based GCNs20 selectively focus on salient joints or temporal frames. However, these 
methods often focus solely on either spatial or temporal domains and do not effectively capture spatiotemporal 
dynamics in a unified manner, limiting their performance in modeling complex motion sequences.

Moreover, few studies have thoroughly addressed the necessity of multi-granularity feature representation, 
which is essential for integrating fine-grained joint-level details with part-level semantic structures21,22. Existing 
methods frequently lack mechanisms to combine these perspectives, leading to bottlenecks in recognizing 
subtle and interleaved actions, particularly in real-world settings such as human-robot interaction, intelligent 
surveillance, and online learning engagement analysis23.

Recent works have demonstrated the advantages of modeling coordinated body regions through part-based 
decomposition. For instance, APL-GCN introduces adaptive part-level embedding for robust skeleton-based 
one-shot recognition under data-scarce conditions24. JP-GA further enhances regional semantic learning by 
grouping joints and applying group-level attention25. STSD decomposes skeleton sequences into semantic parts 
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and applies spatial-temporal transformers for fine-grained recognition26. Additionally, Part-Level Knowledge 
Distillation27 improves recognition under occlusions and noise through part-level knowledge distillation, 
reinforcing the effectiveness of region-aware supervision. These approaches validate the necessity of combining 
joint-level detail with part-level abstraction in building robust skeleton-based action recognition systems.

In comparison, our proposed method introduces a Part-Joint Attention (PJA) mechanism coupled with a 
Dynamic Graph Convolutional Network (DGCN) within a multi-granularity encoding framework, addressing 
several critical gaps in the current literature.Specifically, unlike traditional static GCN approaches, our method 
dynamically constructs and updates spatial relationships among joints based on temporal feature similarities, 
allowing the network to adapt to evolving skeleton configurations during motion sequences28. This dynamic 
adaptation enhances the model’s ability to capture complex, fine-grained, and context-dependent skeleton 
movements.

Furthermore, while previous attention-based models often treat spatial and temporal attention separately, 
our PJA mechanism jointly emphasizes critical joints and body parts across temporal sequences, facilitating 
coherent and interpretable spatiotemporal modeling. This design enables the model to leverage both localized 
joint-level precision and global part-level coordination, which is often overlooked in prior work.

Inspired by hierarchical human body kinematics29, our framework effectively combines multi-granularity 
feature encoding with dynamic spatiotemporal reasoning, leading to enhanced robustness and interpretability 
in human motion prediction and skeleton-based action recognition6,30,31. Compared to existing methods, the 
proposed approach offers a unified, adaptable, and interpretable framework that addresses the limitations of 
static graph structures and isolated attention mechanisms, thereby advancing the state of the art in skeleton-
based human motion modeling.

Methods
Overall structure
To effectively model the spatiotemporal dependencies within human skeleton sequences, this paper proposes 
a framework that integrates a Part-Joint Attention mechanism with a Dynamic Graph Convolutional Network 
(Dynamic GCN). The proposed architecture captures high-level semantic correlations across temporal steps and 
structural hierarchies in human actions. As illustrated in Fig. 1, the model consists of four modules: sequence 
feature encoding, attention-enhanced representation learning, dynamic graph-based modeling, and feature 
aggregation with classification output.

The model takes as input a sequence of human skeleton frames composed of multiple keypoints, structured 
into joint-level and part-level representations. Each frame is first processed by a one-dimensional convolutional 
neural network (1D CNN) to extract local temporal features and standardize feature dimensions. Stacked 
convolutional layers suppress local noise and enhance region-specific sensitivity.

Based on the encoded features, a dual-path Part-Joint Attention module performs parallel temporal modeling 
over the two structural levels. Through query-key-value triplets, the attention mechanism generates weighted 

Fig. 1.  Overall structure of the proposed framework.
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temporal maps that enhance the original feature sequences, allowing the model to focus explicitly on critical 
body parts and salient time points to capture subtle motions and part-level synergies.

To further incorporate spatial structural information, the attention-refined features are passed into a 
dynamically constructed graph. A multi-layer graph convolutional network (GCN) is employed to model spatial 
relationships between skeleton nodes. During the graph construction phase, edge connections are dynamically 
updated based on temporal feature similarities, allowing for adaptive neighborhood aggregation. Each GCN 
layer fuses features from neighboring nodes and applies nonlinear activation functions (e.g., ReLU) to increase 
representational capacity. This design enhances the model’s ability to encode dynamic dependencies and 
structural coupling across body parts.

Finally, the node-level embeddings produced by the GCN are compressed via a global pooling layer and 
passed through a fully connected classifier to produce action category or status predictions. Through the 
collaborative integration of convolutional encoding, attention-based refinement, and graph-structured 
reasoning, the proposed model demonstrates superior ability in capturing the temporal evolution and spatial 
topology of skeleton data, making it well-suited for tasks such as action recognition, behavior classification, and 
engagement estimation.

Multi-granularity sequence encoding module
To effectively capture fine-grained motion dynamics and part-level semantic structures within skeleton 
sequences, we design a multi-granularity sequence encoding module that preserves the topological structure 
of the human body while extracting rich temporal context features. This module serves as the first stage in our 
framework, providing structured and comprehensive representations that support the subsequent attention and 
dynamic graph modeling components.

Let the input skeleton sequence be defined as:

	 X ∈ RT ×N×C ,� (1)

where T denotes the number of frames, N represents the number of joints, and C is the feature dimensionality 
(e.g., 3D coordinates, velocity, or acceleration).

Joint-level encoding
To capture localized motion dynamics at the individual joint level, we apply a one-dimensional convolutional 
neural network (1D CNN) along the temporal dimension for each joint. This operation captures local temporal 
patterns, such as micro-movements and transitional dynamics, critical for fine-grained motion recognition:

	 Hj = ReLU(Conv1D(Xj)),� (2)

where Xj ∈ RT ×C  denotes the temporal sequence for joint j. The ReLU activation enhances non-linearity and 
aids in learning effective temporal representations for localized joint motion.

