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Plant species discrimination remains a significant challenge in modern genomics, particularly for 
closely related species with substantial agricultural importance. Current morphological and molecular 
approaches often lack the resolution needed for reliable differentiation, creating a pressing need 
for more sophisticated analytical methods. This study demonstrates how deep learning can address 
this gap by providing high-accuracy classification of four key Brassica species (B. juncea, B. napus, 
B. oleracea, and B. rapa) using genomic sequence data. We conducted a systematic comparison of 
seven neural network architectures, focusing on their ability to discriminate between these closely 
related species. Based on test data, the Multilayer Perceptron achieved 100% classification accuracy 
with equally high performance across all evaluation metrics (accuracy, precision, recall, F1-score, and 
MCC). Other architectures, including Leaky ReLU and Dropout Neural Networks, showed near-perfect 
performance (99.9% accuracy), while the Radial Basis Function Neural Network demonstrated more 
modest results (74.6% accuracy). These findings reveal important architectural considerations for 
genomic classification tasks. This work makes three key contributions to the field: (1) it establishes 
deep learning as a powerful approach for plant species classification, (2) provides comparative 
performance metrics across multiple network architectures, and (3) demonstrates that whole-genome 
sequence data can enable highly accurate discrimination without manual feature selection. Our 
results have immediate applications in crop improvement, biodiversity conservation, and agricultural 
biotechnology, while the methodology offers a template for similar classification challenges in other 
taxonomic groups.
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Abbreviations
B. rapa	� Brassica rapa
B.cnapus	� Brassica napus
B.oleracea	� Brassica oleracea
B.juncia	� Brassica juncia
CUB	� Codon Usage Bias
CDS	� Coding DNA sequences
MCC	� Matthews correlation coefficient
RBFN	� Radial basis function neural networks
DNA	� Deoxyribonucleic Acid
DBNs	� Deep belief networks
MLP	� Multilayer perceptron
GC	� Guanine cytosine
SVM	� Support vector machine
RSCU	� Relative synonymous codon usage
CRISPR	� Clustered Regularly Interspaced Short Palindromic Repeats
RNA	� Ribonucleic Acid
CNN-RNN	� Convolutional Neural Network - Recurrent Neural Network
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Grad-CAM	� Gradient weighted class activation mapping
ML	� Machine Learning
TP	� True positives
TN	� True negatives
FP	� False positives
FN	� False negatives
CV	� Cross-validation
t-SNE	� t-distributed Stochastic Neighbor Embedding
UMAP	� Uniform Manifold Approximation and Projection
PC	� Principal component
PCA	� Principal component analysis

The genus Brassica encompasses several economically vital crop species, including B. juncea (mustard), B. napus 
(rapeseed), B. oleracea (cabbage, broccoli, cauliflower), and B. rapa (turnip, Chinese cabbage). These species are 
globally cultivated for edible oils, vegetables, and condiments, contributing significantly to agricultural economies 
and food security1. Brassica crops are particularly valued for their nutritional richness, providing essential 
vitamins (A, C, K), minerals (calcium, iron), and health-promoting phytochemicals such as glucosinolates and 
polyphenols2,3. Despite their close phylogenetic relationships, these species exhibit remarkable morphological 
and genomic diversity, shaped by whole-genome duplication events and domestication processes4,5. For instance, 
B. oleracea alone includes morphologically distinct varieties like cabbage, cauliflower, and kale, each adapted to 
specific agronomic uses6. Accurate classification of these species is critical for breeding programs, biodiversity 
conservation, and genomic studies, yet their genetic similarities pose persistent challenges for traditional 
taxonomic methods7,8.

Current classification approaches primarily rely on morphological traits or alignment-based genomic 
comparisons, which are labor-intensive and computationally inefficient for large-scale datasets4,9. Morphological 
methods, while accessible, often fail to resolve subtle genetic differences among closely related Brassica taxa 
due to phenotypic plasticity and environmental influences10,7. Molecular techniques such as single sequence 
repeat, markers, and phylogenetic analyses offer higher resolution but remain limited by their dependency on 
prior genomic knowledge and inability to handle high-dimensional data efficiently3. Although codon usage bias 
has emerged as a potential genomic signature for species discrimination, its application in machine learning 
frameworks remains underexplored, particularly for Brassica species11,12. Existing methods also struggle with 
scalability and fail to leverage the discriminative power of genome-wide features, such as codon frequency 
patterns or k-mer distributions, which could enhance classification accuracy3. These limitations highlight the 
need for advanced computational tools capable of handling the complexity and volume of modern genomic data 
while minimizing manual curation10,9.

This study addresses these gaps by developing a deep learning framework to classify Brassica species using 
codon usage bias as a genomic signature. We hypothesize that species-specific codon preferences, shaped 
by evolutionary pressures such as translational efficiency and environmental adaptation, will enable robust 
discrimination when processed through optimized neural networks11. Unlike alignment-dependent methods, 
our approach leverages automated feature extraction from coding sequences (CDS), offering scalability and 
efficiency for large datasets. By systematically evaluating multiple deep learning architectures, we aim to: (1) 
establish codon usage as a reliable taxonomic marker for Brassica species, (2) identify optimal neural network 
configurations for genomic classification, and (3) provide insights into the genomic divergence underlying 
the phenotypic diversity of Brassica crops10,2. The success of this framework could revolutionize species 
identification in plant genomics, with applications ranging from precision breeding to evolutionary studies. 
While the current framework demonstrates high classification accuracy using codon usage patterns alone, future 
studies could explore integrating additional genomic features (e.g., k-mer frequencies or epigenetic markers) to 
address three key challenges: (1) generalization across diverse cultivars and wild relatives where codon usage 
may vary, (2) classification of hybrid or polyploidy specimens where genomic signatures are more complex, 
and (3) environmental plasticity effects that may influence gene expression patterns. This expansion would test 
the model’s robustness in real-world agricultural and ecological scenarios where perfect laboratory conditions 
may not apply84,12,14. This work bridges the gap between traditional phylogenetics and modern computational 
biology, offering a scalable solution for the era of high-throughput genomics.

Methods
Data preparation
The CDS of the complete genomes of B. juncea,  B. napus, B. oleracea, and B. rapa were obtained in FASTA 
format from the EnsemblPlants database in June 2025. The CDS FASTA files can be accessed for B. juncea, 
B.napus, B.oleracea and B.rapa from Ensembl Plants 1.1

Evaluation metrics for multiclass deep learning models
Accuracy measures the proportion of correctly classified instances out of the total predictions made by a model15. 
Mathematically, it is defined as:

1 Ensembl Plants. Available at:https://plants.ensembl.org/index.html
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Accuracy = Number of Correct Predictions
Total Predictions

= True Positives (TP)+True Negatives (TN)
TP+TN+False Positives (FP)+False Negatives (FN)

� (1)

In our study, seven deep learning models, Multilayer Perceptron (MLP), Deep Belief, Dropout, DNN with L2 
regularization, radial basis function neural network (RBFN), Leaky ReLU, and Shallow, were evaluated based on 
their ability to classify four crops using absolute codon frequency data. Accuracy provides an overall performance 
measure but may be misleading in imbalanced datasets8.

