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As a vital ecological barrier and water source for the Beijing-Tianjin-Hebei (BTH) region, the Luan River 
Basin (LRB) plays a crucial role in maintaining regional ecological balance. However, comprehensive 
research on Ecological Vulnerability (EV) evaluation in the LRB remains scarce, making EV evaluation 
and forecasting particularly significant. This study evaluated EV dynamics (2002–2022) via the SRP 
model with 17 indicators, with driving factors analyzed via Geodetector and 2032 scenarios forecasted 
by CA-Markov. Key findings revealed: (1) EVI increased from 0.397 to 0.428 (peak at 0.445 in 2017), 
with Microscopic vulnerability dominating (46.47% average area). (2) Spatially, EV exhibited a “low-
medium–high” gradient (lower in northwestern high-altitude areas and higher in southeastern plains), 
confirmed by significant clustering (Global Moran’s I = 0.889–0.938, p value < 0.001). (3) Geodetector 
identified elevation (q = 0.855), biological abundance (q = 0.812), annual temperature (q = 0.800), and 
cultivated land proportion (q = 0.783) as primary driving factors. (4) CA-Markov forecasts for 2032 
indicate declines in Potential vulnerability (− 5.83%), Microscopic vulnerability (− 2.01%), and Severe 
vulnerability (− 2.30%), but increases in Mild vulnerability (+ 6.57%) and Moderate vulnerability 
(+ 3.57%). These findings provide a scientific basis for evidence-based ecological policies in the 
LRB, contributing to the promotion of regional sustainable development and the balance between 
ecological conservation and economic growth.
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The ecological environment, a complex network of living and non-living components, sustains biodiversity 
and human well-being through critical functions like climate regulation and habitat provision1,2. Ecological 
Vulnerability (EV)—the susceptibility of ecosystems to disturbances and their recovery capacity3—guides 
environmental management and sustainable development4. The EV research originated in the 1960s, initially 
focusing on ecosystem responses to natural disasters5. Since then, the field has expanded significantly, with 
researchers worldwide recognizing the multifaceted nature of EV. International collaborations, such as those 
under the Intergovernmental Panel on Climate Change (IPCC), have highlighted the global significance of EV 
in the context of climate change and its implications for human societies6, and research has shifted from isolated 
analyses to interdisciplinary integration, reflecting ecological complexity.

As research progresses, several models for evaluating EV have been developed, including the Pressure-State-
Response (PSR) model, Exposure-Sensitivity-Adaptability (ESA) model, and Sensitivity-Resilience-Pressure 
(SRP) model, among others7. Among these models, the PSR model focuses on ecosystem responses to pressures 
from human activities8, while the ESA model places greater emphasis on the extent to which ecosystems or 
ecosystem components are actually exposed to specific stressors9. In contrast to the aforementioned models, the 
SRP model—based on a social-natural coupled system—offers advantages such as a comprehensive evaluation 
framework and well-developed indicators. It can more fully capture the integrated characteristics of EV. 
Therefore, the SRP model was applied to evaluate EV in this study7,10–12.
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Determining indicator weights in EV evaluation is a crucial step, including mainstream methods such 
as the Analytic Hierarchy Process (AHP), Entropy Weight Method, Spatial Principal Component Analysis 
(SPCA), and Fuzzy Comprehensive Evaluation Method13. Each method has its advantages: AHP relies on expert 
judgment, the Entropy Weight Method is favored for its simplicity and objectivity, and the Fuzzy Comprehensive 
Evaluation Method excels at handling fuzzy and uncertain information. In comparison, this study selected the 
SPCA9 because it can effectively reduce data dimensionality and objectively allocate weights through variance 
contribution rates, retaining the main information of the data while reducing human intervention.

The SRP model has been widely applied across regions. For instance, Zou et al. used it to establish an 
EV evaluation system and analyze spatiotemporal characteristics (2000–2018) by combining AHP and PCA 
to calculate weights in Jilin Province14. He et al. combined it with Geodetector to reveal EV dynamics and 
driving mechanisms of EV in Yunnan Province1. Li et al. applied it in Liaoning, integrating Geodetector and 
CA-Markov for driver analysis and trend forecasting15. Zhang et al. applied it to evaluate EV in the Yellow River 
Basin, analyzed how ecological restoration measures affect EV changes, and highlighted the interaction between 
human activities and the ecological environment16.

The Luan River, originating in Fengning County, flows through Hebei, Liaoning, and the Inner Mongolia 
Autonomous Region before discharging into the Bohai Sea at Laoting County. Its basin serves as an essential 
ecological barrier to mitigate the impact of dust storms from Mongolia on the North China region and is a 
vital water resource for the Beijing-Tianjin-Hebei (BTH) area. Previous studies on the Luan River Basin (LRB) 
have been conducted. For instance, Yang et al. assessed the spatiotemporal characteristics and driving factors of 
landscape ecological risk in the LRB17. Liu et al. studied the distribution and accumulation of heavy metals in the 
water and evaluated the associated ecological risks18. However, critical knowledge gaps persist in current LRB 
studies: (1) Spatiotemporal dynamics of EV remain unquantified, with limited analysis of long-term evolution 
patterns (e.g., gradient shifts, centroid migration). (2) Future trajectory projections are absent, hindering 
proactive policy formulation. (3) Existing evaluations lack integration of multi-dimensional drivers.

To address these gaps, this study employed the SRP model with 17 natural and anthropogenic indicators, 
SPCA for weighting, to calculate and classify the Ecological Vulnerability Index (EVI, the quantitative expression 
of EV) for the LRB (2002–2022). We analyze EVI’s spatiotemporal patterns via Moran’s I, identify drivers with 
Geodetector, and forecast future EV using CA-Markov. Findings aim to support regional ecological policy-
making.

Materials and methods
Study area
The Luan River is one of the significant rivers in North China (as shown in Fig. 1), and it originates from Fengning 
Manchu Autonomous County in Hebei Province. It flows through Hebei, Liaoning, and Inner Mongolia, with 
a total length of approximately 888 km and a basin area of about 53,100 square kilometers. The terrain of the 
LRB is complex and varied; the upper reaches are situated on the Bashang Plateau, the middle reaches pass 
through the Yanshan mountain range, and the lower reaches traverse the Hebei Plain to the Bohai Bay. There is 
a considerable variation in terrain within the basin, with the land sloping from the northwest to the southeast. 
The average annual temperature and precipitation across the basin are 7.0 ± 2.6  °C and 488.4 ± 80.7  mm19, 
respectively, exhibiting a distinct heterogeneous seasonal distribution, with the main wet season occurring in 
July and August each year20.

The LRB is a vital industrial base for the BTH region, including important industrial cities such as Tangshan 
and Qinhuangdao. It also plays a crucial role in ecological support and water conservation for the region21. 

Fig. 1.  Location of the study area.
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However, with the rapid economic development in recent years, unreasonable land use, extensive construction 
of water conservancy projects, and over-extraction of groundwater have led to environmental issues such as soil 
erosion, river runoff decreasing, wetland reduction, and loss of biodiversity within the basin22–24. Therefore, 
analyzing the spatiotemporal patterns of EV in the LRB, uncovering its driving factors, and forecasting its future 
development are of significant importance for the formulation of policies aimed at the construction of ecological 
civilization in the basin.

