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Bladder cancer (BLCA) is the most prevalent malignant tumor of the urinary system. Mitophagy is 
a selective form of autophagy that occurs within the mitochondria. The goal of this study was to 
determine mitophagy-related biomarkers associated with BLCA and to explore their underlying 
molecular mechanisms. CTSK, MTERF3, SRC, and CSNK2B were identified as biomarkers. A risk model 
classified BLCA patients into high-risk group (HRG) and low-risk group (LRG), with HRG patients 
exhibiting lower survival probabilities. The “chemical carcinogenesis-DNA adducts” and “cytokine-
cytokine receptor interaction” signaling pathway were closely associated with HRG and LRG. TP53 
had the highest mutation frequencies in the HRG and LRG, respectively. The two groups exhibited 
significant differences in 14 immune cells, including M2 macrophages. CTSK exhibited the strongest 
correlation with the naive B cells. A total of 135 drugs differed in sensitivity between HRG and LRG, 
including KU.55933. The identified regulatory network included ADAMTSL4-AS1-hsa-miR-149-5p-
SRC. Expression analysis showed that CTSK was significantly downregulated in the BLCA group, while 
MTERF3, SRC, and CSNK2B were significantly upregulated. In conclusion, CTSK, MTERF3, SRC, and 
CSNK2B laid the foundation for targeted therapy in the treatment of BLCA.

Keywords  Bladder cancer, Mitophagy, Biomarkers, Risk model

Bladder cancer (BLCA) ranks among the most frequent malignant tumors of the urinary tract worldwide, 
characterised mainly by painless haematuria, with significant differences in morbidity and mortality between 
regions and populations. Overall, there are approximately 550,000 new cases and 200,000 deaths per year 
globally 1. It was found that risk factors for the development of BLCA include smoking, occupational exposure 
to aromatic amine chemicals, chronic cystitis and pelvic radiotherapy, of these, smoking is the most significant 
risk factor. Currently, the gold standard for the diagnosis of BLCA is cystoscopic biopsy, and Computed 
Tomography (CT) or Magnetic Resonance Imaging (MRI) can be used as an adjunctive test to assess tumor 
infiltration and metastasis 2. In terms of treatment, patients diagnosed with non-muscle invasive bladder cancer 
typically undergo transurethral resection of the bladder tumor (TURBT) as the standard treatment, followed 
by intravesical adjuvant therapy using a risk stratification approach, with an overall survival rate of up to 90%, 
whereas patients diagnosed with muscle-invasive bladder cancer are mainly treated with radical cystectomy 
followed by systemic adjuvant therapy, with a still low cure rate 3. Over the past decade, despite the great progress 
in the fields of molecular typing and targeted therapy of BLCA, its high recurrence rate and poor prognosis 
have not been significantly improved. In-depth exploration of the pathogenesis of BLCA, searching for reliable 
biomarkers, and developing novel therapeutic strategies are still the focus of current research.

Mitochondrial autophagy is a selective mode of autophagy, a process in which the autophagosome selectively 
wraps mitochondria with abnormal intracellular function and transports them to the lysosome for degradation, 
which mainly involves the steps of selective recognition, wrapping by autophagosome, and degradation 
by the lysosome 4. Its role is to ensure the efficient removal of malfunctioning mitochondria under stress or 
physiological conditions, to reduce the accumulation of reactive oxygen species, to ensure the balance between 
the quality and quantity of mitochondria in the cell, and thus to maintain the metabolic homeostasis of the cell 
mitochondrial autophagy has a ‘double-edged sword’ effect in cancer cells, with some tumor cells sustaining 
aberrant proliferation through inhibition of mitochondrial autophagy, while others can rely on it for survival 
5. It is reported in studies DARS2 promotes BLCA progression by enhancing pink1-mediated mitochondrial 
autophagy 6; Corosolic acid inhibits BLCA cell proliferation in vivo and in vitro by inducing mitochondrial 
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autophagy 7; Similarly Histone lactylation regulates prkn-mediated mitochondrial autophagy to promote 
M2 macrophage polarisation in BLCA 8. However, studies on the progression of mitochondrial autophagy in 
BLCA are currently scarce, and the exact molecular mechanism of its action is unclear and deserves further 
investigation.