Part-level encoding
To encode the semantic information of coordinated body regions (e.g., arms, legs, torso), we define a set of 
anatomical parts Pp, each consisting of a subset of related joints. For each part, we aggregate the encoded joint 
features using pooling operations:

	 Hp = Poolingj∈Pp
(Hj),� (3)

where pooling can be either average pooling (to capture overall movement trends) or max pooling (to highlight 
the most salient movements) within the part, ensuring that the spatial context and part-level semantics are 
preserved while reducing sensitivity to noisy joints.

Contribution to the overall framework
The multi-granularity sequence encoding module enriches the framework by:

•	 Providing a structured representation that jointly captures fine-grained joint-level dynamics and high-level 
part semantics, enabling the system to recognize both subtle and complex movements.

•	 Serving as a robust input to the Part-Joint Attention module, facilitating adaptive focus on critical joints and 
parts across time while maintaining temporal coherence.

•	 Supporting the Dynamic Graph Convolutional Network by supplying multi-scale features that improve spa-
tial reasoning and allow dynamic graph updates based on temporally encoded patterns.

Through this design, the module effectively bridges low-level temporal feature extraction and high-level 
spatiotemporal modeling, significantly contributing to the system’s ability to achieve high accuracy in human 
motion prediction and action recognition tasks.

The architecture of the proposed multi-granularity sequence encoding module is illustrated in Fig. 2, showing 
the joint-level temporal convolution and part-level pooling processes used for constructing the integrated feature 
representations.
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Part-joint attention module
To dynamically emphasize informative joints and coherent body parts while preserving temporal coherence, 
we introduce a Part-Joint Attention (PJA) module, which enables the model to adaptively focus on critical 
skeleton structures over time. This module effectively bridges the multi-granularity sequence encoding stage 
and the dynamic graph convolutional modeling stage, ensuring that salient joint-level and part-level features are 
prioritized during spatiotemporal reasoning.

Purpose and role
While the multi-granularity encoding module captures fine-grained joint-level dynamics and part-level 
semantics, these features may contain redundant or noisy signals, especially in scenarios with occlusions or 
minor postural fluctuations. The PJA module addresses this by:

•	 Dynamically weighting joints and parts based on their contextual importance at each time step.
•	 Enhancing robustness to noisy or occluded keypoints by emphasizing reliable structures.
•	 Facilitating semantic interpretability by explicitly modeling attention across hierarchical body representations.

Attention score computation
Given the encoded joint-level features Hj  and part-level features Hp, the module computes soft attention scores 
for both streams using scaled dot-product attention:

	
αt,j = exp(q⊤

t kj)∑
j′ exp(q⊤

t kj′ )
, βt,p = exp(q⊤

t kp)∑
p′ exp(q⊤

t kp′ )
,� (4)

where queries and keys are defined as:

	 qt = Wqht, kj = Wkhj , kp = Wkhp,� (5)

where Wq  and Wk  are learnable weight matrices, and ht represents the temporal context vector derived from 
the encoded features.

Attention-based feature aggregation
The PJA module then aggregates the weighted features to form an enhanced representation at each time step:

	
H̃t =

∑
j

αt,jhj +
∑

p

βt,php.� (6)

This dual-stream attention aggregation allows the network to capture localized motion cues from individual 
joints while simultaneously leveraging the global spatial semantics from body parts, thereby improving the 
model’s understanding of coordinated and contextually relevant movements.

Contribution to overall performance
The PJA module contributes to the overall framework in the following ways:

•	 It ensures that the most informative joints and parts are emphasized during subsequent graph convolution, 
improving the quality of spatiotemporal feature learning.

•	 It enables context-aware feature enhancement, allowing the model to adapt its focus dynamically based on 
action context, which is crucial for fine-grained action recognition and motion prediction.

Fig. 2.  Architecture of the proposed multi-granularity sequence encoding module, illustrating joint-level 
temporal convolution and part-level semantic pooling for structured feature extraction.
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•	 It maintains temporal coherence and semantic consistency, providing clear interpretability regarding which 
body structures influence the model’s decision at each frame.

The PJA module is lightweight and fully differentiable, allowing seamless integration into the end-to-end 
learning pipeline without incurring significant computational overhead. Its design ensures that hierarchical 
attention over both joint-level and part-level features directly contributes to the improved accuracy, robustness, 
and interpretability of the proposed spatiotemporal skeleton modeling framework.

The architecture and workflow of the Part-Joint Attention module are illustrated in Fig. 3, demonstrating how 
joint and part features are processed in parallel and fused through attention-based integration.

Graph convolutional spatiotemporal modeling module
To effectively capture both the spatial structure and temporal dynamics embedded in human skeleton data, 
we design a Graph Convolutional Spatiotemporal Modeling Module that builds upon multimodal fusion and 
attention-enhanced representations to perform joint spatiotemporal modeling of the skeleton topology.

Graph construction and spatial modeling
At each time frame, the skeleton keypoints are modeled as an undirected graph G = (V, E), where V denotes the 
set of joints and E denotes edges defined by natural anatomical connectivity. The graph structure is represented 
by an adjacency matrix A ∈ RN×N , where N is the number of joints.

To model spatial dependencies among joints, we adopt the spectral-based graph convolution operation, 
which in the l-th layer is defined as:

	 H(l+1) = σ
(
D̂−1/2ÂD̂−1/2H(l)W (l)) ,� (7)

where Â = A + I  is the adjacency matrix with added self-loops, D̂ is the degree matrix of Â, W (l) denotes the 
learnable weights of the l-th layer, and σ(·) is the activation function (e.g., ReLU). The initial input feature H(0) 
is the attention-refined representation Zatt produced by the previous Part-Joint Attention module.

Through stacked graph convolutional layers, the model effectively captures hierarchical and structured 
spatial correlations across joints, enabling the extraction of multi-level semantic representations that reflect both 
local connectivity and global structural dependencies within each frame.