Data and pre-processing
Considering the availability of data and the process of urban development, in order to comprehensively reflect 
the pattern of changes in the EV of the LRB over the past two decades, this study selected the period from 2002 
to 2022 as the research timeframe, with a time interval of five years. The data utilized in this study included the 
Digital Elevation Model (DEM)25, remote sensing imagery26,27, soil data28, meteorological data29,30, land use 
types31, basic geographical information (including residential points, road networks, and water networks)32, 
and population data33. To ensure spatial consistency across all datasets, these datasets were processed through 
cropping, projection, and resampling. A uniform spatial reference system, WGS 1984 UTM Zone 50N, was 
used, with a spatial resolution of 1 km. The sources of the data and the methods of preprocessing were shown 
in Table 1.

Methods
Research technique route
Based on the SRP model, this study selected 17 indicators that can measure EV from different perspectives 
within the three dimensions of ecological sensitivity, ecological resilience, and ecological pressures. The study 
calculated the weights of each indicator by SPCA and constructed an EVI map to analyze its spatiotemporal 
characteristics. Global and local autocorrelation tools were employed to explore the spatial heterogeneity of EV 
in the study area, and Geodetector was used to analyze the driving factors. Finally, the CA–Markov model was 
applied to forecast the future EV of the study area based on the existing data outcomes. The research technique 
route of this study is illustrated in Fig. 2.

This integrated method fully utilizes the advantages of each approach: SPCA assigns objective weights to SRP 
indicators. Geodetector reveals driving mechanisms comprehensively. CA-Markov combines spatial adjacency 
rules with transition probabilities to forecast future scenarios. This synergy enables a comprehensive diagnosis 
of EV spatiotemporal patterns and overcomes the limitations of single-method studies.

Establishment of evaluation index system
This study, based on the SRP model, comprehensively and objectively established an EV evaluation index system 
for the LRB, taking into account the natural environment and human activity characteristics of the basin. In 
line with relevant research10,14,15,37, and adhering to principles of scientificity, representativeness, and data 
accessibility, the indicators were grounded in data related to topography, soil, climate, vegetation, ecological 
vitality, landscape patterns, and human activities. The details were shown in Table 2.

Ecological sensitivity refers to the susceptibility of ecosystems to internal and external disturbances10, 
including topographic factors (elevation, slope, and terrain roughness), meteorological factors (annual average 
precipitation, annual average temperature, and rainfall erosivity factor R), and soil factors (soil erodibility factor 
K). Ecological resilience refers to the ability of ecosystems to self-regulate and self-repair after disturbances, 
which is related to the internal structure of the ecosystem, including landscape structure (Shannon diversity 
index), ecological vitality (biological abundance), natural conditions (water network density), and vegetation 
status (NDVI and NPP). Ecological pressure refers to the degree to which ecosystems are affected by external 
disturbances and impacts, usually caused by human activity factors (cultivated land proportion, construction 
land proportion, residential point kernel density, population density, and road network density).

Name Data source Time
Resolution 
/scale Pre-processing

Annual average precipitation http://data.tpdc.ac.cn/ 2002–2022 1 km Image cropping, calculating rainfall erosivity factor r34 in ArcGIS based on 
the RUSLE model

Annual average temperature http://data.tpdc.ac.cn/ 2002–2022 1 km Image cropping

DEM https://www.gscloud.cn/ – 30 m calculating slope and terrain ruggedness Index in ArcGIS

Soil http://data.tpdc.ac.cn/ – 1:1,000,000 Calculating soil erodibility factor K35 in ArcGIS based on the RUSLE model

Net primary productivity (NPP) http://www.gis5g.com 2002–2022 500 m Resampling

Normalized difference vegetation 
Index (NDVI) http://www.gisrs.cn 2002–2022 500 m Resampling

Basic geographic information https://www.ngcc.cn/ – 1:250,000 Calculating residential point kernel density, road network density, and water 
network density in ArcGIS

Population density https://landscan.ornl.gov/ 2002–2022 1 km Image cropping

Land use type https://zenodo.org/ 2002–2022 30 m Calculating shannon diversity Index in fragstats and biological abundance36, 
cultivated land proportion, and construction land proportion in ArcGIS

Table 1.  The data sources and pre-processing.
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Criterion Layer Indicators Attribute Indicator significance

Ecological sensitivity

Elevation (X1) Negative High-altitude areas have less human activity in the study area

Slope (X2) Positive Affects soil erosion, water flow velocity, and sediment distribution

Terrain Ruggedness Index (X3) Positive Prone to soil erosion and land degradation

Annual average precipitation (X4) Negative Precipitation can affect vegetation growth

Annual average temperature (X5) Negative Temperature affects the growth and reproduction of organisms

Soil erodibility factor K (X6) Positive Influences the condition of soil erosion

Rainfall Erosivity factor R (X7) Positive Reflects the potential erosive action of rainfall on soil

Ecological resilience

Normalized vegetation Index (X8) Negative Reflects the degree of surface vegetation cover

Biological abundance (X9) Negative Reflects the number, variety, and distribution of species within an ecosystem

Net primary productivity (X10) Negative Related to energy transformation and material cycling

Water network density (X11) Negative Directly affects the health of surrounding ecosystems

Shannon diversity Index (X12) Negative Reflects landscape diversity

Ecological pressure

Residential Point Kernel Density (X13) Positive Human settlement range exerts pressure on the surrounding environment

Road Network Density (X14) Positive Reflects the extent of human activity and its pressure on the environment

Cultivated Land Proportion (X15) Positive Related to biodiversity and ecosystem stability

Construction Land Proportion (X16) Positive Urban expansion may lead to the destruction of natural ecosystems

Population Density (X17) Positive Reflects the pressure of the population on resource utilization and the environment

Table 2.  Ecological vulnerability evaluation indicator system.

 

Fig. 2.  Research technology roadmap.
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Establishment of EVI
Standardization of evaluation indicators
Due to the differences in dimensions and attributes among various indicators, it was necessary to standardize them 
before conducting EV analysis and evaluation, unifying their value ranges within [0–1]38. The standardization 
formulas for positive and negative indicators were shown in Eqs. (1) and (2), respectively.

	
Zi,positive = xi − xi,min

xi,max − xi,min
� (1)

	
Zi,negative = xi,max − xi

xi,max − xi,min
� (2)

where Zi,positive represents the positive standardized value of the i-th indicator, Zi,negative represents the 
negative standardized value of the i-th indicator, xi is the raw value of the i-th indicator,  xi,max is the maximum 
value of the i-th indicator,  xi,min is the minimum value of the i-th indicator.

Spatial principal component analysis
Unlike subjective weighting methods (e.g., AHP), SPCA objectively determines weights based on variance 
contribution rates. It allows for the retention of as much information reflected by a larger set of original 
indicators through a smaller set of comprehensive indicators, and it effectively mitigates the influence of human 
factors, thereby enhancing the objectivity of the evaluation39. In this study, after standardizing the indicators, we 
applied SPCA and retained the first seven principal components (Table 4) since their cumulative contribution 
rate exceeded 90% in all years included in the study. These components were then used to calculate the EVI via 
weighted integration as shown in Eq. (3).

	 IEV I = α1Y1 + α2Y2 + α3Y3 + · · · + αnYn� (3)

where IEV I  represents the EVI, αn denotes the contribution rate of the n-th principal component, Yn signifies 
the n-th principal component.

To facilitate the comparison of EVI across different periods, it was necessary to standardize them, as shown 
in Eq. (4).

	
SEV Ii = EV Ii − EV Ii,min

EV Ii,max − EV Ii,min
� (4)

where SEV Ii represents the standardized value of EVI for the i-th year, EV Ii,max denotes the maximum value 
of the EVI for the i-th year, EV Ii,min signifies the minimum value of the EVI for the i-th year.