Therefore, in this study, based on BLCA transcriptome data and combined with mitochondrial autophagy-
related genes, differential analysis, one-way Cox combined with PH assumption, and then LASSO were performed 
to screen the genes related to BLCA prognosis and calculate risk scores. After that, the prognostic model was 
constructed and validated. Then the differences between immune microenvironment, immunotherapy, gene 
mutation and drug sensitivity were explored to provide new theoretical support and reference basis for the 
treatment of BLCA.

Results
Acquisition of 42 candidate genes
In the TCGA-BLCA dataset, 12,479 Differentially expressed genes (DEGs) were identified, with 8,037 genes 
upregulated and 4,442 genes downregulated in the BLCA group (Fig. 1a–b). Enrichment analysis demonstrated 
that the DEGs were significantly associated with 491 Gene Ontology (GO) terms and 60 Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. For instance, GO terms included “extracellular structure organization” 
and “contractile fiber” (adj.P < 0.05) (Fig.  1c, Supplementary Table S1–3). The KEGG pathways primarily 
included the “cGMP-PKG signaling pathway” and “Axon guidance” (adj.P < 0.05) (Fig. 1d, Supplementary Table 
S4).

By intersecting DEGs and mitophagy-related genes (MRGs), 42 candidate genes were identified (Fig. 1e). In 
addition, a Protein–Protein Interaction (PPI) network was constructed. The network consisted of 42 nodes and 
157 edges, with SRC interacting closely with several genes, including SRC (Fig. 1f).

Identification of CTSK, MTERF3, SRC, and CSNK2B as biomarkers
A total of 5 candidate biomarkers (CTSK, RHOT2, MTERF3, SRC, and CSNK2B) were identified through 
univariate Cox regression analysis (HR ≠ 1 and P < 0.05) and PH assumption test (P > 0.05) (Fig. 2a, Supplementary 
Fig. S1a). The results of k-fold cross-validation show that the Cox model achieves a high and stable C-index 
(0.323) under tenfold cross-validation, indicating good predictive performance and strong generalization ability 
(Supplementary Fig. S1b). A total of 4 biomarkers (CTSK, MTERF3, SRC, and CSNK2B) were then selected 
using LASSO, with a minimum lambda of 0.014 as the threshold (Fig. 2b).

Development of a risk model with high predictive accuracy
Based on 4 biomarkers, a risk model was constructed. Based on the median risk score value of 0.0134, the 406 
BLCA samples in the TCGA-BLCA dataset were classified into 203 high-risk group (HRG) samples and 203 low-
risk group (LRG) samples. Kaplan–Meier (KM) curves showed that the survival rate was considerably reduced 
in the HRG (P < 0.001) (Fig. 2c). Risk curves and survival status maps further showed that the HRG experienced 
more deaths and had a higher mortality rate than the LRG (Fig. 2d). ROC curve analysis demonstrated that the 
AUC values for TCGA-BLCA were all greater than 0.6, indicating that the risk model exhibited stable predictive 
performance (Fig. 2e). Additionally, based on the median risk score of -0.0718, the 224 BLCA samples in the 
GSE32894 dataset were divided into 112 HRG and 112 LRG samples, and analyzed in the same way, producing 
results consistent with those from the TCGA-BLCA dataset (Fig. 2f–h). These results emphasized the reliability 
of the risk model’s predictions, showcasing its potential for guiding personalized treatment in BLCA.

Association between risk score and clinical features
The risk score was strongly associated with N stage, grade, T stage, stage, and survival status (P < 0.05). The risk 
score increased with higher pathological grade, progression of T and N stages, and advancement of tumor stage 
(Fig. 3).

