Table 2 Comparative analysis of DR grading using proposed Model.
 | Technique | Dataset | Accuracy (%) | Precision (%) | Recall (%) | F1-Score |
---|---|---|---|---|---|---|
Laily (2024)21 | Sobel Segmentationâ+âLinear SVC | Kaggle | 44.34 | 48.26 | 44.34 | 41.76 |
Fousiya et al. (2022)22 | Attention U-Net | Kaggle, Aptos | 95.6 | 94.8 | 91.8 | 92.4 |
Li et al. (2022)23 | DACNN | EyePACS, Messidor | 93.8 | 94.6 | 90.7 | 92.6 |
Costaner et al. (2024)24 | LBPâ+âWavelet Transformâ+âSVM | Customized Dataset | 95.59 | 96 | 97.96 | 96.97 |
Gayathri et al. (2021)25 | Multipath CNNâ+âJ48 Classifier | Kaggle, Messidor, IDRiD | 99.62 | 98 | 99.4 | 98.9 |
Chilukoti et al. (2024)26 | Ensemble Transfer Learning | EyePACS, Messidor | 90 | 92 | 92.4 | 93 |
Yadav et al. (2022)27 | InceptionResNetV2 | Kaggle | 95 | 95.2 | 94 | 96 |
Ali et al. (2023)28 | ResNet 50Â A | APTOS 2019 | 98.3 | 98.4 | 98.4 | 98.5 |
Jacoba et al. (2023)29 | AutoML for handheld retinal images | APTOS | 97 | 97 | 97 | 96 |
Talukder et al. (2023)30 | DenseNetEnsemble 121 | Customized Dataset | 100 | 100 | 100 | 100 |
Proposed MTN (CNNâ+âViTâ+âPSO Fusion) | DRTiD | 98.9 | 98.8 | 98.7 | 98.8 |