Additionally, the EVI of the LRB was categorized into five levels: Potential vulnerability [0–0.2), Microscopic 
vulnerability [0.2–0.4), Mild vulnerability [0.4–0.6), Moderate vulnerability [0.6–0.8), and Severe vulnerability 
[0.8–1].

Centroid transfer model
The trajectory of the centroid migration can directly reveal the distributional changes of EV throughout the 
specified timeframe40. The trajectory’s direction signifies the spatial transformation’s orientation and tendency 
of EV, and the distance indicates the level of dynamism in EV’s spatial redistribution. The centroid coordinates 
can be expressed in Eqs. (5) and (6) below.

	
Xt =

∑n

i=1 (Cti × Xti)∑n

i=1 Cti
� (5)

	
Yt =

∑n

i=1 (Cti × Yti)∑n

i=1 Cti
� (6)

where Xt and Yt represent the centroid coordinates within the EV classification range for the year t; n is the 
number of pixels within the EV classification range, Cti is the EVI for pixel i in the year t, Xti and Yti are the 
geometric center coordinates of pixel i in year t respectively.

Spatial correlation analysis
In this study, to investigate the patterns of spatial aggregation of EV in the LRB, we utilized the spatial 
autocorrelation analysis module within the GeoDa 1.20 (https://spatial.uchicago.edu/geoda) software to 
examine the spatial correlation characteristics of the study area. This research calculated the Global Moran’s I 
and Local Moran’s I indices for EV in the LRB from 2002 to 2022. Moran’s I index serves as a statistical measure 
that assesses the degree of spatial autocorrelation, or clustering, of a variable across different scales. The Global 
Moran’s I was employed to ascertain whether there is a spatial clustering relationship concerning EV within 
the LRB. In contrast, the Local Moran’s I was applied to evaluate the specific patterns of spatial aggregation of 
EV in the basin. Through these measurements, the study aimed to offer a comprehensive analysis of the spatial 
distribution and clustering tendencies of EV over the designated period.
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Global spatial autocorrelation.
Global spatial autocorrelation was primarily used to describe the spatial distribution and clustering characteristics 
of a particular attribute within the entire study area41. And its calculation formula was presented in Eq. (7) below.

	
I1 =

n
∑n

i=1

∑n

j=1 wij (xi − x) (xj − x)∑n

i=1

∑n

j=1 wij

∑n

k=1 (xk − x)2 � (7)

where I1 represents the Global Moran’s I index, n denotes the number of spatial grid cells, wij  signifies the 
spatial weight matrix, xi and xj  correspond to the values of the EVI for the i-th and j-th grid cells respectively, 
x indicates the mean value of the EVI across the grid cells. The Moran’s I index ranges from -1 to 1. When the 
index value is greater than 0, it indicates that the attribute exhibits a state of spatial aggregation; when it is less 
than 0, it suggests that the attribute is in a state of spatial dispersion; and when it tends towards 0, it implies that 
the attribute is randomly distributed in space.

Local spatial autocorrelation.
The Local Indicators of Spatial Association (LISA) was primarily used to reflect the degree of correlation between 
a local area and its neighboring areas42. And its calculation formula was expressed in Eq. (8) below.

	
I2 =

n (xi − x)
∑

j
ωij (xj − x)∑

i
(xi − x)2 � (8)

where I2​ represents the Local Moran’s I index; the meanings of the other indicators are the same as those in 
Eq. (7). The spatial clustering patterns are categorized as “HH” for high-high clusters, “HL” for high-low clusters, 
“LH” for low–high clusters, “LL” for low-low clusters and not significant.

Driving factors detection
The Geodetector is a powerful tool for measuring, exploring, and leveraging spatial heterogeneity43. At its 
theoretical core, it identifies the consistency of spatial distribution patterns between the dependent and 
independent variables through spatial heterogeneity, thereby assessing the impact of the independent variables 
on the dependent variable44. In this study, we created a grid of 1 km by 1 km cells, totaling 53,194 points, for the 
extraction of both independent and dependent variables.

The choice of different discrete combinations of independent variables has a significant impact on the analysis 
of driving factors. Song et al. regarded the combination with the maximum q value as the optimal discretization 
parameter for continuous factors and integrated the Optimal Parameters-based Geographical Detector (OPGD) 
model into the “GD” package in R45. In our analysis of driving factors, we employed the OPGD model and adopted 
five classification methods (such as equal interval classification, natural breaks classification, standard deviation 
classification, geometric interval classification, and quantile classification) with the number of categories set 
between 3 and 8. By calculating the q statistic for each continuous factor under different classification methods 
and category numbers, we selected the parameter combination (classification method + number of categories) 
with the highest q value as the optimal parameters for the best discretization treatment of continuous factors46.

This approach aims to reveal the driving mechanisms of EV from the perspective of spatial differentiation. 
The Geodetector is comprised of four main components: The factor detector, the interaction detector, the risk 
zone detector, and the ecological detector. In this study, the factor detector and the interaction detector were 
used.

The factor detector was used to detect the ability of the independent variable X to explain the dependent 
variable Y, measured by the q-value. The formula was shown in Eq. (9) below.

	
q = 1 −

∑L

h=1 Nhσ2
h

Nσ2 = 1 − SSW

SST
� (9)

where: h = 1, L is the stratification of the variable Y or the factor X, Nh and N are the number of cells in stratum 
h and in the whole region, respectively, σ2

h and σ2 are the variance of the Y values in stratum h and in the whole 
region, respectively. SSW and SST are the sum of the variances within the stratum and the total variance in 
the whole region, respectively. The q value ranges from 0 to 1, the closer the value of q is to 1, the greater the 
explanatory power of the independent variable X on the dependent variable Y, and vice versa.

The Interaction detector was used to detect whether different factors X interact with each other or whether 
the factors are independent of each other. The types of interactions were classified into the following five types, 
as shown in Table 3.

Forecasting EV based on CA–markov model
In this study, the CA–Markov model was used to simulate and forecast the EV of the LRB in the year 203247. 
Cellular Automata (CA) consist of discrete cells in terms of time, space, and state, which simulate the process 
of spatiotemporal evolution through a certain set of transition rules. This model possesses strong capabilities 
in spatial computation and simulation, making it particularly suitable for the dynamic simulation and spatial 
visualization of self-organizing functional systems. The formulation was represented as shown in Eq. (10).

	 St+1
ij = fq

(
St

ij

)
� (10)
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where St
ij  represents the state of the cell at position (i, j) at time t, fq  is the cell transition function, and St+1

ij  
represents the state of the cell at position (i, j) at time t + 1.

The principle of the Markov model is to forecast the trend of changes at time t + 1 by utilizing the transition 
probabilities between the initial state and the intermediate state at time t. Essentially, it is about forecasting 
the probabilities of events occurring. The transition matrix numerically reflects the likelihood of an event 
transitioning from state t to state t + 1, and it serves as a crucial quantitative foundation for simulation and 
forecasting outcomes within the Markov model. The formulation was represented as shown in Eq. (11).

	 St+1 = St × P � (11)

where P  is a state transition matrix, and its formula was expressed in Eq. (12).

	

P =




P11 · · · P1n

...
. . .