Exploration of signaling pathways
Gene set enrichment analysis (GSEA) results indicated that the main signaling pathways significantly enriched 
for DEGs between the HRG and LRG were “chemical carcinogenesis-DNA adducts” and “cytokine-cytokine 
receptor interaction” (Fig. 4a, Supplementary Table S5). Pathway correlation analysis indicated that there were 
common genes between the “viral protein interaction with cytokine” pathway and the “cytokine receptor” 
pathway, as well as between the “cytokine-cytokine receptor interaction” pathway and the “hematopoietic cell 
lineage” pathway (Fig. 4b). These pathways interacted in the development of BLCA.

Significant association between risk score and immune microenvironment
The infiltration of 22 types of immune cells was presented in the stacked plot (Fig. 5a). Among them, 14 immune 
cells, such as CD8 T cells and M2 macrophages, exhibited significant differences in their scores (P < 0.05) 
(Fig. 5b). Additionally, Spearman correlation analysis revealed that CTSK exhibited the strongest correlation 
with naive B cells (cor = 0.33, P < 0.001), while SRC exhibited the strongest correlation with regulatory T cells 
(Tregs) (cor = 0.33, P < 0.001) (Fig.  5c, Supplementary Table S6). SRC was more strongly associated with the 
CD4T immune cell subtype; MTERF3 and CTSK were more strongly associated with the macrophage immune 
cell subtype; CSNK2B was more strongly associated with the mast immune cell subtype (Fig. 5d).

Expression of biomarkers and immune response correlation
The expression of 26 immune checkpoint genes differed significantly between the HRG and LRG. In the HRG, 
most of these immune checkpoint genes were expressed at higher levels, such as CTLA4, LAG3, and PDCD1 
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Fig. 1.  Acquisition of 42 candidate genes. (a) Distribution of differentially expressed genes between BLCA and 
Control groups. The genes in the upper right corner are upregulated differentially expressed genes (represented 
in red), the genes in the upper left corner are downregulated differentially expressed genes (represented in 
blue), and the rest of the genes are not significantly statistically significant (represented in gray). (b) In the 
heatmap, expression levels of different genes. Red is for high expression genes, blue is for low expression 
genes. (c) Enrichment analysis of Gene Ontology (GO): biological processes (BP), cellular components (CC), 
and molecular functions (MF). Each circle represents a pathway, the size of the circle represents the number 
of genes enriched in the pathway, and the color of the circle represents the significance of the enrichment in 
the pathway. (d) Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG). (e) Candidate 
key genes. The blue circle represents DEGs, the orange circle represents genes associated with MRGs, and the 
overlapping part in the middle represents genes in both sets of genes. (f) PPI network of candidate key genes. 
Each circle represents a candidate key gene, and the darker the color, the more genes it interacts with.
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(Fig. 6a). Additionally, patients with high and low expression of CTSK, SRC, and CSNK2B showed differences 
in their response to immunotherapy (Fig. 6b–e). These varying immunotherapy responses were significant for 
the treatment of BLCA.

High mutation of TP53
In HRG and LRG, TP53 exhibited the highest mutation frequency, with missense mutations being the most 
common (Fig.  7a–b). After the high mutation of TP53, the p53 protein encoded by it lost its function and 
may have even acquired oncogenic characteristics, making the cells more prone to malignant transformation, 
uncontrolled proliferation, and subsequently driving tumor formation and progression.

Fig. 2.  Identification of as biomarkers. (a) A total of 5 candidate biomarkers (CTSK, RHOT2, MTERF3, 
SRC, and CSNK2B) were identified through univariate Cox regression analysis (HR ≠ 1 and P < 0.05) and PH 
assumption test (P > 0.05). (b) LASSO Regression analysis to screen prognostic genes. (c) Survival curves for 
patients in the high-risk and low-risk groups. The horizontal axis represents the follow-up time (in days In 
units of months), the vertical axis represents the survival probability; in the figure below, the actual survival 
time range and follow-up time points of patients are shown. (d) Distribution of risk scores and survival status 
in patients with TCGA-BLCA. Each point is a BLCA sample. (e) ROC curve analysis. Evaluate the effectiveness 
of the model in predicting 1, 3 and 5 years survival. (f–h) The prognostic risk model was validated in the 
GSE32894 dataset.
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Revealing drug sensitivity
The drug sensitivity analysis revealed 135 drugs differed in sensitivity between HRG and LRG (P < 0.05). Drugs 
KU.55933, NU7441, AZD8186, SB216763, and BMS.754807 exhibited higher IC50 values in HRG (Fig. 7c).