Precision quantifies the proportion of true positive predictions among all positive predictions made by the 
model5. It is calculated as:

	
Precision = TP

TP + FP
� (2)

High precision indicates fewer false positives, which is crucial when misclassifying a crop label is costly. In 
our experiments, models like DNN with L2 regularization and Dropout demonstrated varying precision levels 
across different crop labels (1 to 4), reflecting their ability to minimize incorrect classifications16.

Recall, also known as sensitivity, measures the model’s ability to correctly identify all relevant instances of a 
class17. The formula for recall is:

	
Recall = TP

TP + FP
� (3)

A high recall is essential when missing a true positive (e.g., misclassifying a crop) has significant consequences. 
Our analysis showed that models such as RBFN and LeakyReLU achieved higher recall for certain crops, 
suggesting better detection capabilities18.

The F1 score is the harmonic mean of precision and recall, providing a balanced assessment of a model’s 
performance19. It is computed as:

	
F1 Score = 2 × P recision × Recall

P recision + Recall
� (4)

This metric is particularly useful when class distribution is uneven. Among the seven deep learning models 
applied to codon frequency data, MLP and DeepBelief exhibited competitive F1 scores, indicating a good trade-
off between precision and recall20. MCC is a robust metric that considers all four confusion matrix categories 
(TP, TN, FP, FN) and is especially effective for imbalanced datasets21. The MCC is given by:

	
MCC = T P × T N − F P × F N√

(T P + F P )(T P + F N)(T N + F P )(T N + F N) � (5)

A value close to + 1 indicates perfect classification, while − 1 suggests total disagreement. In our study, Shallow 
and DNN with L2 regularization achieved higher MCC values, demonstrating better overall classification 
performance across the four crop labels22.

Cross validation
In this study, a 10-fold cross-validation approach was employed to evaluate the performance of a predictive 
model for classifying four Brassica species using a dataset of 267,635 observations with 65 variables, where one 
variable served as the target class. The dataset was randomly shuffled and partitioned into 10 equal folds, with 
approximately 10% of the data used as the test set and the remaining 90% used for training. This process was 
repeated 10 times, ensuring that each fold served as the validation set exactly once, thereby providing a robust 
estimate of the model’s generalization performance. The final evaluation metrics, such as accuracy or F1-score, 
were averaged across all folds based on validation data to mitigate bias and variance, a common practice in 
machine learning to ensure reliable model assessment23. This method is particularly advantageous for large 
datasets, as it maximizes data utilization while maintaining computational efficiency2.

Dropout neural network (NN)
Dropout is a regularization technique designed to prevent overfitting in neural networks by randomly 
deactivating a fraction of neurons during training24, thereby promoting robust feature learning. In this study, 
dropout layers with a rate of p = 0.3 were applied after each dense layer in a deep neural network (DNN) 
architecture. Mathematically, dropout modifies the forward pass of a layer by multiplying its activations h with 
a binary mask m, where each element. mi is sampled from a Bernoulli distribution:

	 mi ∼ Bernoulli(1 − p), hdropout = m ⊙ h� (6)

Here, ⊙  denotes element-wise multiplication, and p represents the dropout probability (30% in this case). 
During inference, dropout is disabled, and the layer outputs are scaled by 1 − p to maintain the expected 
activation magnitudes25. The DNN architecture comprised three hidden layers (128, 64, and 32 units) with ReLU 
activation, each followed by dropout, and a softmax output layer for multi-class classification of four Brassica 
species. The model was trained using Adam optimization and categorical cross-entropy loss26.
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Deep neural network with L2 regularization
The implemented neural network architecture employs L2 regularization (also called weight decay) to prevent 
overfitting while classifying four Brassica species from 65 input features. For each layer l with weights W (l), 
the L2 penalty term λ ?W (l)?2

2 is added to the loss function L, where λ = 0.001 controls the regularization 
strength27. The complete regularized loss becomes:

	
Ltotal = L(y, ŷ) + λ

∑
?W (l)?

2
2� (7)

where L(y, ŷ) is the categorical cross-entropy loss, and the summation runs over all layers16. This formulation 
shrinks weights toward zero during Adam optimization28, resulting in smoother decision boundaries. The 
network architecture combines L2 regularization with dropout ( p = 0.3), following the recommendation that 
these techniques complement each other29. The model consists of three hidden layers (128, 64, 32 units) with 
ReLU activation1.

Leaky rectified linear unit (Leaky ReLU)
The implemented neural network architecture utilizes Leaky Rectified Linear Unit (Leaky ReLU) activation 
functions to address the “dying ReLU” problem while classifying four Brassica species from 65 input features. 
The Leaky ReLU function is defined as:

	
f (x) =

{
x if x > 0
α x if x ≤ 0 � (8)

where α = 0.01 is the negative slope coefficient30. This modification allows a small gradient when the unit is 
not active ( x ≤ 0), unlike the standard ReLU, which outputs zero31. The network architecture consists of three 
hidden layers (64, 32, 16 units) with Leaky ReLU activation, followed by a softmax output layer for multi-class 
classification. Each dense layer implements the transformation:

	 h(l) = f(W (l)h(l−1) + b(l))� (9)

where W (l) and b(l) are the weight matrix and bias vector at layer l, and f  is the Leaky ReLU activation 
function32. The model was trained using Adam optimization28.

Multilayer perceptron (MLP)
The MLP architecture comprises an input layer followed by two hidden layers using ReLU activation, defined as

	 ReLU (x) = max(0, x)� (10)

which introduces non-linearity while mitigating vanishing gradients. The output layer employs a softmax 
activation function,

	
σ (z)j = ezj∑

K
k=1ezk

,� (11)

to produce probabilistic multiclass outputs. The model incorporates L1 and L2 regularization, augmenting the 
standard categorical cross-entropy loss,

	
L0 = −

∑
n
i=1yilog (ŷi)� (12)

with penalty terms, yielding the composite loss function,

	
L = L0 + λ 1

∑
|wi| + λ 2

∑
w2

i ,� (13)

where λ 1 and λ 2 tune the sparsity and weight decay, respectively16. Optimization is performed using the Adam 
algorithm, which adapts learning rates by maintaining per-parameter momentum estimates28. The combination 
of these mathematical constructs ensures robust feature learning while controlling overfitting.

Radial basis function neural network (RBFN)
The RBFN architecture employs a two-stage mathematical framework combining unsupervised clustering with 
supervised classification. The first layer uses fixed Gaussian radial basis functions, defined as

	 φ (x) = exp
(
−γ ∥ x − ci∥ 2)

� (14)

Where γ  controls the width of the Gaussian and ci are the centroids determined by K-means clustering18. 
These non-linear transformations project input data into a higher-dimensional feature space where classes 
become more separable.