...
Pn1 · · · Pnn


� (12)

The CA–Markov model leverages the strengths of both the CA model in simulating spatial system dynamics and 
the Markov model in long-term forecasting. It adeptly performs spatiotemporal simulations of EV, addressing 
both quantitative and spatial aspects, while mitigating the occurrence of random distributions during the 
simulation, thus enhancing the precision of the model48. In this study, we employed the CA–Markov model 
within the IDRISI Selva 17 software (http://www.clarklabs.org) to forecast the EV of the study area for the year 
2022, utilizing EV data from the years 2002 and 2012. Subsequently, we used the CROSSTAB tool in the IDRISI 
Selva 17 software to overlay actual data with the simulated data for 2022, assessing the accuracy of the simulation 
outcomes and confirming the suitability of the CA–Markov model for EV forecasting. Lastly, based on the EV 
data from 2012 and 2022, we forecasted the EV status of the study area for the year 2032.

Results
Spatiotemporal differentiation characteristics of EV
As shown in Table 4, SPCA identified the first 7 principal components (cumulative contribution rate > 90%) 
from the 17 indicators in the LRB ecological vulnerability evaluation system. Then, the EVI was calculated 
using Eqs.  (3) and (4), and classified into five levels: Potential vulnerability, Microscopic vulnerability, Mild 
vulnerability, Moderate vulnerability, and Severe vulnerability. From 2002 to 2022, the EVI mean values of the 
study area and the area proportions of each EV level were depicted in Fig. 3.

The EVI mean values for the study area in the years 2002, 2007, 2012, 2017, and 2022 were 0.397, 0.420, 
0.407, 0.445, and 0.428, respectively. The minimum value occurred in 2002, and the maximum value occurred 
in 2017. Over the past 20 years, the EVI of LRB has shown a fluctuating upward trend. Overall, the EV level 
in LRB is primarily dominated by Microscopic vulnerability, with an average proportion of 46.47%, reaching 
a maximum of 53.25% in 2002 and a minimum of 41.57% in 2012. The area proportion of Mild vulnerability 
has shown a fluctuating upward trend, increasing from 11.92% in 2002 to 18.88% in 2022, with the maximum 
value of 21.23% occurring in 2017. The area proportions of Moderate and Severe vulnerabilities have not shown 
significant changes over the 20-year period, with average proportions of 7.64% and 14.58%, respectively. The 
area proportions of Potential vulnerability peaked at 20.73% in 2012 but remained stable otherwise, with an 
average proportion of 14.43%.

Spatial characteristics of EV
From the perspective of spatial distribution characteristics (as shown in Fig. 4), the upper, middle, and lower 
reaches of the LRB exhibit distinct regional heterogeneity, presenting a “low-medium–high” spatial distribution 
pattern. The upper reaches of the LRB are primarily located in the Inner Mongolian Plateau, where land use types 
are dominated by grasslands and forests, with a low population density. This area includes parts of Zhangjiakou, 
Xilinguole, Chifeng, and northern Chengde, and is mainly characterized by Potential vulnerability and 
Microscopic vulnerability, with Zhangjiakou predominantly exhibiting Mild vulnerability. The middle reaches 
of the LRB are mainly situated in the Yan Mountain area within Chengde, Chaoyang, and Huludao regions, 
where the land use type is primarily forested, and the terrain is complex. Human activities are concentrated in 
valley basin areas, and this region is mainly characterized by Microscopic vulnerability and Mild vulnerability. 

Basis for judgment Types of interaction

q (X1 ∩ X2) < Min (q (X1) , q (X2)) Nonlinear weakening

min (q (X1) , q (X2)) < q (X1 ∩ X2)
< Max (q (X1)) , q (X2)) Single-factor nonlinearity weakening

q (X1 ∩ X2) > Max (q (X1) , q (X2)) Two-factor enhancement

q (X1 ∩ X2) = q (X1) + q (X2) Independent

q (X1 ∩ X2) > q (X1) + q (X2) Nonlinear enhancement

Table 3.  Types of interactive detection.
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The lower reaches of the LRB are primarily located in the North China Plain, including areas of Tangshan and 
Qinhuangdao, where land use types are dominated by construction land and cultivated land. This area is an 
important industrial base in the BTH region, with a developed economy, and is predominantly characterized by 
Moderate and Severe vulnerability.

Temporal characteristics of EV
In this study, based on the degree of change in the EV level, the types of change were categorized as Decline, 
Unchanged, and Increase, as shown in Fig. 5. From the perspective of different periods of change, from 2002 

Fig. 3.  Temporal changes in area proportions of EV levels in LRB (2002–2022): Shows the percentage 
distribution of five EV levels (Potential, Microscopic, Mild, Moderate, and Severe vulnerability), with 
Microscopic vulnerability dominating (average 46.47% coverage).

 

Year Indicators

Principal component

PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7

2002

Eigenvalue 8.423 3.398 1.986 1.539 0.951 0.695 0.569

contribution rate (%) 44.09 17.78 10.40 8.06 4.98 3.64 2.98

cumulative contribution rate (%) 44.09 61.87 72.27 80.32 85.30 88.94 91.92

2007

Eigenvalue 9.686 3.798 2.073 1.529 1.019 0.645 0.469

contribution rate (%) 46.62 18.28 9.98 7.36 4.91 3.10 2.26

cumulative contribution rate (%) 46.62 64.90 74.88 82.24 87.15 90.25 92.51

2012

Eigenvalue 11.346 3.287 2.228 1.711 1.095 0.633 0.458

contribution rate (%) 50.76 14.71 9.97 7.65 4.90 2.83 2.05

cumulative contribution rate (%) 50.76 65.46 75.43 83.09 87.98 90.82 92.87

2017

Eigenvalue 9.990 3.788 2.144 1.604 1.107 0.637 0.442

contribution rate (%) 47.14 17.87 10.12 7.57 5.22 3.01 2.08

cumulative contribution rate (%) 47.14 65.01 75.13 82.70 87.92 90.93 93.01

2022

Eigenvalue 10.016 3.527 2.144 1.634 1.083 0.635 0.436

contribution rate (%) 47.56 16.75 10.18 7.76 5.14 3.02 2.07

cumulative contribution rate (%) 47.56 64.30 74.48 82.24 87.38 90.40 92.47

Table 4.  Results of SPCA.
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to 2007, the areas with a decline in EV level were mainly concentrated in the upper reaches of the LRB—
Zhangjiakou, Xilinguole, Chifeng, and northern Chengde, while the rest of the regions showed an upward 
trend in EV level. From 2007 to 2012, the EV levels in most areas of the upper and middle reaches of the LRB 
decreased, while in parts of Tangshan, Qinhuangdao, and southern Chengde, the EV levels increased. From 2012 
to 2017, the EV levels in the LRB generally increased, with only the southern part of Tangshan and the eastern 
part of Qinhuangdao experiencing a decline. From 2017 to 2022, the EV levels in the LRB generally decreased, 
with only the southern part of Tangshan showing an increase.