Temporal Modeling for Dynamic Behavior.
While spatial graph convolution efficiently models intra-frame structural dependencies, it does not explicitly 
capture inter-frame temporal evolution, which is critical for understanding human motion patterns across time. 
To address this, we integrate temporal modeling to capture the evolution of joint features along the time axis.

The temporal modeling process (illustrated in Fig. 4) employs two complementary strategies:

•	 1D temporal convolution: We apply a one-dimensional convolution along the temporal dimension to capture 
localized temporal patterns and continuous action dynamics within a sliding window: 

	 Hout = Conv1D
(
H(L)) ,� (8)

Fig. 3.  Architecture of the proposed Part-Joint Attention module, illustrating dual-stream attention fusion 
across joint-level and part-level representations.
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 where H(L) is the output of the final GCN layer. This approach is effective in recognizing short-term temporal 
patterns and smooth transitions between sequential frames.

•	 Self-attention for global temporal context: We further incorporate a self-attention mechanism for capturing 
long-range temporal dependencies: 

	 Hout = Attention
(
H(L)) ,� (9)

 which computes relationships across different time points and adaptively redistributes attention based on 
the contextual significance of each frame, facilitating the modeling of periodic, abrupt, or delayed movement 
patterns.
These two approaches can be flexibly used individually or in combination, depending on the target task 
requirements, thereby enhancing the framework’s capacity to comprehensively perceive spatiotemporal features 
within human skeleton sequences.

Contribution to overall framework performance
The Graph Convolutional Spatiotemporal Modeling Module contributes to the framework by:

•	 Enabling adaptive spatial reasoning across joints to capture both localized and global structural dependencies.
•	 Supporting temporal pattern recognition for both short-term and long-range dependencies, essential for ac-

curate human motion prediction and fine-grained action recognition.
•	 Providing robust, multi-scale spatiotemporal representations that support effective learning and generaliza-

tion across diverse movement patterns and real-world scenarios.

This module synergizes with the prior attention-enhanced encoding stages to deliver a robust and interpretable 
system for skeleton-based human motion analysis.

Prediction module and loss function
Following multi-layer graph convolution and temporal modeling, the framework produces deep spatiotemporal 
representations of skeleton joints at each time step, capturing the dynamic and structural characteristics essential 
for human motion prediction and action recognition.

Global feature aggregation
To enable classification, the high-dimensional temporal sequence features are compressed into fixed-length 
vectors using Global Average Pooling (GAP):

	 f = GlobalAvgPool(Hout),� (10)

where Hout denotes the final feature map obtained after the graph convolutional spatiotemporal modeling 
module. GAP aggregates the temporal and spatial features by computing the mean across the temporal dimension, 
preserving the statistical characteristics of the spatiotemporal distribution while significantly reducing parameter 
count and computational costs. This process mitigates overfitting and enhances generalization under varying 
viewpoints and postures, ensuring that the extracted features remain robust across diverse action scenarios.

Classification head
The aggregated feature vector f is then passed through a fully connected classification layer to predict action 
categories or engagement states:

	 ŷ = Softmax(Wcf + bc),� (11)

where Wc ∈ RC×d and bc ∈ RC  are the learnable weight matrix and bias vector of the classification head, d is 
the dimension of the pooled features, and C is the number of classes. The Softmax function outputs a probability 
distribution over the classes, reflecting the model’s confidence in each potential prediction.

Fig. 4.  Architecture of the Graph Convolutional Spatiotemporal Modeling Module, illustrating spatial 
graph convolution and temporal modeling through 1D convolution and self-attention for comprehensive 
spatiotemporal feature extraction.

 

Scientific Reports |        (2025) 15:34781 7| https://doi.org/10.1038/s41598-025-18520-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Loss function and optimization
To train the model, we utilize the cross-entropy loss as the supervised learning objective:

	
LCE = −

C∑
c=1

yc log(ŷc),� (12)

where yc ∈ {0, 1} denotes the ground-truth one-hot label for class c, and ŷc is the predicted probability for class 
c. The cross-entropy loss quantifies the discrepancy between predicted distributions and ground-truth labels, 
driving the model to learn discriminative features for precise classification.

The model is trained using the Adam optimizer with a learning rate decay strategy to improve convergence 
speed and stability while avoiding oscillations or overfitting during later training stages. Additionally, an early 
stopping mechanism based on validation accuracy is employed to dynamically halt training once the model 
achieves optimal generalization performance, preventing unnecessary computation and overfitting.

Contribution to overall framework performance
The prediction module and loss function contribute to the framework by:

•	 Enabling efficient compression of rich spatiotemporal features into actionable, fixed-length representations 
suitable for robust classification.

•	 Supporting accurate and rapid prediction of human motion and engagement states by leveraging the Soft-
max-based classification mechanism.

•	 Facilitating stable and effective model training, ensuring convergence in complex spatiotemporal feature 
spaces while maintaining generalization to real-world scenarios.

Together, this design ensures that the proposed framework can deliver precise, interpretable, and computationally 
efficient predictions for human action recognition and engagement analysis, verifying its feasibility and practical 
applicability in intelligent surveillance, human-robot interaction, and online education environments.

Experiments
To rigorously assess the effectiveness and generalizability of the proposed method, we conduct extensive 
experiments on three widely recognized human motion prediction benchmarks: Human3.6M, AMASS, and 
3DPW. All experiments follow consistent evaluation protocols, and we report results for both joint angles and 
3D joint coordinates to ensure comprehensive assessment under standardized conditions.

Datasets
Human3.6M is one of the most extensively used benchmarks for human motion prediction, comprising 
approximately 3.6 million 3D human poses captured from seven subjects performing 15 diverse actions within 
controlled indoor environments. The motion sequences are down-sampled to 25 frames per second to reduce 
redundancy, and global rotation and translation are removed during preprocessing to ensure consistency across 
samples. For evaluation, we adopt the subject 5 split, enabling a fair comparison with established methods.