The output layer implements a softmax function,
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σ (z)j = ezj∑

kezk
,� (15)

For multiclass probability estimation, with weights optimized through Adam using the categorical cross-entropy 
loss,

	
L = −

∑
yilog (ŷi)� (16)

As described in16. The fixed-centroid approach reduces computational complexity while maintaining the 
universal approximation capabilities characteristic of RBF networks33. The Gaussian kernels’ γ  parameter 
critically influences the decision boundaries by adjusting the receptive field of each basis function.

Shallow neural networks (SNNs)
The shallow neural network employs a compact architecture with a single hidden layer of 64 ReLU-activated 
units,

	 f (x) = max(0, x)� (17)

Followed by dropout regularization ( p = 0.2) to prevent overfitting29. The output layer uses softmax activation,

	
σ (z)j = ezj∑

kezk
,� (18)

To produce multiclass probability distributions, with weights optimized through Adam using the categorical 
cross-entropy loss,

	
L = −

∑
yilog (ŷi)� (19)

As described by28. The shallow’s architecture (input →  hidden →  output) offers reduced computational 
complexity compared to deep networks while maintaining universal approximation capabilities34. The ReLU 
activation in the hidden layer provides sparse representations and mitigates vanishing gradients, while dropout 
randomly deactivates 20% of units during training to improve generalization. Batch normalization is notably 
absent, making the network particularly sensitive to proper input standardization35, which is addressed here 
through z-score normalization of input features.

Deep belief neural networks (DBNs)
The DBN-inspired architecture employs a stacked hierarchical structure with three hidden layers (128, 64, 32 
units) using ReLU activation,

	 f (x) = max(0, x)� (20)

Progressively extracting higher-level features through nonlinear transformations36. Each layer incorporates 
dropout regularization ( p = 0.2) to prevent co-adaptation of features, effectively creating an ensemble of 
thinned networks29. The final layer uses softmax activation,

	
σ (z)j = ezj∑

kezk
, � (21)

For multiclass probability estimation, optimized through Adam using the categorical cross-entropy loss,

	
L = −

∑
yilog (ŷi)� (22)

As proposed by28. While not implementing true Boltzmann machine pretraining, this deep architecture 
maintains the DBN philosophy of layer-wise feature learning, where each successive layer builds upon the 
representations learned by previous layers37. The ReLU activations enable efficient backpropagation through 
deep layers by mitigating vanishing gradients, while the decreasing layer sizes (128 →  64 →  32) implement an 
information bottleneck that forces compressed representations of input data.

Optimization of neural network architectures
To maximize predictive performance, each neural network model underwent systematic hyper parameter 
tuning. The Shallow Neural Network was carefully optimized with a single hidden layer of 64 neurons using 
ReLU activation, combined with a dropout rate of 0.2 to prevent over-fitting while maintaining computational 
efficiency37. This architecture was chosen to balance model complexity with the risk of over-fitting, particularly 
given our dataset characteristics. The Deep Belief Network (DBN) was optimized with three hidden layers (128-
64-32 neurons) and a dropout rate of 0.2 to balance feature learning and over-fitting38. For the L2-regularized 
Neural Network (L2-NN), an L2 penalty (λ = 0.001) and dropout (0.3) were applied to enhance generalization18. 
The Dropout Neural Network (DO-NN) employed a 0.3 dropout rate across layers, following empirical evidence 
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that moderate dropout improves robustness29. The Leaky ReLU-based model used α = 0.01 to mitigate vanishing 
gradients while maintaining non-linearity39. The MLP combined L2 regularization (λ = 0.01), Leaky ReLU 
(α = 0.1), and dropout (0.3) to optimize deep architecture efficiency16. Finally, the RBFN utilized k-means-
derived centroids (k = 50) and a fixed γ = 0.1 for Gaussian kernel scaling, ensuring stable interpolation40.

Results
Data preprocessing
The coding regions of the complete genomes of B. juncea (Indian mustard), B. napus (rapeseed), B. oleracea 
(cabbage), and B. rapa (turnip) were obtained from the Ensembl Plant database. To ensure data integrity, DNA 
sequences from each species were subjected to a multi-step validation pipeline using Biopython41. The initial 
step confirmed that each CDS was divisible by three, ensuring the presence of translatable codons. Sequences 
failing this criterion were excluded. Subsequently, sequences containing non-standard nucleotides (other 
than A, C, G, or T) were removed. The third step mandated that sequences begin with the start codon “ATG” 
(encoding methionine); those without it were discarded. Further validation required sequences to terminate 
with a canonical stop codon (TAA, TAG, or TGA). Sequences with premature or multiple in-frame stop codons, 
as well as those yielding non-standard amino acids, were eliminated. Lastly, sequences with inconsistent DNA 
composition or frame shift errors were excluded42. This stringent filtering resulted in the removal of 1,922 B. 
juncea, 1,804 B. napus, 4902 B. oleracea, and 34 B. rapa sequences due to anomalies. The final curated data set 
comprised 73,094 B. juncea, 99,232 B. napus, 54,318 B. oleracea, and 40,991 B. rapa sequences, respectively.

Structure of data matrix for deep learning applications
Following data validation, the sequences were further processed for deep learning applications. Each coding 
sequence was standardized to a fixed length of 64 codons, and the absolute codon frequencies were computed 
for each sequence. The processed data was structured into a data matrix, where each row represented a gene 
from one of the species, and the columns contained the corresponding codon frequency values. To facilitate 
classification, each species was assigned a distinct numeric label: B. juncea (1), B. napus (2), B.oleracea (3), 
and B. rapa (4). The labeled dataset was then used as an input for deep learning-based species classification. A 
schematic overview of the entire data processing pipeline for deep learning modeling is illustrated in Table 1.

Principal component analysis, t-SNE, and UMAP reveal structural patterns in cross-species 
codon usage)
Figure 1a presents a t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization, depicting the 
distribution of gene expression data in a two-dimensional space. The x-axis, labeled t-SNE 1, and the y-axis, 
labeled t-SNE 2, represent the reduced dimensions derived from high-dimensional genomic data43. Points are 
color-coded according to gene density, with a gradient ranging from purple (low density, 100) to yellow (high 
density, 102), as shown on the right-hand color bar. A dense central cluster, predominantly in green and yellow, 
indicates a high concentration of genes with similar expression profiles, likely reflecting core biological functions 
or co-expressed gene networks44. Surrounding this core, sparser regions in blue and purple suggest genes with 
more distinct expression patterns, possibly associated with specialized roles or variability45. The t-SNE method 
effectively captures the non-linear structure of the data, providing a clearer separation of gene clusters compared 
to linear techniques. This visualization is particularly valuable for identifying underlying patterns in complex 
datasets, such as those from transcriptomic analyses. The dense central area may represent highly conserved or 
frequently expressed genes, while the peripheral points could indicate outliers or genes under specific regulatory 
control. This plot offers a useful tool for exploring the organization of gene expression, providing insights into 
the relationships and diversity within the dataset. Further analysis of these clusters could reveal key biological 
processes or evolutionary adaptations.