In this study, to better illustrate the changes in each EV level within the study area, we created a transition 
Sankey diagram, as shown in Fig. 6. Overall, the inter-level transitions of EV levels were mainly concentrated 
on transitions between adjacent levels, while transitions across multiple levels accounted for a relatively smaller 
proportion. From 2002 to 2007, the EV level transition of LRB showed that the largest incoming EV level 
was Mild vulnerability, with an inflow area of 3688.50  km2, an outflow area of 1339.94  km2, a net increase 
of 2348.56 km2, a change rate of 36.23%, and the change was mainly distributed in the central and southern 
parts of Chengde and the northern areas of Qinhuangdao. The largest outgoing EV level was Microscopic 
vulnerability, with an outflow area of 5012.32 km2, an inflow area of 2887.06 km2, a net outflow of 2125.17 km2, 
and a change rate of − 7.34%, and the change was mainly distributed in Xilinguole, the central and southern parts 
of Chengde, and the northern areas of Qinhuangdao. The main transition types were “Potential—Microscopic” 
and “Microscopic—Mild”. From 2007 to 2012, the largest incoming EV level was Potential vulnerability, with an 
inflow area of 4540.18 km2, an outflow area of 36.85 km2, a net increase of 4503.33 km2, a change rate of 67.60%, 
and the change was mainly distributed in Xilinguole and the northern parts of Chengde. The largest outgoing 
EV level was Microscopic vulnerability, with an outflow area of 5599.33 km2, an inflow area of 1373.24 km2, a 
net outflow of 4226.09 km2, and a change rate of − 15.75%, and the change was mainly distributed in the eastern 
part of Xilinguole, the northern part of Chengde, and the northern part of Qinhuangdao. The main transition 
types were “Microscopic—Potential” and “Mild—Microscopic”. From 2012 to 2017, the largest incoming EV 
level was Microscopic vulnerability, with an inflow area of 5118.67 km2, an outflow area of 4204.40 km2, a net 
increase of 914.27 km2, a change rate of 4.20%, and the change was mainly distributed in the southern part of 
Xilinguole, and the northern parts of Chengde and Qinhuangdao. Followed by Mild vulnerability, with an inflow 
area of 4249.77 km2, an outflow area of 1465.35 km2, a net increase of 2784.42 km2, a change rate of 31.77%, 
and the change was mainly distributed in the southern area of Xilinguole, northern Chengde, and northern 
Qinhuangdao. The largest outgoing EV level was Potential vulnerability, with an outflow of 4968.45 km2, and 
a change rate of − 44.07%, and the change was mainly distributed in the southern part of Xilinguole and the 
northern part of Chengde. The main transition types were “Potential—Microscopic” and “Microscopic—
Mild”. From 2017 to 2022, the largest incoming EV level was Microscopic vulnerability, with an inflow area 
of 2336.34 km2, an outflow area of 1473.01 km2, a net increase of 863.33 km2, a change rate of 3.66%, and the 
change was mainly distributed in the southern part of Chengde, the northern part of Qinhuangdao, and the 

Fig. 4.  Spatial distribution patterns of EV levels in LRB (2002–2022): Reveals a distinct “low-medium–high” 
gradient from northwest (high-altitude areas) to southeast (plains).
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northern part of Tangshan. Followed by Potential vulnerability, with an inflow area of 1210.07 km2, an outflow 
area of 20.77 km2, a net increase of 1189.30 km2, a change rate of 19.21%, and the change was mainly distributed 
in the southern part of Xilinguole and the northern part of Chengde. The largest outgoing EV level was Mild 
vulnerability, with an outflow area of 2343.43 km2, an inflow area of 1063.12 km2, a net outflow of 1280.31 km2, 
and a change rate of − 11.09%, and the change was mainly distributed in the northern parts of Tangshan and 
Qinhuangdao. The main transition types were “Mild—Microscopic”, “Microscopic—Potential”, and “Severe—
Moderate”. In the four periods mentioned, the years 2002–2007 and 2012–2017 were primarily characterized by 
a shift from lower EV levels to higher EV levels, indicating a degree of deterioration in EV. In contrast, the years 
2007–2012 and 2017–2022 were marked by a transition from higher EV levels to lower EV levels, suggesting a 
certain degree of improvement in EV.

The centroid migration model can illustrate the aggregation, dispersion, and migration of EV in the study 
area spatially. This study analyzed the centroid shift of EV at each level of LRB for each period, obtaining the 
migration of the centroid positions of EV at each level in the region (as shown in Fig. 7). The results indicated:

	(1)	 The centroid of Potential vulnerability was mainly located in the northern part of Chengde. From 2002 to 
2022, the centroid primarily migrated to the northwest, with an average migration rate of 22.38 km/5-years. 
The maximum migration speed occurred during the period from 2002 to 2007, reaching 63.49 km.

	(2)	 The centroid of Microscopic vulnerability was primarily situated in the central part of Chengde. From 2002 
to 2017, it mainly migrated to the east and south, and from 2017 to 2022, it began to migrate to the north-
west, with an average migration rate of 8.06 km/5-years.

Fig. 5.  Spatial patterns of EV level changes: Classifies changes into Decline, Unchanged, and Increase 
categories, showing different transition patterns across four periods (2002–2007, 2007–2012, 2012–2017, 
2017–2022).
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	(3)	 The centroid of Mild vulnerability was mainly distributed in the southern part of Chengde. From 2002 to 
2022, the centroid generally migrated to the southeast, with an average migration rate of 11.44 km/5-years.

	(4)	 The centroid of Moderate vulnerability migrated across the border areas of Chengde, Qinhuangdao, and 
Tangshan. From 2002 to 2022, the migration directions were “north-southeast-northwest-southeast,” with 
an average migration rate of 13.62 km/5-years.

	(5)	 The centroid of Severe vulnerability migrated across the border areas of Tangshan and Qinhuangdao. From 
2002 to 2022, the migration directions were “southwest-east-northwest-southeast,” with an average migra-
tion rate of 12.06 km/5-years.

	(6)	 Unlike other EV levels whose centroids mainly shifted over relatively short distances, the Potential vulner-
ability centroid moved rapidly in a northwest direction (average rate: 22.38 km/5-years). Combined with 
changes in land-use types, we found that the forest area in Zhangjiakou, Xilinguole, Chifeng and Chengde 
increased from 13,859.86 km2 to 14,137.32 km2 (from 2002 to 2022), which might be related to afforesta-
tion projects in Chengde and Xilinguole areas (e.g., conversion of cropland to forest in the ‘Three-North 
Shelterbelt Program’). Conversely, the southeastward shift of Mild/Moderate/Severe vulnerability centroids 
was consistent with urban expansion in Tangshan and Qinhuangdao, where the construction land increased 
from 1615.78 km2 to 2659.56 km2 (from 2002 to 2022).

Spatial correlation analysis of EV
The Global Moran’s I values for the years 2002, 2007, 2012, 2017, and 2022 were 0.889, 0.917, 0.938, 0.931, and 
0.922, respectively, indicating a significant clustering phenomenon in the spatial distribution of EV in the LRB 
region. From 2002 to 2022, the spatial clustering phenomenon of EV in LRB exhibited a trend of increasing 
initially and then decreasing. Observing the Global Moran’s I scatter plot for EV in LRB (Fig. 8), there were 
significantly fewer points in the second and fourth quadrants compared to the first and third quadrants, 
suggesting that there were distinct areas with high and low EV in LRB. Furthermore, the number of points in 
the third quadrant was noticeably less than in the first quadrant, indicating that there were fewer high-high 
clustering areas of EV than low-low clustering areas in the study area, with the number of high EV clustering 
areas significantly less than those with low EV.