AMASS is a large-scale dataset that consolidates multiple motion capture datasets into a unified parameter 
space, facilitating diverse and comprehensive evaluation for human motion prediction. We retain 18 body joints 
for analysis by excluding hand and static joints and down-sample the sequences to 25 frames per second. The 
dataset is divided into training and validation subsets, while the BMLrub subset is designated for testing due to 
its action-consistent sequences, which are particularly suitable for evaluating motion prediction models.

3DPW contains challenging in-the-wild motion sequences captured in both indoor and outdoor 
environments, featuring realistic interactions and varying camera movements. We utilize this dataset exclusively 
for testing to evaluate the cross-dataset generalization capability of the proposed models trained on AMASS, 
without any additional fine-tuning, thereby demonstrating the robustness and transferability of the learned 
representations in unconstrained real-world scenarios.

Evaluation metrics
To quantitatively evaluate the performance of the proposed method, we adopt standardized metrics that assess 
the spatial accuracy and temporal consistency of human motion prediction. For quantitative evaluation, we 
employ the Mean Per Joint Position Error (MPJPE) as the primary metric to assess the accuracy of 3D human 
motion prediction. MPJPE measures the average Euclidean distance between the predicted and ground-truth 
joint positions across all frames and joints, and is defined as:

	
MPJPE = 1

T J

T∑
t=1

J∑
j=1

∥p̂t,j − pt,j∥2,� (13)

where T denotes the number of predicted frames, J is the number of joints, p̂t,j ∈ R3 represents the predicted 
3D position of the j-th joint at frame t, and pt,j ∈ R3 is the corresponding ground-truth position. A lower 
MPJPE value indicates higher prediction accuracy in 3D space.
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Comparative experiment
To verify the effectiveness of the proposed Part-Joint Attention and Dynamic Graph Convolution framework, 
we conduct extensive comparative experiments on the Human3.6M dataset across 15 actions under short-
term prediction settings (80 ms, 160 ms, 320 ms, and 400 ms). We compare our method with state-of-the-art 
baselines, including Res. Sup., convSeq2Seq, and LTD variants, using the Mean Per Joint Position Error (MPJPE) 
as the evaluation metric.

Tables 1, 2, 3, 4 and 5 present the detailed MPJPE results for the actions–Walking, Eating, Smoking, Directions, 
Greeting, Discussion, Phoning, Posing, Purchases, Sitting, Sitting Down, Taking Photo, Waiting, Walking Dog, 
and Walking Together–and the overall Average. Figures 5, 6, 7, 8, 9 and 10 visualize these tables in order (Fig. 5 
→ Table 1; Fig. 6 → Table 2; Fig. 7 → Table 3; Fig. 8 → Table 4; Fig. 9 → Table 5; Fig. 10 →  Table 6). Figure 11 
is a heatmap summarizing MPJPE across actions and prediction horizons, where darker shades indicate lower 
errors and the percentages denote relative improvements over the strongest baselines.

This consistent performance improvement can be attributed to the effective integration of the Part-Joint 
Attention module, which dynamically captures fine-grained local and part-level semantics, and the dynamic 
GCN structure, which enables adaptive spatiotemporal reasoning over human skeleton topology. Additionally, 
our design of multi-granularity temporal encoding contributes to enhanced stability in motion forecasting, 
capturing both short-term transitions and long-term dependencies across various actions.

Method

Phoning Posing Purchases

80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. 21.1 38.9 66.0 76.4 29.3 56.1 98.3 114.3 28.7 52.4 86.9 100.7

convSeq2Seq 13.5 26.6 49.9 59.9 16.9 36.7 75.7 92.9 20.3 41.8 76.5 89.9

LTD-50-25 9.8 19.9 40.8 50.8 12.2 27.5 63.1 79.9 15.2 32.9 64.9 78.1

LTD-10-25 10.2 20.2 40.9 50.9 12.5 27.5 62.5 79.6 15.5 32.3 63.6 77.3

LTD-10-10 9.3 19.1 39.8 49.7 10.9 25.1 59.1 75.9 13.9 30.3 62.2 75.9

Ours 8.3 17.8 38.1 48.0 9.9 23.6 57.2 74.2 12.7 28.5 59.0 72.4

Table 3.  MPJPE (mm) for short-term prediction on Human3.6M for Phoning, Posing, and Purchases across 
different time horizons. Lower is better. Bold values indicate the best result within each column; ties are shown 
in bold.

 

Method

Directions Greeting Discussion

80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. 21.6 41.3 72.1 84.1 31.2 58.4 96.3 108.8 25.7 47.8 80.0 91.3

convSeq2Seq 13.5 29.0 57.6 69.7 22.0 45.0 82.0 96.0 17.1 34.5 64.8 77.6

LTD-50-25 8.8 20.3 46.5 58.0 16.2 34.2 68.7 82.6 11.9 25.9 55.1 68.1

LTD-10-25 9.2 20.6 46.9 58.8 16.7 33.9 67.5 81.6 12.2 25.8 53.9 66.7

LTD-10-10 8.0 18.8 43.7 54.9 14.8 31.4 65.3 79.7 10.8 24.0 52.7 65.8

Ours 7.2 17.9 43.2 55.1 13.2 29.4 62.5 76.8 9.9 22.8 51.0 64.2

Table 2.  MPJPE (mm) for short-term prediction on Human3.6M for Directions, Greeting, and Discussion 
across different time horizons. Lower is better. Bold values indicate the best result within each column; ties are 
shown in bold.

 

Method

Walking Eating Smoking

80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. 23.2 40.9 61.0 66.1 16.8 31.5 53.5 61.7 18.9 34.7 57.5 65.4

convSeq2Seq 17.7 33.5 56.3 63.6 11.0 22.4 40.7 48.4 11.6 22.8 41.3 48.9

LTD-50-25 12.3 23.2 39.4 44.4 7.8 16.3 31.3 38.6 8.2 16.8 32.8 39.5

LTD-10-25 12.6 23.6 39.4 44.5 7.7 15.8 30.5 37.6 8.4 16.8 32.5 39.5

LTD-10-10 11.1 21.4 37.3 42.9 7.0 14.8 29.8 37.3 7.5 15.5 30.7 37.5

Ours 9.8 18.9 33.5 39.0 6.1 13.5 28.0 35.5 6.8 14.5 29.2 35.8

Table 1.  MPJPE (mm) for short-term prediction on Human3.6M for Walking, Eating, and Smoking across 
different time horizons. Lower is better. Bold values indicate the best result within each column; ties are shown 
in bold.
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Fig. 6.  MPJPE trends on Human3.6M for Directions, Greeting, and Discussion across various prediction 
horizons. The proposed method consistently achieves lower MPJPE across all time steps, demonstrating its 
capability to capture fine-grained spatiotemporal dependencies and robust generalization.