Figure 1b displays a Uniform Manifold Approximation and Projection (UMAP) analysis, illustrating the 
distribution of gene expression data across a two-dimensional space. The x-axis, labeled UMAP 1, and the y-axis, 
labeled UMAP 2, represent the reduced dimensions derived from high-dimensional gene expression data46. 

64 - dimentional Codon frequencies

Gene_ID Species Name Label AAA AAC AAG … TTC TTG TTT

CDY69013 Brassica_napus 1 6 6 16 … 8 6 4

CDY71688 Brassica_napus 1 10 8 13 … 2 4 6

CDY71689 Brassica_napus 1 6 1 8 … 0 0 3

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Bra003630.1 Brassica_rapa 4 4 20 19 … 18 15 16

Bra004507.1 Brassica_rapa 4 4 11 10 … 4 7 4

Bra005163.1 Brassica_rapa 4 4 7 6 … 4 7 3

Table 1.  64-dimensional codon frequency for various genes, including columns for gene ID, species Name, 
Label, and codon frequencies (e.g., AAA, AAC, AAG,…, TTC, TTG, TTT). The table shows a data matrix 
designed to apply deep learning models for classification.
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The points are color-coded based on gene density, with a gradient ranging from purple (low density) to yellow 
(high density), as indicated by the color bar on the right, which spans a logarithmic scale from 100 to 102. A 
prominent central cluster of high-density points, depicted in yellow and green, suggests a concentrated group 
of genes with similar expression profiles, potentially indicating core biological processes or co-regulated gene 
sets47. Surrounding this central region, sparser distributions of points in blue and purple reflect genes with 
more unique or divergent expression patterns, possibly linked to specialized functions or noise48. The UMAP 
visualization effectively captures the non-linear relationships within the data, providing a clearer separation of 
gene clusters compared to traditional methods like PCA. This technique is particularly useful for identifying 
underlying structures in complex datasets, such as those from transcriptomic studies49. The plot’s density 
gradient highlights areas of interest for further investigation, such as the tightly packed central region, which 
may correspond to highly expressed or conserved genes. Overall, this representation offers valuable insights into 
the organization and variability of gene expression within the studied sample.

Figure 1c shows Principal Component Analysis (PCA) of Relative Synonymous Codon Usage (RSCU) values 
across three Brassica species: B. napus, B. juncea, and B. oleracea, with B. rapa included as a reference50. The 
x-axis represents the first principal component (PC1), accounting for 66.8% of the variance, while the y-axis 
depicts the second principal component (PC2), expressed as a percentage. Each data point is color-coded to 
distinguish the species, with B. napus in orange, B. juncea in green, B. oleracea in blue, and B. rapa in pink. The 
scatter plot reveals a dense clustering of points for B. rapa, suggesting a high degree of codon usage similarity 
within this species. In contrast, B. napus and B. juncea exhibit more dispersed distributions, indicating greater 
variability in RSCU values, potentially reflecting genetic diversity or environmental adaptations51. B. oleracea 
points are scattered across a broader range, with some outliers, which may imply unique codon preferences 
or evolutionary divergence52. The separation along PC1 and PC2 highlights differences in synonymous codon 

Fig. 1.  Three dimensionality reduction techniques applied to genomic data: (a) t-SNE, (b) UMAP, and (c) 
PCA. Each panel visualizes distinct aspects of genetic diversity, transcriptional patterns, and evolutionary 
relationships across Brassica species (napus, juncea, oleracea, and rapa). The t-SNE and UMAP plots (a, 
b) employ a purple-to-yellow gradient (100–102) to highlight expression density, revealing local and global 
structures in gene clusters. Meanwhile, the PCA scatter plot (c) elucidates phylogenetic relationships through 
RSCU patterns, emphasizing key variances and evolutionary trends. Together, these methods provide 
complementary insights into complex genomic datasets.
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usage, which could be linked to translational efficiency or gene expression patterns. This visualization highlights 
the utility of PCA in identifying patterns in codon usage among related species, providing insights into their 
genomic and evolutionary relationships.

Evaluating deep learning models for genomic crop classification based on codon usage 
patterns
This study assessed seven deep learning (DL) architectures for classifying four Brassica species using codon 
usage frequency patterns derived from their CDS. Each model was trained on a dataset of 64 absolute codon 
frequencies per gene, with architectures spanning shallow networks to regularization-enhanced deep neural 
networks (DNNs). Performance was evaluated using accuracy, precision, recall, F1-score, MCC, and training 
epochs to determine the most effective approach for genomic classification. The findings, summarized in Table 2, 
are discussed in relation to current advancements in DL applications for genomics.

Overview of model performance
All models demonstrated outstanding classification accuracy, consistently achieving precision above 99% 
(Table 2). These results highlight the strong discriminative capacity of codon usage patterns as species-specific 
genomic signatures, corroborating earlier findings by53 on codon bias as a taxonomic marker. The high MCC 
scores (0.989–0.999) further confirm reliable class separation, a crucial advantage for potentially imbalanced 
datasets54. Notably, shallow neural networks performed comparably to deeper architectures, contesting the 
notion that model complexity necessarily enhances genomic classification accuracy55.

Model benchmarking on brassica species classification
The classification of four economically significant Brassica species was conducted using seven distinct deep 
learning architectures trained on codon frequency patterns. Each model was carefully optimized through 
hyper parameter tuning and evaluated using standard performance metrics. The Dropout Neural Network 
implemented three hidden layers (128-64-32 neurons) with ReLU activation and a dropout rate of 0.3, achieving 
exceptional generalization (99.998% accuracy) by preventing co-adaptation of neurons through stochastic 
deactivation during training29. A variation of this architecture incorporating L2 weight regularization (λ = 0.001) 
demonstrated comparable performance (99.982% accuracy), where the penalty term effectively constrained 
model complexity while preserving discriminative features in the high-dimensional codon space56. The Leaky 
ReLU network employed a similar three-layer structure (64-32-16 neurons) but utilized Leaky ReLU activation 
(α = 0.01) to maintain gradient flow during back propagation, yielding near perfect classification (99.998% 
accuracy) by preventing neuron saturation57.

The MLP with Elastic Net regularization (L1/L2, λ = 0.01) achieved flawless discrimination (100% accuracy 
across all metrics), suggesting optimal feature extraction from codon usage patterns through its two hidden 
layers (128 − 64 neurons)58. Surprisingly, even a minimalist Shallow Network with a single hidden layer (64 
neurons) and dropout (p = 0.2) attained remarkable performance (99.995% accuracy), confirming the inherent 
discriminative power of codon frequency features59. In contrast, the RBFN showed limited efficacy (74.6% 
accuracy) despite employing 50 centroids and a Gaussian kernel (γ = 0.1), highlighting the challenges of fixed-
kernel methods in capturing complex codon usage patterns60. The Deep Belief Network implemented a stacked 
architecture (128-64-32 neurons) with dropout (p = 0.2), achieving 99.995% accuracy and demonstrating 
that deep hierarchical feature extraction can effectively identify species-specific signatures without requiring 
unsupervised pre-training61.