Exploring the molecular regulatory mechanisms of biomarkers
A total of 84 differentially expressed miRNAs, 915 differentially expressed lncRNAs, and 4035 differentially 
expressed circRNAs were identified (Fig. 8a). After integrating with data from databases, 2 key miRNAs, 42 key 
lncRNAs, and 1124 circRNAs were obtained (Fig. 8b). The identified regulatory networks included ADAMTSL4-
AS1-hsa-miR-149-5p-SRC and DMD-hsa-miR-149-5p-SRC (Fig. 8c). These potential regulatory mechanisms 
had implications for the development of BLCA.

Fig. 3.  Association between risk score and clinical features. Each violin in this figure represents a set of 
pathological features, and the width of the violin corresponds to the density of the data at that point. P < 0.05 
indicates significant difference between the two groups. ns indicates p > 0.05, ***indicates p < 0.001.
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Biomarker expression and survival analysis
Expression analysis showed that CTSK was significantly downregulated in the BLCA group, while MTERF3, 
SRC, and CSNK2B were significantly upregulated (Supplementary Fig. S2a). KM curve analysis revealed that 
patients in the high expression group of CTSK had poor survival outcomes, whereas patients in the high 
expression groups of MTERF3, SRC, and CSNK2B had better survival outcomes (Supplementary Fig. S2b).

Verification of expression of CTSK, MTERF3, SRC and CSNK2B
Quantitative RT-PCR analysis revealed significantly elevated mRNA expression levels of MTERF3, SRC and 
CSNK2B in bladder tumor cells compared to normal bladder cells (Supplementary Fig. S3), which is consistent 

Fig. 4.  Exploration of signaling pathways. (a) GSEA analyze. Include high risk groups and low risk groups. The 
main enrichment pathways of the high-risk group are shown in this figure. (b) The relationship between KEGG 
signaling pathways enriched by GSEA was analyzed. Each point represents a different KEGG pathway, and the 
position and connection of the points represent the correlation and regulation between these pathways.

 

Scientific Reports |        (2025) 15:33272 6| https://doi.org/10.1038/s41598-025-18820-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 5.  Significant association between risk score and immune microenvironment. (a) The abundance of 
22 immune cells in the high and low risk groups. (b) Differences in infiltration scores of 22 immune cells 
between high and low risk groups. The length of the box and whiskers in the figure can intuitively reflect the 
distribution and differences of different immune cells between the two groups. ns indicates p > 0.05, * indicates 
p < 0.05, ** indicates p < 0.01, ***indicates p < 0.001, **** indicates p < 0.0001. (c) Correlation analysis between 
prognostic genes and 22 kinds of immune cell infiltration. The rows in the heat map represent different 
prognostic genes and the columns represent different types of immune cells. The color changes indicate the 
strength of the correlation, with the gradient from blue (negative correlation) to red (positive correlation). (d) 
Circular tree diagrams show the correlation between prognostic genes and immune cell infiltration in different 
subtypes of tumors. Each axis represents a subtype of immune cell, and the correlation between prognostic 
genes and immune cells is indicated by points. The size of the points generally correlates with the strength of 
the correlation. Colors can be used to distinguish types of immune cells.
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Fig. 6.  Expression of biomarkers and immune response correlation. (a) Differential expression analysis of 
immune checkpoint genes in high-risk and low-risk groups. The length of the box and whiskers can intuitively 
reflect the distribution and difference of different immune cells between the two groups. (b–e) The relationship 
between prognostic gene expression and patient response to immunotherapy. The vertical axis is the immune 
phenotype score associated with CTLA4 and PD-1, and the horizontal axis is the prognostic gene group 
according to the median value of gene expression. ns indicates p > 0.05, * indicates p < 0.05, ** indicates p < 0.01, 
***indicates p < 0.001, **** indicates p < 0.0001.
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with our previous bioinformatics studies using public datasets; However, there was indeed no statistical difference 
in the expression of CTSK.