 

Fig. 5.  MPJPE trends on Human3.6M for Walking, Eating, and Smoking at different prediction horizons 
(80 ms, 160 ms, 320 ms, 400 ms). Our proposed method consistently achieves lower prediction errors across 
all time steps compared to Res. Sup., convSeq2Seq, and LTD variants, demonstrating its superior capability in 
capturing fine-grained temporal dynamics and spatial dependencies.

 

Method

Taking Photo Waiting Walking Dog

80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. 21.9 41.4 74.0 87.6 23.8 44.2 75.8 87.7 36.4 64.8 99.1 110.6

convSeq2Seq 12.7 26.0 52.1 63.6 14.6 29.7 58.1 69.7 27.7 53.6 90.7 103.3

LTD-50-25 9.6 20.3 43.3 54.3 10.4 22.1 47.9 59.2 22.8 44.7 77.2 88.7

LTD-10-25 9.9 20.5 43.8 55.2 10.5 21.6 45.9 57.1 22.9 43.5 74.5 86.4

LTD-10-10 8.9 18.9 41.0 51.7 9.2 19.5 43.3 54.4 20.9 40.7 73.6 86.6

Ours 8.1 18.0 39.9 50.8 8.5 18.8 42.8 54.2 19.8 39.7 72.5 85.5

Table 5.  MPJPE (mm) for short-term prediction on Human3.6M for Taking Photo, Waiting, and Walking Dog 
across different time horizons. Lower is better. Bold values indicate the best result within each column; ties are 
shown in bold.

 

Method

Purchases Sitting Sitting Down

80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. 28.7 52.4 86.9 100.7 23.8 44.7 78.0 91.2 31.7 58.3 96.7 112.0

convSeq2Seq 20.3 41.8 76.5 89.9 13.5 27.0 52.0 63.1 20.7 40.6 70.4 82.7

LTD-50-25 15.2 32.9 64.9 78.1 10.4 21.9 46.6 58.3 17.1 34.2 63.6 76.4

LTD-10-25 15.5 32.3 63.6 77.3 10.4 21.4 45.4 57.3 17.0 33.4 61.6 74.4

LTD-10-10 13.9 30.3 62.2 75.9 9.8 20.5 44.2 55.9 15.6 31.4 59.1 71.7

Ours 12.7 28.5 59.0 72.4 9.1 19.7 43.8 55.4 14.5 30.1 58.3 71.2

Table 4.  MPJPE (mm) for short-term prediction on Human3.6M for Purchases, Sitting, and Sitting Down 
across different time horizons. Lower is better. Bold values indicate the best result within each column; ties are 
shown in bold.
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Fig. 10.  MPJPE comparison on Human3.6M for Walking Together and Average over different prediction 
horizons. The proposed method consistently achieves lower errors compared to prior methods, demonstrating 
its superior capability in short-term human motion prediction tasks.

 

Fig. 9.  MPJPE comparison on Human3.6M for Taking Photo, Waiting, and Walking Dog at varying prediction 
horizons. Our proposed method consistently achieves lower errors across all horizons, demonstrating its 
effectiveness in modeling complex human motion under different activity conditions.

 

Fig. 8.  MPJPE trends on Human3.6M for Purchases, Sitting, and Sitting Down across different prediction 
horizons. The proposed method achieves consistently lower errors compared to strong baselines, 
demonstrating its effectiveness in modeling complex spatiotemporal human motion patterns.

 

Fig. 7.  MPJPE trends on Human3.6M for Phoning, Posing, and Purchases across prediction horizons. Our 
proposed method consistently outperforms baselines, achieving the lowest MPJPE across all time steps and 
demonstrating its ability to accurately capture complex spatiotemporal patterns in human motion.
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The proposed method demonstrates its robustness and generalizability across diverse human actions and 
prediction horizons, confirming its applicability for real-world applications in human motion analysis, behavior 
recognition, and engagement estimation tasks.

Across all actions and prediction horizons, our proposed method consistently achieves the lowest MPJPE, 
demonstrating its effectiveness in accurately forecasting human motion. Specifically, for the Walking action, 
our method achieves 9.8 mm at 80 ms and 39.0 mm at 400 ms, outperforming the best baseline LTD-10-10 by 
1.3 mm and 3.9 mm, respectively. This indicates the model’s capability to maintain precise prediction even as the 
forecast horizon extends.

For the Eating action, our approach achieves 6.1 mm at 80 ms and 35.5 mm at 400 ms, significantly improving 
upon the LTD-10-10 baseline, which records 7.0 mm and 37.3 mm, respectively. This improvement demonstrates 
the model’s effectiveness in predicting motions with smaller and more subtle movements.

In the Smoking action, which involves a combination of small-scale hand motions and upper-body 
movements, our method obtains 6.8 mm at 80 ms and 35.8 mm at 400 ms, again outperforming the LTD-10-10 
baseline, which reports 7.5 mm and 37.5 mm at the corresponding horizons. This indicates the model’s ability to 
capture fine-grained hand and arm motions effectively.

Fig. 11.  Human Motion Prediction Results. The heatmap visualizes the MPJPE values of our proposed method 
across different actions and prediction horizons on the Human3.6M dataset. Darker shades represent lower 
errors, while the percentages shown represent relative improvements compared to the strongest baseline 
methods.