All models were trained using the Adam optimizer with early stopping (patience = 5) to prevent over-fitting. 
The consistent high performance across most architectures (> 99.9% accuracy) highlights the robustness of 
codon usage patterns as genomic fingerprints for Brassica species discrimination. Complete performance metrics 
(accuracy, precision, recall, F1-score, MCC) are detailed in Table 2 and visualized in Fig. 2, which provides a 
comprehensive comparison of all models performance based on test data. More detailed validation results for all 
model architectures, encompassing cross-validation accuracy trends and epoch by epoch training performance, 
are available in supplementary materials (Section S1 and S2). All architectures demonstrated stable convergence 

Model Name Accuracy Precision Recall F1 Score MCC

Deep Belief Neural Network 0.99995 0.99994 0.99994 0.99994 0.99993

Multilayer Perceptron Neural Network 1 1 1 1 1

Deep neural network (DNN) with L2 regularization and dropout 0.99982 0.99981 0.99981 0.99981 0.99975

Leaky ReLU Neural Network 0.99998 0.99998 0.99998 0.99998 0.99997

Shallow Neural Network 0.99995 0.99993 0.99995 0.99994 0.99994

Dropout Neural Network 0.99998 0.99998 0.99997 0.99998 0.99998

Radial Basis Function Neural Network 0.7464 0.85665 0.70124 0.74178 0.6673

Table 2.  Comparative evaluation of machine learning models using standard performance metrics: accuracy, 
precision, recall, F1 score, and MCC. The table presents quantitative measurements ranging from 0.746 to 
1.000 across different architectures, demonstrating varying levels of predictive performance and classification 
effectiveness in binary classification tasks.
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with final accuracy exceeding 99%, though analysis of the complete training trajectories uncovered notable 
variations in learning efficiency among the different network designs.

Over-fitting analysis
Figure 3 depicts the training validation accuracy gap across various neural network models, including Deep 
Belief, DNN with L2 regularization, Dropout, Leaky ReLU, MLP, RBFN, and Shallow networks, as a function 
of training epochs, serving as an indicator of overfitting. The Deep Belief model shows a minimal and stable 
accuracy gap, hovering around − 0.005 to -0.015, suggesting effective learning without significant overfitting over 
20 epochs62. Similarly, the DNN with L2 regularization maintains a consistent gap near − 0.01, demonstrating 
the regularization technique’s success in balancing model fit and generalization16. The Dropout model exhibits 
a steady gap around − 0.01 to -0.02, indicating that random neuron deactivation helps prevent excessive model 
complexity29. In contrast, the Leaky ReLU model experiences a noticeable increase in the gap, peaking at -0.02 
around epoch 4 before stabilizing, hinting at potential overfitting due to the activation function’s behavior8. The 
MLP model shows a fluctuating gap, with a peak near − 0.02 around epoch 20, suggesting occasional overfitting 

Fig. 2.  Evaluation of seven neural architectures across six classification metrics. Leaky ReLU and Dropout 
networks exhibit near-flawless performance (≥ 0.99997), with MLP achieving perfect scores. All models 
except RBFN (0.67–0.86) surpass 0.99975 accuracy. Standard deviations (error bars) confirm result stability, 
demonstrating consistent superiority of deeper architectures with advanced activation functions over 
traditional RBF approaches.
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that requires monitoring63. The RBFN graph reveals a more pronounced and variable gap, dropping to -0.02 
and fluctuating widely over 120 epochs, indicating a higher risk of overfitting with extended training64. Lastly, 
the Shallow network maintains a small, stable gap around − 0.01, reflecting its simplicity and resistance to 
overfitting65. These patterns underscore the importance of regularization and model architecture in controlling 
overfitting54, with some models requiring careful epoch management to optimize performance66.

Fig. 3.  Over-fitting detection graphs for multiple machine learning models, including Deep Belief Networks, 
DNN with L2 regularization, Dropout, Leaky ReLU, MLP, RBFN, and Shallow networks. The plotted Train-
Val Accuracy Gap across epochs reveals how each model’s performance evolves, highlighting fluctuations 
or stabilization trends. These patterns help assess the effectiveness of different regularization techniques in 
mitigating over-fitting, providing insights into model generalization capabilities.
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Case study analysis of model performance and robustness
Our rigorous analysis of seven deep learning architectures revealed distinct classification patterns across 
agricultural crop types. The Deepbelief and Dropout models demonstrated exceptional stability, showing 
minimal systematic errors (≤ 0.5 cases/fold) without statistically significant misclassifications (all p > 0.05). 
Similarly, the Shallow architecture performed robustly, with only marginal errors between B. oleracea - B. rapa 
(1.0 ± 3.0 cases/fold, p = 0.343) and B. napus - B. juncea (0.1 ± 0.3 cases/fold, p = 0.343) classifications. The MLP 
exhibited particularly strong performance, displaying no detectable systematic errors in any class comparisons. 
In stark contrast, the RBFN architecture showed substantial classification challenges, consistently misidentifying 
B. napus, B. oleracea, and B. rapa as B. juncea (5977.8 ± 1395.0, 2738.1 ± 588.5, and 2013.8 ± 392.8 cases/fold, 
respectively; all p < 0.001). Intermediate-complexity models, including Leaky ReLU and L2-Regularized DNN, 
demonstrated moderate error rates (1.4–10.7 cases/fold) with specific statistically significant confusions 
(p < 0.05 in 4/6 comparisons). These results align with established literature indicating that moderately complex 
architectures often achieve optimal performance for agricultural classification67, while both overly simplistic 
and highly complex models may underperform68. The Deepbelief, MLP, and Shallow models emerged as the 
most reliable classifiers, combining high accuracy with consistent fold-to-fold stability. Complete error analyses, 
including statistical comparisons and visualization heatmaps, are provided in supplementary material S3.

Discussion
Our study establishes codon usage frequency as a highly effective genomic marker for Brassica species 
classification, with deep learning models achieving exceptional accuracy (99.9–100%). The MLP’s perfect 
classification performance demonstrates that codon usage patterns contain sufficient species-specific signatures 
for discrimination, supporting recent findings on codon bias conservation53,69. This represents a significant 
advancement over traditional methods that typically achieve < 95% accuracy63,70, likely due to deep learning’s 
capacity to capture complex, non-linear relationships in high-dimensional data71. The superior performance 
of MLP and other deep architectures (Leaky ReLU, Dropout, Shallow, DNN, Deepbelief) over RBFN (74.6% 
accuracy) provides important insights for genomic classification. These results align with evidence that RBFNs 
may struggle with high-dimensional biological data72, while deeper networks excel at extracting meaningful 
patterns without manual feature engineering73. Our rigorous 10-fold cross-validation and data preprocessing 
pipeline ensured reliable model evaluation54,74, addressing common limitations in genomic machine learning 
studies. These findings have immediate applications in plant breeding and genomics. The method’s accuracy 
could transform germplasm characterization and purity testing75, particularly for complex hybrids like B. napus20. 
The computational efficiency of trained models offers practical advantages over laboratory-based techniques76, 
enabling rapid analysis of growing genomic datasets77. The strong species-specific codon signatures may reflect 
underlying biological differences in translational efficiency or evolutionary history78,79. Future studies should 
investigate whether specific codon groups drive classification accuracy, potentially revealing functionally 
important genomic features80. The approach’s success with CDS regions prompts investigation of non-coding 
sequences81 and relative codon frequencies82 as potential complementary features. Several limitations warrant 
consideration. While Ensemble Plants provided robust training data, validation against independent datasets83 
and broader Brassica cultivars84 would strengthen generalizability. The models’ reliance on CDS regions may 
miss discriminatory information in other genomic areas81. Key future directions include: Integration with 
additional genomic features (GC content, k-mers)85, application to practical challenges like hybrid detection86, 
and adaptation for real-time use in seed certification87.