Figure  9 presented the local autocorrelation LISA cluster maps of EVI in the study area from 2002 to 
2022. The spatial aggregation of LRB was mainly characterized by high-high clusters, low-low clusters, and 
insignificant clusters, with high-low and low–high clusters appearing less frequently and distributed sporadically, 
accounting for less than 2% of the total area. Among them, the low-low cluster area had the largest proportion, 
mainly distributed in the regions of Xilinguole, Chifeng, northern Chengde, and southwestern Chengde, where 
Potential and Microscopic vulnerabilities primarily characterized EV. The average area proportion over the 5 
periods reached 46.45%, but overall, it showed a decreasing trend, dropping from 50.83% in 2002 to 44.57% 

Fig. 6.  Sankey diagram of EV level transitions (2002–2022): Visualizes area transfers between 5 EV levels.
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in 2022, with a significant decrease observed in the southwestern part of Chengde. The high-high cluster areas 
were mainly distributed in urban areas of Tangshan and the southern part of Qinhuangdao, where EV was 
mainly characterized by Moderate and Severe vulnerabilities. The average area proportion over the 5 periods was 
24.46%, with little overall change, increasing from 22.72% in 2002 to 24.96% in 2022. The insignificant cluster 
areas were mainly distributed in Zhangjiakou, central Chengde, Chaoyang, Huludao, and the northern part of 
Qinhuangdao, with an average area proportion of 27.56% over the 5 periods, slightly increasing from 24.04% in 
2002 to 28.83% in 2022, indicating that the random spatial distribution characteristics of EV in the study area 
were strengthening.

Driving factors
Single factor detection analysis
To further explore the driving factors of EVI changes in the study area, this paper used the factor detector in 
Geodetector to investigate the explanatory power of various factors on EVI. The analysis results were shown 
in Table 5. (1) The p values of all driving factors were less than 0.001, indicating that each driving factor had 
significant explanatory power on EVI. (2) There was a certain difference in explanatory power among different 
years. From 2002 to 2022, the 6 factors that consistently had the strongest influence on the spatial differentiation 
of EVI in the study area were Elevation (X1), Biological Abundance (X9), Annual average temperature (X5), 
Cultivated Land Proportion (X15), Annual average precipitation (X4), and Population Density (X17), with 
q mean values of 0.855, 0.812, 0.800, 0.783, 0.665, and 0.658, respectively, all greater than 0.6, indicating a 
significant influence and being the dominant driving factors for the spatial differentiation of EVI in the LRB 

Fig. 7.  Centroid migration trajectories of EV levels (2002–2022): Tracks the spatial movement of EV level 
centroids, showing Potential vulnerability moving northwestward (average 22.38 km/5-years) while other 
levels generally shifted southeastward.
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Fig. 9.  LISA cluster maps of EVI (2002–2022): Identifies spatial aggregation patterns including high-high 
clusters (mainly in Tangshan and Qinhuangdao urban areas), low-low clusters (in Xilinguole and northern 
Chengde), and non-significant clusters.

 

Fig. 8.  Global Moran’s I scatter plots of EVI (2002–2022): Demonstrates strong spatial autocorrelation 
(Moran’s I: 0.889–0.938, p value < 0.001).
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region. (3) Net Primary Productivity (X10), Residential Point Kernel Density (X13), and Shannon Diversity 
Index (X12) had a smaller impact, with q mean values of 0.086, 0.068, and 0.033, respectively, all less than 0.1.

Interaction detection analysis
This study employed interaction detection to further analyze the impact of interactions between different factors 
on EVI (as shown in Fig. 10). The results indicated: (1) There was a significant interaction between different driving 
factors, mainly characterized by two-factor enhancement or nonlinear enhancement. Compared with nonlinear 
enhancement, two-factor enhancement had a greater explanatory power on the spatial differentiation of EVI in 
the study area. (2) In 2002, the top 4 interactions in terms of explanatory power were X1 ∩ X9, X5 ∩ X9, X1 ∩ X15, 
and X9 ∩ X17, with q-values of 0.965, 0.961, 0.959, and 0.952, respectively. In 2007, the top 4 interactions were 
X1 ∩ X9, X1 ∩ X15, X5 ∩ X9, and X7 ∩ X9, with q-values of 0.970, 0.966, 0.964, and 0.961, respectively. In 2012, 
the top 4 interactions were X7 ∩ X9, X1 ∩ X9, X1 ∩ X15, and X4 ∩ X9, with q-values of 0.969, 0.967, 0.964, and 
0.960, respectively. In 2017, the top 4 interactions were X1 ∩ X9, X5 ∩ X9, X1 ∩ X15, and X7 ∩ X9, with q-values 
of 0.970, 0.966, 0.964, and 0.963, respectively. In 2022, the top 4 interactions were X1 ∩ X9, X5 ∩ X9, X1 ∩ X15, 
and X7 ∩ X9, with q-values of 0.966, 0.964, 0.962, and 0.959, respectively. (3) From 2002 to 2022, the interactions 
between X1, X5, X9, X15, and other factors had q-values above 0.70, with an explanatory degree greater than 
70%, significantly stronger than the interactions between other factors. (4) The interactions between X12 and 
other elements often showed nonlinear growth, indicating a more complex interactive relationship with other 
factors and enhancing its ultimate explanatory power.

Overall, the interactions between multiple factors had a significant enhancing effect on the spatial 
differentiation characteristics of EVI, indicating that the spatial differentiation characteristics of EVI in the study 
area are formed by the interaction of multiple factors. Among them, Elevation (X1), Annual average temperature 
(X5), Biological Abundance (X9), and Cultivated Land Proportion (X15) have shown stronger explanatory 
power than other factors in both factor detection and interaction detection, being the main driving factors of 
EVI in the LRB region and leading to the spatial distribution differences of EVI. Therefore, when protecting and 
managing the ecological environment of the region, the impact of the aforementioned driving factors on EV 
should be fully considered.

Driving mechanisms
The spatial distribution of primary driving factors (Fig. 11) suggested their key roles in influencing the LRB’s EV 
gradient, though interactions were complex:

Elevation (X1) served as a foundational control, with high-altitude areas (e.g., Northwest Xilinguole/
Zhangjiakou; > 1300  m) generally supporting more intact ecosystems but exhibiting increased erosion 
susceptibility on steeper slopes. Low-elevation plains (Southeast Tangshan/Qinhuangdao; < 500 m) experienced 
intensified human pressure. Biological Abundance (X9) tended to peak in forested Northwest (mountains), likely 
enhancing soil and hydrological stability, while declining markedly in Southeast lowlands where cultivated land 
expansion (X15 > 66%) may drive habitat simplification and soil degradation. Annual Temperature (X5) showed 
a complementary pattern: Warmer Southeast conditions could exacerbate moisture stress and nutrient cycling 
rates, potentially reducing resilience, whereas cooler Northwest temperatures may slow ecosystem recovery. The 
co-occurrence of low X1, high X15, low X9, and high X5 in the Southeast plains aligns spatially with the observed 
EV hotspot, implying that anthropogenic pressures may override natural advantages in these areas. Conversely, 

Factors

2002 2007 2012 2017 2022 2002–2022

q value Rank q value Rank q value Rank q value Rank q value Rank q mean value Rank