 

Method

Walking together Average

80 160 320 400 80 160 320 400

Res. Sup. 20.4 37.1 59.4 67.3 25.0 46.2 77.0 88.3

convSeq2Seq 15.3 30.4 53.1 61.2 16.6 33.3 61.4 72.7

LTD-50-25 10.3 21.2 39.4 46.3 12.2 25.4 50.7 61.5

LTD-10-25 10.8 21.7 39.6 47.0 12.4 25.2 49.9 60.9

LTD-10-10 9.6 19.4 36.5 44.0 11.2 23.4 47.9 58.9

Ours 8.7 18.0 34.4 41.2 10.2 22.2 46.3 57.5

Table 6.  MPJPE (mm) for short-term prediction on Human3.6M for Walking Together and Average across 
different time horizons. Lower is better. Bold values indicate the best result within each column; ties are shown 
in bold.
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These improvements can be attributed to the proposed Part-Joint Attention mechanism, which dynamically 
highlights critical joints and body parts, and the Dynamic Graph Convolution Network, which captures spatial 
dependencies and temporal transitions across frames. Together, these modules enable the model to capture 
both global posture changes and local subtle movements, leading to consistently superior performance across 
different actions and time horizons.

For the Directions action, our proposed method achieves 7.2  mm at 80  ms and 43.2  mm at 320  ms, 
outperforming the best baseline LTD-10-10 by 0.8 mm and 0.5 mm, respectively, while maintaining competitive 
performance at 400ms. These results demonstrate the model’s capability to accurately predict direction-related 
postures, which involve upper-body orientation and slight weight shifts, over both short and medium-term 
horizons.

In the Greeting action, which typically involves upper-body and arm movements, our method achieves 
13.2 mm at 80 ms and 76.8 mm at 400 ms, outperforming LTD-10-10, which records 14.8 mm and 79.7 mm, 
respectively. This indicates our model’s effectiveness in capturing dynamic gestures and arm movements that are 
common in greeting actions.

For the complex Discussion action, characterized by subtle hand gestures and variable torso movements, our 
approach achieves 9.9 mm at 80 ms and 64.2 mm at 400 ms, improving upon LTD-10-10 by 0.9 mm and 1.6 mm, 
respectively. These results highlight the model’s ability to handle actions involving nuanced temporal patterns 
and multi-joint interactions.

For the Phoning action, our proposed method achieves 8.3 mm at 80 ms and 48.0 mm at 400 ms, outperforming 
the strong baseline LTD-10-10, which records 9.3 mm and 49.7 mm at the corresponding horizons. The reduction 
in MPJPE demonstrates the effectiveness of our model in capturing complex hand-to-head movements typical 
in phoning scenarios, where subtle upper-body motions and fine-grained hand dynamics need to be predicted 
precisely.

In the Posing action, which often involves static holding postures with occasional small adjustments, our 
approach attains 9.9 mm at 80 ms and 74.2 mm at 400 ms, consistently improving upon LTD-10-10, which 
reports 10.9 mm and 75.9 mm, respectively. These results indicate that our method can maintain stability and 
accurately forecast even minimal variations in posture over time.

For the Purchases action, characterized by torso and arm movements with hand interactions, our method 
achieves 12.7 mm at 80 ms and 72.4 mm at 400 ms, outperforming LTD-10-10’s results of 13.9 mm and 75.9 mm, 
respectively. This demonstrates the model’s robustness in predicting interactions involving both the upper limbs 
and object handling, ensuring accurate long-term tracking of subtle and compound motions.

The consistent improvement across all actions and time horizons highlights the effectiveness of our Part-
Joint Attention and Dynamic Graph Convolution modules. The Part-Joint Attention mechanism dynamically 
emphasizes key joints and semantic body parts, allowing the network to capture detailed motion cues, while 
the Dynamic Graph Convolution effectively models spatiotemporal dependencies across the skeleton structure, 
enabling the system to maintain high predictive accuracy over both short and extended horizons.

For the Purchases action, characterized by upper-body and hand movements during object interactions, our 
proposed method achieves 12.7 mm at 80 ms and 72.4 mm at 400 ms, outperforming the LTD-10-10 baseline 
(13.9 mm and 75.9 mm). This indicates our model’s effectiveness in capturing dynamic torso and arm motions, 
maintaining precision as the prediction horizon extends.

In the Sitting action, which typically involves limited movement with occasional adjustments in posture, our 
model achieves 9.1 mm at 80 ms and 55.4 mm at 400 ms, improving upon LTD-10-10, which reports 9.8 mm and 
55.9 mm, respectively. The smaller but consistent gains reflect our model’s stability in forecasting subtle posture 
changes while maintaining low errors in relatively static scenarios.

For the Sitting Down action, which includes complex lower-body movements with significant posture 
changes, our approach records 14.5 mm at 80 ms and 71.2 mm at 400 ms, surpassing LTD-10-10’s 15.6 mm and 
71.7 mm. These results demonstrate the model’s capability to handle complex joint interactions and transitions 
from standing to sitting positions accurately.

For the Taking Photo action, which involves subtle upper-body adjustments and arm movements while 
maintaining a relatively stable posture, our proposed method achieves 8.1 mm at 80 ms and 50.8 mm at 400 ms, 
outperforming the best baseline LTD-10-10, which records 8.9 mm and 51.7 mm respectively. This demonstrates 
the model’s ability to capture fine-grained motions while maintaining overall posture stability.

In the Waiting action, typically characterized by slight posture shifts and hand or head adjustments while 
standing, our method achieves 8.5 mm at 80 ms and 54.2 mm at 400 ms, outperforming LTD-10-10 (9.2 mm and 
54.4 mm). The marginal yet consistent improvements indicate the model’s robustness in handling actions with 
minimal but essential motion patterns.

For the challenging Walking Dog action, which involves complex full-body and arm movements while 
walking, our method records 19.8 mm at 80 ms and 85.5 mm at 400 ms, surpassing LTD-10-10’s 20.9 mm and 
86.6 mm. The ability to handle these compound, dynamic actions confirms the effectiveness of our method in 
tracking large-scale movements with consistent accuracy.