Methodologically, our work demonstrates how deep learning can extract biologically meaningful patterns 
without manual feature engineering73, contrasting traditional bioinformatics approaches88. The consistent high 
accuracy across architectures suggests this framework could be adapted for other taxonomic groups.

Conclusion
This study demonstrates the remarkable capability of deep learning models in accurately classifying four 
economically significant Brassica species, B. juncea, B. napus, B. oleracea, and B. rapa using codon frequency 
patterns derived from their genomic coding sequences. The outstanding performance of most models, particularly 
the MLP Neural Network, which achieved perfect classification, underscores the discriminative power of deep 
learning in plant genomic studies. Other architectures, including Leaky ReLU and Dropout Neural Networks, 
also exhibited near-flawless accuracy, reinforcing their suitability for high-precision species identification tasks. 
The consistent superiority of these models highlights their potential for applications in crop breeding, genetic 
resource management, and evolutionary studies where precise species discrimination is crucial. While most 
deep learning approaches excelled, the comparatively lower performance of the RBFN suggests that architectural 
choice significantly impacts classification success in genomic datasets. These findings pave the way for future 
research into optimized deep learning frameworks for plant genomics, with potential extensions to other crops 
and larger genomic datasets89, 90.

Data availability
The dataset used in this study was downloaded from Ensembl Plants ( ​[​h​t​t​p​s​:​/​/​p​l​a​n​t​s​.​e​n​s​e​m​b​l​.​o​r​g​/​]​(​h​t​t​p​s​:​/​p​l​a​n​t​
s​.​e​n​s​e​m​b​l​.​o​r​g​) ) and is publicly available. Specific data subsets or processed data generated during this study are 
available from the corresponding author upon reasonable request.

Received: 15 July 2025; Accepted: 3 September 2025

Scientific Reports |        (2025) 15:33417 11| https://doi.org/10.1038/s41598-025-18814-0

www.nature.com/scientificreports/

https://plants.ensembl.org
http://www.nature.com/scientificreports


References
	 1.	 L. Prechelt, "Early stopping-but when?" in Neural networks: Tricks of the trade, Springer, 2002, pp. 55–69.
	 2.	 Teodorescu, V. & Obreja Brașoveanu, L. Assessing the validity of k-fold cross-validation for model selection: Evidence from 

bankruptcy prediction using random forest and XGBoost. Computation 13(5), 127. https://doi.org/10.3390/computation13050127 
(2025).

	 3.	 Ning, W., Meudt, H. M. & Tate, J. A. A roadmap of phylogenomic methods for studying polyploid plant genera. Appl. Plant Sci. 
12(4), e11580. https://doi.org/10.1002/aps3.11580 (2024).

	 4.	 Peleke, F. F., Zumkeller, S. M., Gültas, M., Schmitt, A. & Szymański, J. Deep learning the cis-regulatory code for gene expression in 
selected model plants. Nat. Commun. 15(1), 3488. https://doi.org/10.1038/s41467-024-47744-0 (2024).

	 5.	 D. M. Powers, "Evaluation: From precision, recall and f-measure to ROC, informedness, markedness and correlation," arXiv 
preprint arXiv:2010.16061, 2020.

	 6.	 Calderwood, A. et al. Comparative transcriptomics reveals desynchronisation of gene expression during the floral transition 
between arabidopsis and brassica rapa cultivars. Quantitative Plant Biology 2, e4. https://doi.org/10.1017/qpb.2021.6 (2021).

	 7.	 Shahsavari, M., Mohammadi, V., Alizadeh, B. & Alizadeh, H. Application of machine learning algorithms and feature selection in 
rapeseed (brassica napus l.) breeding for seed yield. Plant Methods 19(1), 57. https://doi.org/10.1186/s13007-023-01035-9 (2023).

	 8.	 He, H. & Garcia, E. A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009).
	 9.	 Zeremski, T., Ranđelović, D., Jakovljević, K., Marjanović Jeromela, A. & Milić, S. Brassica species in phytoextractions: Real 

potentials and challenges,". Plants 10(11), 2340. https://doi.org/10.3390/plants10112340 (2021).
	10.	 Zandberg, J. D. et al. The global assessment of oilseed brassica crop species yield, yield stability and the underlying genetics. Plants 

11(20), 2740. https://doi.org/10.3390/plants11202740 (2022).
	11.	 Chaudhary, R. et al. Codon usage bias for fatty acid genes FAE1 and FAD2 in oilseed brassica species. Sustainability 14(17), 11035. 

https://doi.org/10.3390/su141711035 (2022).
	12.	 Yang, Q. et al. Codon usage bias in chloroplast genes implicate adaptive evolution of four ginger species. Front. Plant Sci. 14, 

1304264. https://doi.org/10.3389/fpls.2023.1304264 (2023).
	14.	 Dubinkina, V. B., Ischenko, D. S., Ulyantsev, V. I., Tyakht, A. V. & Alexeev, D. G. Assessment of k-mer spectrum applicability for 

metagenomic dissimilarity analysis. BMC Bioinformatics 17(1), 38. https://doi.org/10.1186/s12859-015-0875-7 (2016).
	15.	 Sokolova, M. & Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 

427–437 (2009).
	16.	 I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT press Cambridge, 2016.
	17.	 Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006).
	18.	 Bishop, C. M. & Nasrabadi, N. M. Pattern recognition and machine learning (Springer, 2006).
	19.	 C. van Rijsbergen, "Information retrieval 2nd ed buttersworth," London [Google Scholar], vol. 115, 1979.
	20.	 Chalhoub, B. et al. Early allopolyploid evolution in the post-neolithic brassica napus oilseed genome. Science 345(6199), 950–953 

(2014).
	21.	 Matthews, B. W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica 

Acta Protein Structure 405(2), 442–451 (1975).
	22.	 Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. & Nielsen, H. Assessing the accuracy of prediction algorithms for classification: 

An overview. Bioinformatics 16(5), 412–424 (2000).
	23.	 G. James, D. Witten, T. Hastie, R. Tibshirani, et al., An introduction to statistical learning, vol. 112. Springer, 2013.
	24.	 Salehin, I. & Kang, D.-K. A review on dropout regularization approaches for deep neural networks within the scholarly domain. 