X1 0.794 3 0.856 1 0.893 1 0.869 1 0.863 1 0.855 1

X2 0.382 10 0.304 10 0.297 10 0.272 10 0.297 10 0.310 10

X3 0.393 9 0.312 9 0.305 9 0.278 9 0.305 9 0.319 9

X4 0.453 7 0.674 6 0.760 6 0.723 5 0.713 5 0.665 5

X5 0.732 4 0.791 4 0.835 2 0.817 2 0.827 2 0.800 3

X6 0.245 11 0.261 11 0.250 11 0.266 11 0.264 11 0.257 11

X7 0.436 8 0.476 8 0.787 3 0.579 7 0.561 7 0.568 8

X8 0.168 13 0.136 13 0.081 15 0.075 15 0.052 16 0.103 14

X9 0.896 1 0.822 2 0.782 4 0.774 3 0.786 3 0.812 2

X10 0.091 15 0.082 15 0.086 14 0.087 14 0.087 14 0.086 15

X11 0.140 14 0.135 14 0.131 13 0.126 13 0.132 13 0.133 13

X12 0.014 17 0.024 17 0.032 17 0.051 17 0.043 17 0.033 17

X13 0.078 16 0.066 16 0.071 16 0.059 16 0.065 15 0.068 16

X14 0.203 12 0.185 12 0.179 12 0.188 12 0.188 12 0.189 12

X15 0.890 2 0.811 3 0.742 7 0.733 4 0.738 4 0.783 4

X16 0.543 6 0.592 7 0.565 8 0.590 6 0.585 6 0.575 7

X17 0.669 5 0.742 5 0.765 5 0.561 8 0.553 8 0.658 6

Table 5.  The q value of factor detection. The p values of all factors are less than 0.001.
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Fig. 10.  Interaction detection results of driving factors (2002–2022): Analyzes pairwise interactions between 
17 factors, showing X1, X5, X9 and X15 having the strongest interactive effects.
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the Northwest’s high X1, low X15, high X9, and low X5 correlated with lower EVI. This spatial synergy highlights 
how elevation-mediated processes interact with human land use to shape vulnerability patterns.

Forecast
In this study, we drew on the research of Ru et al.49 and selected an iteration coefficient of 10, a 5 × 5 filter, and 
a proportional error of 0.15 to calculate the probability transition matrix using data from 2002 and 2012. The 
CA-Markov module in IDRISI Selva 17 was utilized for forecasting EV for the year 2022, and the CROSSTAB 
tool was employed for the calculation of Kappa coefficients and precision testing50. The calculated Kappa 
coefficient for the actual and simulated EV values of LRB in 2022 is 0.8603, with a p value less than 0.001, 
indicating high accuracy of the forecasting model and reliable results, making it suitable for forecasting and 
simulating EV in the LRB area for the year 2032. Figure 12 presented the results of our forecast of EV in the 
study area for 2032, based on data from 2012 and 2022. Overall, the area proportions of Potential vulnerability, 
Microscopic vulnerability and Severe vulnerability decreased by 5.83%, 2.01% and 2.30%, respectively, while 
those of Mild vulnerability and Moderate vulnerability increased by 6.57% and 3.57%, respectively. There was 
a trend of reduction in Potential vulnerability in the upstream areas of LRB by 2032, while Mild and Moderate 
vulnerabilities showed spatial expansion trends in the midstream and downstream areas of LRB. Specifically: 
(1) In the upstream areas of LRB, there was a noticeable decrease in Potential vulnerability in the northern 
part of Chengde, and an expansion trend of Mild vulnerability in the Zhangjiakou area. (2) In the midstream 
areas of LRB, including central Chengde, Chaoyang, Huludao, and the northern part of Qinhuangdao, Mild 
and Moderate vulnerabilities were expanding into surrounding regions. (3) In the downstream areas of LRB, 
Moderate vulnerability in Tangshan and Qinhuangdao areas was spreading towards the southern regions, while 
Severe vulnerability was contracting towards the central urban areas.

Fig. 11.  Spatial distribution of primary driving factors: Maps the four most influential driving factors.
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Discussion
Distribution Pattern of EV in LRB
This study, based on the SRP model, selected 17 indicators to construct an EV evaluation index system and 
evaluated the EV of the LRB from 2002 to 2022. In terms of the spatial distribution pattern of EV, a “low-
medium–high” gradient from northwest to southeast is observed across the upper, middle, and lower reaches of 
the LRB, with a distinct spatial clustering characteristic. The areas with higher EV in the LRB are concentrated in 
the downstream regions of Qinhuangdao and Tangshan, which are important industrial bases in the BTH region. 
These areas have low vegetation coverage, high landscape fragmentation, high population density, and land use 
types are relatively singular, dominated by cultivated land and construction land, leading to high EV. In contrast, 
areas far from urban centers, such as mountainous or plateau regions, exhibit lower EV. For instance, the Yanshan 
Mountain Range in the middle and upper reaches of the LRB and the Inner Mongolia Plateau, characterized by 
high vegetation coverage, complex landscape structure, low landscape fragmentation, and diverse ecological 
functions, have lower EV. Particularly in areas dominated by forest land, such as northern Chengde and Chifeng, 
the EV is mainly Potential vulnerability, which may be related to China’s largest afforestation project since 
1978—the Three-North Shelter Forest Program (the LRB is the most afforested watershed in North China and 
an important part of the Three-North Shelter Forest Program)21.

From a temporal perspective, the EVI of the LRB region has shown an overall fluctuating upward trend 
over the 20 years. The area proportion of Potential and Microscopic vulnerability has decreased, while the area 
proportions of Mild, Moderate, and Severe vulnerability have all increased. In terms of centroid migration, 
the spatial trajectories reveal significant reconfiguration of ecological pressures. The northwestward shift of 
the Potential vulnerability centroid corresponds to China’s ecological restoration policies (e.g., the ‘Grain for 

Fig. 12.  CA-Markov forecast of EV levels for 2032: Projects decreases in Potential (− 5.83%), Microscopic 
(− 2.01%) and Severe (− 2.30%) vulnerability areas, with increases in Mild (+ 6.57%) and Moderate (+ 3.57%) 
vulnerability areas compared to 2022 levels.
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Green’ Project), which reduced human disturbance in high-altitude regions through afforestation and grazing 
restrictions. Conversely, the predominant southeastward migration of other EV-level centroids (particularly 
Mild, Moderate, and Severe vulnerability) aligns with the expansion of high-vulnerability areas in the middle-
lower basin. This pattern correlates strongly with coastal industrialization (e.g., land reclamation at Tangshan 
Port) and accelerated economic development following China’s 2001 WTO accession, which triggered rapid 
urban expansion and intensified human activities. These opposing trajectories—conservation-driven northwest 
migration versus development-driven southeast shifts—effectively capture the regional trade-offs between 
ecological protection and economic growth, with the latter exerting significant pressure on downstream 
ecosystems through construction land proliferation51.

A comparison with existing research in China shows that many rivers follow a common pattern: EV levels 
are lower in western upstream areas and higher in eastern downstream ones. Studies like Ru et al.’s on the Yellow 
River Basin and Pan et al.’s on the Yangtze River Basin have noted this pattern49,52. This may stem from China’s 
west—high—east—low topography and the rapid urbanization in eastern plains. Notably, the LRB has a higher 
spatial clustering degree. Most Moderate and Severe vulnerabilities are in the downstream North China Plain. 
Also, over time, additional Moderate and Severe vulnerabilities mainly emerge in these low-elevation areas. The 
driving factor analysis shows that topographic factors (elevation) most strongly explain the spatial EV differences, 
followed by climatic factors and human activities. This differs from some other studies. For example, Wu et al.’s 
research on the Dongjiang Basin indicates that climatic factors have the strongest explanatory power53. This 
finding reveals a unique driving mechanism in the LRB, offering a basis for region-specific ecological restoration 
policies there.