Discussion
BLCA is one of the most common tumors of the urinary tract, and the overall prognosis for patients with 
intermediate to advanced stages remains poor at present 9. Mitochondrial autophagy is a mechanism by which 

Fig. 7.  Genetic mutation and drug sensitivity analysis. (a) A waterfall chart of somatic mutations in high risk 
groups and low risk groups. (b) Different mutation sites of the TP53 gene between high and low risk groups. 
In the stick figure diagram, the horizontal axis usually represents the exon of a gene or the amino acid position 
of a protein, and the vertical axis represents the frequency or effect of the mutation. The length and color 
of each stick may represent the type of mutation or the severity of the effect. (c) IC50 sensitivity analysis of 
chemotherapeutic drugs between high and low risk groups. The top 5 with the smallest P values are shown.
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cells selectively remove dysfunctional or damaged mitochondria to safeguard the functional integrity of the 
mitochondrial network 10. In different cancers, dysregulation of mitochondrial autophagy is closely associated 
with tumorigenesis, progression and drug resistance. Some research has found that mitochondrial autophagy 
is closely related to prostate cancer, and mitochondrial autophagy-related genes provide new genetic markers 
for predicting the prognosis of patients with prostate cancer 11; in the study of hepatocellular carcinoma (HCC), 

Fig. 8.  Exploring the molecular regulatory mechanisms of biomarkers. (a) The volcano map shows the 
differences in miRNAs, lncRNAs, and circRNAs. The significance and change factor of differential expression 
were shown. (b) The Venn diagram shows targeting miRNAs, targeting lncRNAs and targeting circRNAs. 
(c) Based on the construction of ceRNA targeting lncRNAs, circRNA, miRNAs, and prognostic genes, the 
relationships between genes in the figure are presented in a network diagram. Red dots represent targeted 
lncRNAs and circRNA, yellow dots represent targeted miRNAs, and blue dots represent prognostic genes. The 
lines connecting the dots represent the regulatory relationships between genes.

 

Scientific Reports |        (2025) 15:33272 10| https://doi.org/10.1038/s41598-025-18820-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Parkin deficiency led to a decrease in the level of mitochondrial autophagy, and the toxicity of CD8 + T cells was 
weakened while the proportion of depletion-type T cells was increased, forming an immunosuppressive network, 
accelerating tumor growth 12; in urological cancers, dysregulation of this pathway leads to the accumulation of 
mitochondrial damage, which in turn promotes the proliferation of tumor cells and the development of drug 
resistance 13; lncRNA-RP11-498C9.13 promotes ROS generation and mitochondrial autophagy in bladder cancer 
cells by stabilizing PYCR1 mRNA generation and mitochondrial autophagy in bladder cancer cells, driving 
tumorigenesis, and this axis is expected to be a potential target for bladder cancer therapy 14. In this study, in 
order to explore the molecular linkage of the intrinsic intersection, we obtained clinical information and gene 
expression data of BLCA from public databases, screened four prognosis-related genes by LASSO regression 
analysis, based on these genes, calculated risk scores of patients, and provided new insights for exploring the 
treatment of BLCA through the construction and validation of the risk model, functional enrichment analysis, 
tumor immune microenvironment assessment, somatic mutation profiling, and pharmacogenomic sensitivity 
evaluation, molecular regulatory network construction, and expression level analysis, which provided new 
insights for exploring the treatment of BLCA.