Electronics 12(14), 3106. https://doi.org/10.3390/electronics12143106 (2023).
	25.	 Heidari, M., Moattar, M. H. & Ghaffari, H. Forward propagation dropout in deep neural networks using jensen–shannon and 

random forest feature importance ranking. Neural Netw. 165, 238–247. https://doi.org/10.1016/j.neunet.2023.05.044 (2023).
	26.	 Tan, S. Z. K. et al. Dropout in neural networks simulates the paradoxical effects of deep brain stimulation on memory. Frontiers in 

Aging Neuroscience 12, 273 (2020).
	27.	 A. Krogh and J. Hertz, "A simple weight decay can improve generalization," Advances in neural information processing systems, vol. 

4, 1991.
	28.	 D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
	29.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks 

from overfitting. The journal of machine learning research 15(1), 1929–1958 (2014).
	30.	 A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., "Rectifier nonlinearities improve neural network acoustic models," in Proc. icml, Atlanta, 

GA, 2013, p. 3.
	31.	 K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," 

in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.
	32.	 D.-A. Clevert, T. Unterthiner, and S. Hochreiter, "Fast and accurate deep network learning by exponential linear units (elus)," arXiv 

preprint arXiv:1511.07289, 2015.
	33.	 Park, J. & Sandberg, I. W. Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991).
	34.	 Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 2(4), 303–314 (1989).
	35.	 S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in 

International conference on machine learning, pmlr, 2015, pp. 448–456.
	36.	 Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006).
	37.	 Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of deep networks," Advances in neural information 

processing systems, vol. 19, 2006.
	38.	 Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 

(2006).
	39.	 A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., "Rectifier nonlinearities improve neural network acoustic models," in Proc. ICML, vol. 

30, no. 1, p. 3, Atlanta, GA, 2013.
	40.	 Broomhead, D. S., Lowe, D., Radial basis functions, multi-variable functional interpolation and adaptive networks, Technical 

Report, 1988.
	41.	 Cock, P. J. A. et al. Biopython: Freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 

25(11), 1422–1423. https://doi.org/10.1093/bioinformatics/btp163 (2009).
	42.	 Goulet, D. R. et al. Codon optimization using a recurrent neural network. J. Comput. Biol. 30(1), 70–81 (2023).
	43.	 Kim, J., Cheon, S. & Ahn, I. NGS data vectorization, clustering, and finding key codons in SARS-CoV-2 variations. BMC 

Bioinformatics 23(1), 187 (2022).
	44.	 L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.” Journal of machine learning research, vol. 9, no. 11, 2008.
	45.	 van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
	46.	 Benegas, G., Batra, S. S. & Song, Y. S. DNA language models are powerful predictors of genome-wide variant effects. Proc. Natl. 

Acad. Sci. 120(44), e2311219120 (2023).
	47.	 Hatibi, N. et al. Misclassified: Identification of zoonotic transition biomarker candidates for influenza a viruses using deep neural 

network. Front. Genet. 14, 1145166 (2023).
	48.	 Ando, D. et al. Decoding codon bias: The role of tRNA modifications in tissue-specific translation. Int. J. Mol. Sci. 26(2), 706 (2025).

Scientific Reports |        (2025) 15:33417 12| https://doi.org/10.1038/s41598-025-18814-0

www.nature.com/scientificreports/

https://doi.org/10.3390/computation13050127
https://doi.org/10.1002/aps3.11580
https://doi.org/10.1038/s41467-024-47744-0
http://arxiv.org/abs/2010.16061
https://doi.org/10.1017/qpb.2021.6
https://doi.org/10.1186/s13007-023-01035-9
https://doi.org/10.3390/plants10112340
https://doi.org/10.3390/plants11202740
https://doi.org/10.3390/su141711035
https://doi.org/10.3389/fpls.2023.1304264
https://doi.org/10.1186/s12859-015-0875-7
https://doi.org/10.3390/electronics12143106
https://doi.org/10.1016/j.neunet.2023.05.044
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1511.07289
https://doi.org/10.1093/bioinformatics/btp163
http://www.nature.com/scientificreports


	49.	 Su, S. et al. Predicting viral host codon fitness and path shifting through tree-based learning on codon usage biases and genomic 
characteristics. Sci. Rep. 15(1), 12251 (2025).

	50.	 Hu, D., Wu, D., You, J., He, Y. & Qian, W. Principal component analysis and comprehensive evaluation on salt tolerance related 
traits in brassica napus l. Bot. Res 7, 101–112 (2018).

	51.	 Y. Zhang, M. Ji, L. Deng, L. Lian, L. Jian, and R. Zhang, "Codon usage bias analysis of self-incompatibility genes BrSRK, BrSLG, and 
BrSP11/BrSCR in brassica rapa reveals insights into their coevolution," Genetic Resources and Crop Evolution, pp. 1–22, 2025.

	52.	 Ji, H. et al. Bioinformatic analysis of codon usage bias of HSP20 genes in four cruciferous species. Plants 13(4), 468 (2024).
	53.	 Plotkin, J. B. & Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 12(1), 32–42 

(2011).
	54.	 Chicco, D. & Jurman, G. The advantages of the matthews correlation coefficient (MCC) over F1 score and accuracy in binary 

classification evaluation. BMC Genomics 21, 1–13 (2020).
	55.	 Playe, B. & Stoven, V. Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity. 

Journal of cheminformatics 12(1), 11 (2020).
	56.	 Jung, M. et al. Deep learning algorithms correctly classify brassica rapa varieties using digital images. Front. Plant Sci. 12, 738685 

(2021).
	57.	 Maniatopoulos, A. & Mitianoudis, N. Learnable leaky ReLU (LeLeLU): An alternative accuracy-optimized activation function. 

Information 12(12), 513. https://doi.org/10.3390/info12120513 (2021).
	58.	 Hallee, L. & Khomtchouk, B. B. Machine learning classifiers predict key genomic and evolutionary traits across the kingdoms of 

life. Sci. Rep. 13(1), 2088 (2023).
	59.	 Okut, H. Deep learning algorithms for complex traits genomic prediction. Hayvan Bilimi ve Ürünleri Dergisi 4(2), 225–239 (2021).
	60.	 S. Tong, Y. Chen, Y. Ma, and Y. Lecun, "Emp-ssl: Towards self-supervised learning in one training epoch," arXiv preprint 

arXiv:2304.03977, 2023.
	61.	 Fioravanti, D. et al. Phylogenetic convolutional neural networks in metagenomics. BMC Bioinformatics 19, 1–13 (2018).
	62.	 G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computation, vol. 14, no. 8, 2002.
	63.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521(7553), 436–444 (2015).
	64.	 Buhmann, M. D. Radial basis functions: Theory and implementations (Cambridge University Press, 2003).
	65.	 J. Frankle and M. Carbin, "The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018," arXiv preprint 

arXiv:1803.03635, 1803.
	66.	 Bejani, M. M. & Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 54(8), 

6391–6438 (2021).
	67.	 Liakos, K. G., Busato, P., Moshou, D., Pearson, S. & Bochtis, D. Machine learning in agriculture: A review. Sensors 18(8), 2674 

(2018).
	68.	 Luo, H. & Wang, J. ICDO-RBFNN multi-sensor data fusion for agricultural greenhouse environment. Trans. Chin. Soc. Agric. Eng. 