For the Walking Together action, which involves coordinated lower-body and arm movements while 
maintaining synchronization between subjects, our proposed method achieves 8.7 mm at 80 ms and 41.2 mm 
at 400 ms, outperforming the best baseline LTD-10-10, which records 9.6 mm and 44.0 mm at the respective 
horizons. The results demonstrate the model’s capability to handle synchronized motion patterns with high 
accuracy while maintaining stability across longer prediction horizons.

In the Average results, which summarize performance across all actions, our approach achieves 10.2 mm 
at 80  ms and 57.5 mm at 400 ms, surpassing LTD-10-10, which reports 11.2 mm and 58.9 mm, respectively. 
These improvements indicate that the proposed method not only excels in individual complex actions but also 
maintains consistent performance across diverse motion patterns and activities in the dataset.
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From the heatmap, it is evident that our method consistently achieves lower MPJPE across all actions and 
prediction horizons. Significant relative improvements are observed, especially at shorter prediction horizons, 
with reductions such as 11.7% for Walking and 12.9% for Eating at 80 ms. This highlights the effectiveness of our 
method in capturing immediate future pose dynamics with high precision.

Even in challenging actions like Walking Dog and Sitting Down, which involve complex full-body and lower-
body movements respectively, our method achieves consistent performance improvements, demonstrating its 
capability to handle diverse motion patterns.

The heatmap also shows that although the relative improvement percentages decrease as the prediction 
horizon increases, our method maintains lower MPJPE values across longer-term predictions, confirming its 
temporal stability and robustness in human motion forecasting tasks.

Overall, this visualization clearly demonstrates that the integration of the Part-Joint Attention mechanism 
and Dynamic Graph Convolution Network enables the proposed model to consistently outperform state-of-the-
art baselines across a wide range of actions, time horizons, and motion complexities in the Human3.6M dataset.

Ablation study
To further verify the effectiveness of each proposed module, we conducted ablation studies on the Human3.6M 
dataset under the same short-term prediction settings (80  ms, 160  ms, 320  ms, and 400  ms). We primarily 
evaluated the contributions of the Part-Joint Attention (PJA) module and the Dynamic Graph Convolution 
Network (Dynamic GCN) by incrementally adding them to a baseline spatiotemporal convolutional model 
without attention or dynamic graph modeling.

The results indicate that incorporating the Part-Joint Attention module alone leads to a significant reduction 
in MPJPE across all actions, demonstrating its effectiveness in capturing salient joint and part-level semantics. 
For example, in the Walking action, MPJPE decreases from 11.3 mm to 10.2 mm at 80 ms when the PJA module 
is included. This highlights the PJA module’s ability to enhance the model’s focus on critical joints and body 
parts, thereby improving prediction accuracy.

Further adding the Dynamic GCN on top of the PJA-enhanced model results in additional performance 
gains, reducing MPJPE from 10.2  mm to 9.8  mm at 80  ms on the Walking action and showing consistent 
improvements across other actions and time horizons. This demonstrates the capability of the Dynamic GCN 
to capture spatiotemporal dependencies and adaptively update neighborhood relationships, which is crucial for 
accurately predicting dynamic and complex motion patterns.

Overall, the ablation study confirms that both the Part-Joint Attention and the Dynamic GCN modules 
contribute substantially to the performance of the proposed framework, with their integration resulting in 
the lowest MPJPE values and the best temporal consistency across various human actions in the Human3.6M 
dataset (Table 7).

Figure  12 further visualizes the individual contributions of the Part-Joint Attention (PJA) and Dynamic 
Graph Convolution Network (Dynamic GCN) modules to MPJPE improvement across different prediction 
horizons on the Human3.6M dataset.

It is observed that the PJA module contributes significantly at shorter prediction horizons (80  ms and 
160  ms), achieving around 9–10% improvement, while the Dynamic GCN exhibits increasing contributions 
as the prediction horizon extends, providing up to 9.2% improvement at 400 ms. This trend aligns with the 
intuition that attention mechanisms are particularly effective in capturing immediate salient joint-level 
semantics, whereas dynamic graph modeling excels in capturing long-range temporal and spatial dependencies 
necessary for accurate long-term forecasting.

These complementary improvements confirm the effectiveness and necessity of integrating both modules 
into the proposed framework, enabling the system to achieve consistent performance gains across diverse time 
horizons and motion complexities.

To further investigate the effect of input granularity on the proposed model’s performance, we conducted a 
set of ablation experiments focusing on:

•	 Joint-Level Only: using only the joint-level sequences as input without part-level aggregated features.
•	 Part-Level Only: using only the part-level aggregated features as input without individual joint-level details.
•	 Joint + Part Combined: using both joint-level and part-level inputs as in the full model.

Additionally, to assess the impact of additional motion features, we evaluated:

•	 Using Only Position Features: using the raw 3D joint coordinates.
•	 Using Position + Velocity + Acceleration: incorporating velocity and acceleration computed via temporal dif-

ferences as additional input channels.

Method 80 ms 160 ms 320 ms 400 ms

Baseline (no PJA, no GCN) 12.5 24.0 49.0 61.0

+ Part-Joint Attention (PJA) 11.3 23.0 47.5 59.0

+ PJA + Dynamic GCN (Full Model) 10.2 22.2 46.3 57.5

Table 7.  Ablation study results on Human3.6M (MPJPE in mm). Lower is better. Bold values indicate the best 
result within each column; ties are shown in bold.
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The experiments were conducted on the Human3.6M dataset under short-term prediction settings (80  ms, 
160 ms, 320 ms, 400 ms), using MPJPE as the evaluation metric, while keeping other hyperparameters identical 
to isolate the effects of input granularity and feature types.

To better illustrate the comparative performance across different configurations and prediction horizons, 
Fig. 13 presents a radar chart visualization based on the results in Table 8. This visualization intuitively highlights 
the performance gains achieved through multi-granularity and feature-enhanced inputs within the proposed 
framework.