Four biomarkers (CTSK, MTERF3, SRC and CSNK2B) were obtained in this study. CTSK (Cathepsin 
K) is a lysosomal cysteine protease that plays a degrading role in the extracellular matrix and is involved in 
osteoclast resorption and may be partially involved in impaired bone remodelling 15. Research has shown 
that glucocorticoids upregulate CTSK in osteoblasts through PINK1-mediated mitochondrial autophagy, and 
that aberrant accumulation of CTSK, a lysosomal cysteine protease, may interfere with lysosomal function, 
indirectly affecting mitochondrial autophagy 16. CTSK has been found to inhibit mitochondrial autophagy 
through the mTOR pathway, leading to accumulation of damaged mitochondria and oxidative stress, thereby 
promoting tumor survival 15. CTSK may also contribute to reactive oxygen species (ROS) accumulation through 
degradation of antioxidant proteins or promotion of metabolic reprogramming. Excessive ROS can activate 
mitochondrial autophagy to scavenge damaged mitochondria, which in turn promotes bladder cancer via 
the lncRNA-RP11-498C9.13/PYCR1 axis 16 development 14. Therefore, CTSK may affect bladder cancer by 
regulating mitochondrial autophagy and mediating oxidative stress and metabolic reprogramming, among 
other mechanisms. Numerous findings have shown CTSK’s association with various tumors, like Helicobacter 
pylori-associated gastric cancer 17 and prostate cancer 18. In addition, survival analysis showed that the risk of 
death in gastric cancer patients exhibiting elevated CTSK expression was 1.73-fold higher than that in patients 
demonstrating low CTSK expression levels, and high CTSK expression led to a great increase in stromal and 
immune cell infiltration in TME, which was closely associated with GC (notably early lymph node involvement 
and survival prognosis), and patients in the CTSK high expression group had a significantly lower OS and 
recurrence-free survival (RFS) than those in the low expression group 19. It has also been shown that CTSK is 
lowly expressed in BLCA tumor tissues, and it has been validated in clinical samples. In this study, CTSK was 
also lowly expressed in BLCA tumor tissues, which is consistent with the results of a previous study 20. However, 
the KM curve analysis showed that patients in the high CTSK expression group had poorer survival outcomes. 
The paradoxical association between high CTSK expression and adverse prognosis may stem from the following 
factors: Stage Discrepancy: Gene pathways associated with invasion, such as extracellular matrix degradation 
and cell migration, are significantly enriched in invasive bladder cancer (MIBC). CTSK, a key regulator of 
these pathways, may be expressed at a higher level in invasive bladder cancer than in non-invasive bladder 
cancer (NMIBC) 21; Functional biphasicity: In a research on colorectal cancer development, it was found that 
an imbalance in the intestinal microbiota induced tumor cells to secrete CTSK at an early stage in an attempt 
to limit aberrant proliferation of tumor cells and maintain tissue homeostasis 22. When the tumor progresses to 
advanced stages, the role of CTSK undergoes a significant shift, and CTSK promotes tumor metastasis through 
degradation of the extracellular matrix. In a variety of cancer types, such as colorectal 23, prostate, and ovarian 
cancers 15, the high expression of CTSK is closely associated with tumor aggressiveness and poor prognosis.

