Table 3 Comparison of various ML algorithm under fault Cases.
ML Algorithms | Classification | Precision | Recall | F1-score | Accuracy (%) |
---|---|---|---|---|---|
RF | GF | 1 | 1 | 1 | 97.20 |
MF | 0.90 | 0.96 | 0.93 | ||
Normal | 0.96 | 0.90 | 0.93 | ||
OC | 1 | 1 | 1 | ||
SC | 1 | 1 | 1 | ||
SVM | GF | 1 | 1 | 1 | 97.40 |
MF | 0.90 | 0.97 | 0.93 | ||
Normal | 0.97 | 0.90 | 0.93 | ||
OC | 1 | 1 | 1 | ||
SC | 1 | 1 | 1 | ||
DT | GF | 1 | 1 | 1 | 97.20 |
MF | 0.90 | 0.96 | 0.93 | ||
Normal | 0.96 | 0.90 | 0.93 | ||
OC | 1 | 1 | 1 | ||
SC | 1 | 1 | 1 | ||
Naïve Bayes | GF | 1 | 1 | 1 | 97.60 |
MF | 0.91 | 0.97 | 0.94 | ||
Normal | 0.97 | 0.91 | 0.94 | ||
OC | 1 | 1 | 1 | ||
SC | 1 | 1 | 1 | ||
XGBoost | GF | 1 | 1 | 1 | 98.00 |
MF | 0.93 | 0.97 | 0.95 | ||
Normal | 0.97 | 0.93 | 0.95 | ||
OC | 1 | 1 | 1 | ||
SC | 1 | 1 | 1 |