40(21), 184–191 (2024).
	69.	 Hershberg, R. & Petrov, D. A. Selection on codon bias. Annu. Rev. Genet. 42(1), 287–299 (2008).
	70.	 Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 

376(6594), 4290 (2022).
	71.	 Zou, J. et al. A primer on deep learning in genomics. Nat. Genet. 51(1), 12–18. https://doi.org/10.1038/s41588-018-0295-5 (2019).
	72.	 Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​9​8​

/​r​s​i​f​.​2​0​1​7​.​0​3​8​7​​​​ (2018).
	73.	 Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA-and RNA-binding proteins by 

deep learning. Nat. Biotechnol. 33(8), 831–838 (2015).
	74.	 Wainer, J. & Cawley, G. Empirical evaluation of resampling procedures for optimising SVM hyperparameters. J. Mach. Learn. Res. 

18(15), 1–35 (2017).
	75.	 Cheng, F., Wu, J., Fang, L. & Wang, X. Syntenic gene analysis between brassica rapa and other brassicaceae species. Front. Plant Sci. 

3, 198 (2012).
	76.	 Varshney, R. K., Terauchi, R. & McCouch, S. R. Harvesting the promising fruits of genomics: Applying genome sequencing 

technologies to crop breeding. PLoS Biol. 12(6), e1001883 (2014).
	77.	 Stephens, Z. D. et al. Big data: Astronomical or genomical?. PLoS Biol. 13(7), e1002195 (2015).
	78.	 T. V. Tatarinova, N. N. Alexandrov, J. B. Bouck, and K. A. Feldmann, "Biology in corn, rice, sorghum and other grasses," 2010.
	79.	 Quax, T. E., Claassens, N. J., Söll, D. & van der Oost, J. Codon bias as a means to fine-tune gene expression. Mol. Cell 59(2), 149–161 

(2015).
	80.	 Alexaki, A. et al. Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and 

gene therapies. Sci. Rep. 9(1), 15449 (2019).
	81.	 Neuwald, A. F. A bayesian sampler for optimization of protein domain hierarchies. J. Comput. Biol. 21(3), 269–286 (2014).
	82.	 Seward, E. A. & Kelly, S. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms. Genome Biol. 

17(1), 226. https://doi.org/10.1186/s13059-016-1087-9 (2016).
	83.	 Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 18(5), 851–869. https://doi.org/10.1093/bib/bbw068 

(2016).
	84.	 Snowdon, R. J. & Iniguez Luy, F. L. Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breeding 

131(3), 351–360 (2012).
	85.	 Ghandi, M., Lee, D., Mohammad-Noori, M. & Beer, M. A. Enhanced regulatory sequence prediction using gapped k-mer features. 

PLoS Comput. Biol. 10(7), e1003711 (2014).
	86.	 Collard, B. C. & Mackill, D. J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. 

Philosophical Transactions of the Royal Society B: Biological Sciences 363(1491), 557–572 (2008).
	87.	 Scheben, A., Batley, J. & Edwards, D. Genotyping-by-sequencing approaches to characterize crop genomes: Choosing the right tool 

for the right application. Plant Biotechnol. J. 15(2), 149–161 (2017).
	88.	 Jones, D. T. Setting the standards for machine learning in biology. Nat. Rev. Mol. Cell Biol. 20(11), 659–660. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​

8​/​s​4​1​5​8​0​-​0​1​9​-​0​1​7​6​-​5​​​​ (2019).
	89.	 Drees, L., Junker-Frohn, L. V., Kierdorf, J. & Roscher, R. Temporal prediction and evaluation of brassica growth in the field using 

conditional generative adversarial networks. Comput. Electron. Agric. 190, 106415. https://doi.org/10.1016/j.compag.2021.106415 
(2021).

Acknowledgements
We acknowledge Ensembl Plants for providing open access genomic data used in this study.

Author contributions
a. Mr. Anjum Shahzad conceptualized the study, designed the methodology, conducted the data analysis, and 
wrote the initial draft of the manuscript, software implementation and is responsible for the research data.b. Mr. 
Muhammad Arfan provided overall supervision and critical review of the manuscript.c. Dr. Nauman Khalid 

Scientific Reports |        (2025) 15:33417 13| https://doi.org/10.1038/s41598-025-18814-0

www.nature.com/scientificreports/

https://doi.org/10.3390/info12120513
http://arxiv.org/abs/2304.03977
http://arxiv.org/abs/1803.03635
https://doi.org/10.1038/s41588-018-0295-5
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1186/s13059-016-1087-9
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.1038/s41580-019-0176-5
https://doi.org/10.1038/s41580-019-0176-5
https://doi.org/10.1016/j.compag.2021.106415
http://www.nature.com/scientificreports


provided expert supervision and critical guidance in interpreting the genomic data and biological implications 
of this study. His insights into Brassica evolutionary genomics and codon usage patterns significantly strength-
ened the biological validity of our findings.

Funding
The authors acknowledge funding from Research, Innovation, and Academic Development from Abu Dhabi 
University, UAE, for conducting research studies.

Declarations

Consent for publication
All authors have read and approved the final manuscript and consent to its publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​1​8​8​1​4​-​0​​​​​.​​

Correspondence and requests for materials should be addressed to N.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:33417 14| https://doi.org/10.1038/s41598-025-18814-0

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-18814-0
https://doi.org/10.1038/s41598-025-18814-0
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Deep learning decodes species-specific codon usage signatures in Brassica from coding sequences
	﻿Methods
	﻿Data preparation
	﻿Evaluation metrics for multiclass deep learning models
	﻿Cross validation
	﻿Dropout neural network (NN)
	﻿Deep neural network with L2 regularization
	﻿Leaky rectified linear unit (Leaky ReLU)
	﻿Multilayer perceptron (MLP)
	﻿Radial basis function neural network (RBFN)
	﻿Shallow neural networks (SNNs)
	﻿Deep belief neural networks (DBNs)
	﻿Optimization of neural network architectures

	﻿Results
	﻿Data preprocessing
	﻿Structure of data matrix for deep learning applications
	﻿Principal component analysis, t-SNE, and UMAP reveal structural patterns in cross-species codon usage)
	﻿Evaluating deep learning models for genomic crop classification based on codon usage patterns
	﻿Overview of model performance
	﻿Model benchmarking on brassica species classification
	﻿Over-fitting analysis
	﻿Case study analysis of model performance and robustness

	﻿Discussion
	﻿Conclusion
	﻿References