MTERF3(Mitochondrial Transcription Termination Factor 3), the most conserved MTERF family member, 
negatively regulates mtDNA transcription. 24. MTERF3 may affect the functional state of mitochondria by 
regulating mitochondrial transcription and protein synthesis. When mitochondrial function is impaired, 
MTERF3 may be involved in the regulation of mitochondrial autophagy and help to remove damaged 
mitochondria 25; It has also been shown that knockdown of MTERF3 inhibits lung cancer cell proliferation 
and migration, enhances mitochondrial autophagy, and increases mitochondrial superoxide production 26; 
In bladder cancer, the In bladder cancer, inhibition of the metabolic regulator AMPKα promotes mTORC1 
activation through a macrophage-mediated mechanism, and MTERF3 may indirectly regulate this pathway by 
maintaining mitochondrial function. In conclusion, MTERF3 may affect mitochondrial function by regulating 
mitochondrial transcription and protein synthesis, and participate in the regulation of mitochondrial autophagy 
in order to remove damaged mitochondria when the function is impaired. Knockdown of MTERF3 enhances 
mitochondrial autophagy, increases the production of mitochondrial superoxide, and inhibits the proliferation 
and migration of tumor cells, and it may also indirectly regulate the AMPKα/mTORC1 pathway through the 
maintenance of mitochondrial function, thus affecting bladder cancer. In addition, integrated IHC and RNA-seq 
analysis revealed significantly elevated MTERF3 protein and transcript levels in paraneoplastic non-tumorous 
tissues compared to thyroid carcinoma (THCA) specimens. 27. Survival analyses showed that reduced expression 
of MTERF3 was associated with poorer prediction. Furthermore, elevated MTERF3 expression showed a 
significant inverse correlation with cancer stemness properties and chemotherapeutic response in THCA 27.

SRC (Src Kinase), a tyrosine kinase, exerts its pro-carcinogenic function mainly by catalysing the tyrosine 
phosphorylation of various protein substrates 28. One study constructed a risk model based on genes such as SRC 
to predict clinical outcomes in BLCA, which showed a low survival rate in patients stratified into the high-risk 
category. BLCA patients were divided into high and low expression groups based on SRC expression, and the 
survival of the two groups was significantly different, suggesting that SRC is associated with survival in BLCA 
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29. SRC is a signature gene associated with mitochondrial autophagy 30; in research on uroepithelial carcinoma 
(UC), SRC was found to help tumor cells resist the killing effect of chemotherapeutic drugs by maintaining 
mitochondrial function and inhibiting apoptotic signaling, and most UC cases (about 90–95%) occurred in 
the bladder, suggesting that SRC may play a role in bladder cancer development by affecting mitochondrial 
autophagy-related pathways 31. CSNK2B (Casein Kinase 2 Beta Subunit) is a widely expressed protein kinase 
that modulates diverse cellular processes such as proliferation, differentiation and survival through serine/
threonine phosphorylation of downstream targets 32. In the field of cancer research, emerging evidence is 
gradually suggesting that CSNK2B plays a key role in various malignancies. Previous studies demonstrate that 
Elevated CSNK2B expression has been found to activate NF-κB signalling in hepatocellular carcinoma (HCC), 
thereby promoting cell proliferation and inhibiting apoptosis in HCC 33. In another breast cancer (BC) study, 
higher CSNK2B expression was significantly associated with poor prognosis in BC patients 32. It has also been 
shown that CSNK2B is associated with survival in cervical cancer 34. CSNK2B is closely related to mitochondrial 
autophagy, and it may regulate the phosphorylation status of mitochondria-related proteins, which in turn affects 
the stability of mitochondria and promotes the initiation of mitochondrial autophagy 35; CSNK2B enhances the 
proliferation of cells by activating the mTOR signaling pathway in colorectal cancer 32, suggesting that CSNK2B 
may be involved in the regulation of mitochondrial autophagy and tumor cell proliferation through a similar 
mechanism in bladder cancer, thus affecting the progression of bladder cancer.