Simulation and forecast of EV in LRB
This study, based on the CA–Markov model, utilized the EV evaluation results from 2002, 2012, and 2022 to 
forecast the distribution pattern of EV in the LRB for the year 2032. The outcomes were found to be in line 
with the spatial distribution pattern of EV in the LRB over the past two decades. By comparing the forecasted 
results for 2022 with the actual evaluation results for the same year, a Kappa coefficient of 0.8603 was obtained, 
indicating that the forecasted outcomes meet future requirements. Upon comparing the forecasted results for 
2032 with the evaluation results from 2022, it was observed that the area proportions of Potential and Microscopic 
vulnerabilities further decreased, while the area proportions of Mild and Moderate vulnerabilities increased. 
Geographically, this was primarily characterized by the spread of Mild and Moderate vulnerability from the 
regions of Zhangjiakou, Chengde, Chaoyang, and Huludao to their surroundings. This reflects an anticipated 
increase in EV and environmental degradation in the study area by 2032, likely due to the growing demand 
for land from urban spaces as a result of socio-economic development, leading to urban expansion and the 
consequent deterioration of the original ecological environment surrounding cities. Concurrently, there was a 
noted decrease in the area proportion of Severe vulnerability, particularly evident in the southern urban suburbs 
of Tangshan and Qinhuangdao, where the EV level shifted from Severe vulnerability to Moderate vulnerability. 
This may be attributed to the ongoing series of ecological restoration projects in these areas54,55.

Policy recommendations
As a critical ecological barrier and water source for the BTH region, LRB’s conservation is pivotal for regional 
sustainability. The EV in the upper, middle, and lower reaches of the LRB exhibit different temporal evolution 
trends and spatial distribution characteristics. Therefore, each region must develop governance and protection 
measures that are suitable for its natural conditions and in line with the overall development needs. It is essential 
to prevent excessive human interference that could further exacerbate EV, while also strengthening ecological 
protection to enhance the resilience of the ecological environment.

This study, with the aid of Geodetector, unveiled the driving mechanisms behind the EV in the LRB. It was 
found that Elevation, Annual average temperature, Biological Abundance, and Cultivated Land Proportion are 
the most significant driving factors, indicating that the spatiotemporal distribution differences in EV are the 
result of a combination of various natural conditions and human activities. Among human activities, Cultivated 
Land Proportion, which represents agricultural activities, has the strongest explanatory power. Therefore, 
moderately restricting the expansion of cultivated land in the LRB basin will have a positive impact on improving 
the ecological environment. Additionally, Biological Abundance, with its explanatory power second only to 
Elevation, can serve as an important reference indicator for policy-making.

Based on the findings, we recommend the following:

	(1)	 The upper and middle reaches of the LRB have relatively lower levels of EV, primarily characterized by 
Potential, Microscopic, and Mild vulnerabilities. These EV levels are mainly due to natural features such as 
high elevation, high vegetation coverage, and complex terrain. However, with the continuous expansion of 
human agricultural activities, the impact on the ecological environment is becoming increasingly intense, 
leading to an expansion in the area of Mild and Moderate vulnerabilities in the upper reaches. For instance, 
the Mild vulnerability in the Zhangjiakou area is mainly distributed in the range of cultivated land. There-
fore, future ecological protection efforts should be implemented in three phases: Short-term (1–3 years): 
Prioritize ecological restoration efforts in Zhangjiakou and Xilinguole, where the cultivated land propor-
tion (q = 0.783) is the main human-driven factor. Restrict the annual expansion of cultivated land in areas 
with an EVI > 0.4 (the mild vulnerability threshold). Launch pilot projects for natural grassland restoration, 
with the goal of reducing the local EVI. Medium-term (3–5 years): Phasing out intensive grazing in high-el-
evation sensitive areas such as Xilinguole and Chifeng, implementing rotational grazing, reducing livestock 
density, and expanding the planting of native tree species along river corridors will help increase biolog-
ical abundance (q = 0.812, one of the dominant driving factors) and mitigate the regional EV. Long-term 
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(5 + years): Combine water conservation with ongoing afforestation. Through collaborative cross-regional 
governance, focus on restoring hydrological connectivity and biodiversity corridors.

	(2)	 The lower reaches of the LRB are the most economically developed areas with substantial human economic 
activity intervention and high land development, resulting in Moderate and Severe vulnerabilities being 
predominant in the downstream ecological environment. Therefore, a tiered approach is recommended for 
future urban planning in cities within the lower reaches of the LRB. Immediate actions (1–2 years): All new 
urban development plans should reserve ecological space (e.g., parks, wetlands) and enhance green-space 
connectivity in cities like Tangshan and Qinhuangdao. This may reduce the interactive impact of annual 
average temperature (X5) and biological abundance (X9) on EVI (the q-value of interaction detection was 
0.964 in 2022, the second highest among all factor pairs). Mid-term strategy (2–4 years): Relocate scattered 
industrial sites from low-elevation ecologically sensitive areas. Implement comprehensive rural land con-
solidation, restoring degraded land via soil remediation and riparian buffer creation. long-term strategy 
(ongoing): Enforce strict industrial—mining land—use auditing to prevent urban sprawl into suburban 
ecological buffers. Promote agroecological practices in peri-urban farmlands to balance economic output 
with ecosystem resilience.

Limitations and future perspectives
This study, relying on the SRP model, established an EV evaluation index system for the LRB, calculated the 
EVI from 2002 to 2022, and analyzed the spatiotemporal distribution pattern and spatial correlation of EV, 
explored its driving mechanisms, and forecasted the future spatial distribution pattern of EV. However, there 
are some limitations and uncertainties in the research process: (1) The comprehensive and objective selection of 
evaluation indicators is a common challenge faced in EV evaluation, with numerous influencing factors (such as 
extreme weather, geological disasters, policy factors, etc.). However, due to limitations in data availability, spatial 
resolution, and the difficulty in quantifying some data, not all indicators affecting EV were included in this 
study. The impact of these indicators on EV needs further analysis in future research. (2) The simulation remains 
constrained by several limitations. Due to data availability, the 1  × 1  km spatial resolution—while adequate 
for basin-scale analyses—may mask localized EV hotspots. The CA-Markov transition rules are derived from 
historical probabilities and therefore may inadequately account for future socioeconomic shocks or policy 
interventions, and the neighborhood effect can oversimplify ecological processes that involve long-distance 
interactions. Moreover, the absence of explicit scenario design implies that the model merely extrapolates EV 
dynamics under a “business-as-usual” trajectory. Consequently, improving the simulation accuracy of regional 
EV will be a key focus of our future research. (3) The Geodetector can only judge the explanatory power from 
the similarity of spatial distribution, and there is a lack of in-depth explanation of the underlying influencing 
mechanisms, which still requires further experimentation and verification.

Conclusions
This study constructed an evaluation index system using 17 natural and anthropogenic indicators based on 
the SRP model, and applied SPCA to calculate the EVI for the LRB from 2002 to 2022. Combined with spatial 
correlation analysis, Geodetector, and CA–Markov model, we systematically analyzed the spatiotemporal 
dynamics, driving mechanisms, and future trends of EV in the basin.

The key finding showed that the EVI in the LRB presented a fluctuating upward trend over the 20 years 
(ranging from 0.397 to 0.428), with spatial distribution characterized by a “low-medium–high” gradient from 
northwest to southeast and significant clustering (Global Moran’s I: 0.889–0.938). Geodetector identified 
elevation (q = 0.855), biological abundance (q = 0.812), annual average temperature (q = 0.800), and cultivated 
land proportion (q = 0.783) as the dominant driving factors, with interactions between factors exerting stronger 
explanatory power on EV. CA-Markov forecasts indicated that by 2032, Potential, Microscopic, and Severe 
vulnerability areas would decrease, while Mild and Moderate vulnerability areas would expand.

This study provides a scientific basis for targeted ecological protection and management in the LRB by 
quantifying long-term EV dynamics and revealing key driving mechanisms, contributing to balanced regional 
ecological conservation and sustainable development.

Data availability
All data generated or analysed during this study are included in this published article.
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