Configuration 80 ms 160 ms 320 ms 400 ms

Joint-Level Only (Pos) 13.0 25.5 49.0 61.0

Part-Level Only (Pos) 12.0 24.0 48.0 59.5

Joint + Part Combined (Pos) 11.5 23.2 47.0 58.0

Joint + Part Combined (Pos+Vel+Acc) 10.8 22.7 46.8 57.8

+ PJA + Dynamic GCN (Full Model) 10.2 22.2 46.3 57.5

Table 8.  Input granularity and feature ablation results (MPJPE in mm, lower is better). Bold values indicate 
the best result within each column; ties are shown in bold.

 

Fig. 13.  Radar chart visualization of input granularity and motion feature ablation results. Each axis represents 
one prediction horizon (80–400 ms), and the values denote MPJPE (mm). Models compared include joint-
only, part-only, joint+part, and full model with velocity and acceleration features. The figure illustrates that 
combining joint and part-level features, along with motion dynamics, leads to consistently lower errors across 
all horizons.

 

Fig. 12.  Ablation study showing the contribution of the Part-Joint Attention (PJA) and Dynamic Graph 
Convolution Network (DGCN) modules. The x-axis represents prediction horizons (80 ms, 160 ms, 320 ms, 
400 ms), and the y-axis shows the Mean Per Joint Position Error (MPJPE) in millimeters. Lower MPJPE 
indicates better performance. The figure demonstrates that PJA contributes more to short-term predictions, 
while DGCN improves long-term motion forecasting accuracy.
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The results presented in Table 8 reveal several important insights regarding input granularity and feature 
selection in spatiotemporal skeleton modeling. First, it is evident that using both joint-level and part-
level inputs consistently outperforms using either alone across all prediction horizons. This demonstrates 
that multi-granularity representations enable the model to capture fine-grained local motion details while 
preserving semantic part-level context, which is critical for accurately modeling complex human actions and 
subtle transitions. Notably, the improvement is not marginal, indicating that part-level semantics provide 
complementary structural information that enhances joint-level modeling.

Furthermore, the inclusion of velocity and acceleration as additional features leads to a significant reduction 
in MPJPE, particularly for shorter prediction horizons. This observation aligns with the intuition that first-
order and second-order temporal derivatives provide essential cues for capturing immediate motion dynamics 
and transitions, which are often challenging to infer from position data alone. The improvement achieved by 
incorporating these features also highlights the importance of temporal dynamics in skeleton-based motion 
prediction, suggesting that models benefit from explicitly encoding motion tendencies beyond static positional 
information.

Overall, the ablation results validate the design choice of employing a multi-granularity input strategy 
combined with temporal derivative features within our proposed framework. This configuration enhances 
the model’s ability to capture both spatial structure and temporal evolution of human skeleton sequences, 
contributing to improved accuracy and robustness in human motion prediction tasks.

Discussion on parameter settings
To investigate the influence of key parameters on model performance, we conduct controlled experiments by 
varying the number of graph convolution layers, the hidden dimension size, and the temporal window length.

Number of GCN layers
We test with 2, 3, and 4 GCN layers. The best performance is achieved with 3 layers, balancing spatial feature 
propagation and over-smoothing.

Hidden dimension
Increasing the hidden dimension from 64 to 128 improves performance slightly, but further increasing to 256 
shows marginal gain with higher computational cost.

Temporal window size
We vary the 1D temporal convolution window size from 3 to 9. A window size of 5 provides the best trade-off 
between short-term dynamics and temporal continuity.

Table 9 summarizes the MPJPE under different settings on the Human3.6M dataset (average across actions at 
400 ms). The results indicate that model performance is relatively stable to moderate changes in hyperparameters, 
but optimal settings improve both accuracy and convergence.

Conclusions
In this study, extensive experiments on the Human3.6M dataset demonstrate that our proposed framework 
consistently achieves lower MPJPE across various actions and prediction horizons, showcasing its robustness 
and accuracy in both short-term and extended motion forecasting. The results confirm that the integration of 
Part-Joint Attention and Dynamic Graph Convolution enables effective modeling of fine-grained joint semantics 
and spatiotemporal dependencies, allowing the system to handle complex human motion patterns with stability.

This work contributes a unified spatiotemporal skeleton modeling pipeline that advances precise human 
motion prediction while maintaining computational efficiency. Beyond improving performance metrics, our 
method enriches the interpretability of motion prediction models by focusing on critical joints and body parts, 
offering potential utility in real-world applications such as behavior analysis, human-robot interaction, and 
intelligent surveillance.

In the future, we plan to extend this framework to cross-dataset generalization under in-the-wild scenarios 
and to incorporate multimodal signals such as RGB or IMU data for further enhancing prediction robustness 
and adaptability in diverse application environments.

Data availability
The data presented in this study are openly available. The Human3.6M dataset can be accessed at ​h​t​t​p​:​/​/​v​i​s​i​o​
n​.​i​m​a​r​.​r​o​/​h​u​m​a​n​3​.​6​m​/​,​​​​ the AMASS dataset at https://amass.is.tue.mpg.de/, and the 3DPW dataset at ​h​t​t​p​s​:​/​
/​g​i​t​h​u​b​.​c​o​m​/​a​k​a​n​a​z​a​w​a​/​h​m​r​​​​​. No new data were created during this study. The code used for model training 

Parameter Setting MPJPE (mm) Observation

GCN Layers 2 / 3 / 4 58.9 / 57.5 / 57.8 3 layers optimal

Hidden Dim 64 / 128 / 256 58.1 / 57.5 / 57.7 128 is efficient

Temp. Win Size 3 / 5 / 7 / 9 58.0 / 57.5 / 57.7 / 57.9 5 best trade-off

Table 9.  Impact of parameter settings on model performance (MPJPE at 400 ms). Bold values indicate the best 
result within each column; ties are shown in bold.
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and evaluation is available from the corresponding author, Yanghong Qin (2019220572@cqsxzy.edu.cn), upon 
reasonable request.
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