GSEA identified several key signaling pathways with significant enrichment in differentially expressed 
genes between HRG and LRG were ‘chemical carcinogenesis-DNA adducts’ and ‘cytokine- cytokine receptor 
interaction’. The chemical carcinogenesis-DNA adducts pathway refers to the covalent binding of carcinogenic 
chemicals to bases in the DNA molecule, resulting in the formation of chemical-DNA complexes. The formation 
of these DNA compounds is a key step in the chemical carcinogenesis process 36. This formation contribute to 
the development of cancer by causing DNA damage, gene mutations and chromosomal aberrations. It has been 
shown that the chemical carcinogenesis-DNA adducts pathway is significantly enriched in BLCA 37. Our study 
further found that the chemical carcinogenesis-DNA adducts pathway is associated with BLCA, confirming a 
possible role of this pathway in BLCA. In addition, this pathway is also associated with various cancers, such as 
colorectal cancer 38 and glioma 39. The association of cytokine-cytokine receptor interactions with mitochondrial 
autophagy has been clearly revealed in several studies. The interaction of cytokine IL-1β with its receptor IL-1R 
promotes mitochondrial autophagy by activating NLRP3 inflammatory vesicles. It was found that IL-1β-induced 
activation of NLRP3 inflammasome after LPS stimulation of macrophages was dependent on the modulation of 
mitochondrial autophagy 40, while inhibitory cytokines limited excessive inflammation by modulating autophagy 
41. One study found that MSCs in the tumor microenvironment are able to produce the tryptophan metabolite 
kynurenine (Kyn), which in turn activates the AMPK signaling pathway. This enhanced mitochondrial autophagy 
and mitochondrial production in bladder cancer cells, increasing energy production and thus promoting the 
proliferation, migration and invasive ability of cancer cells, suggesting that mitochondrial autophagy supports 
the survival and progression of tumor cells to a certain extent 42; and there are also researches that developed 
in-situ convertible nanoparticles, KCKT, which can effectively inhibit tumor cell proliferation and progression 
by preventing damaged mitochondria from being autophagically clearance, exacerbating oxidative damage and 
effectively inhibiting bladder cancer, which highlights the importance of mitochondrial autophagy in bladder 
cancer therapy 43. These mechanisms suggest a correlation between biomarker-enriched signaling pathways and 
mitochondrial autophagy and, by affecting mitochondrial autophagy, also have an impact on the process of 
bladder cancer development.

The analysis on immune cell infiltration profiles between high- and low-risk patient subgroups showed 
that there were significant differences in the scores of 14 types of immune cell subsets, particularly CD8 + T 
lymphocytes and M2-polarized macrophages. Macrophages are highly heterogeneous and are classified into M1 
and M2 types according to their activation status and function, which the high abundance of M2 macrophages 
indicates a poor prognosis for bladder cancer patients and a significant impact on the development of malignant 
tumors 44. In addition, studies have shown that CTSK, MTERF3, SRC and CSNK2B signature genes are closely 
related to various immune cells and immune functions, and they may be involved in the regulation of immune-
inflammatory responses in BLCA.

Analysis on TP53 mutations in the high- and low-risk groups revealed that the mutation frequency of TP53 
was the highest in both groups, and most of these mutations were missense mutations, while the high-risk group 
had more mutation sites. TP53 has been reported to be central to cancer-associated cellular functions, and high 
levels of mutation can render p53 proteins dysfunctional and oncogenic, driving tumor development 45. Its 
mutations have been shown to be associated with bladder cancer (BLCA) progression and poor prognosis 46. The 
present study further confirms that its mutation is closely associated with BLCA pathogenesis. We assessed the 
sensitivity differences of the two groups patients to 135 chemotherapeutic agents (such as KU.55933, NU7441, 
AZD8186, SB216763, and BMS.754807, among others).NU7441 has been found to affect triple-negative breast 
cancer genes and signalling pathways 47. In addition, expression analysis revealed that CTSK was lowly expressed 
in the bladder cancer group, and MTERF3, SRC, and CSNK2B were highly expressed. qRT-PCR results were 
basically consisten, but only the result of CTSK was inconsistent, and Kaplan–Meier analysis demonstrated 
significantly worse survival in CTSK-high patients, while favorable outcomes were observed in cases with 
elevated expression of MTERF3, SRC, and CSNK2B.

In conclusion, four biomarkers associated with MRGs were identified in this study by bioinformatics methods: 
CTSK, MTERF3, SRC and CSNK2B. A multivariable risk prediction model was established using the identified 
biomarkers and subsequently validated in independent cohorts. Biological processes significantly enriched in 
high-risk versus low-risk groups, associations with the immune microenvironment, drug sensitivity analysis, 
and regulatory network construction were analysed. These may provide new insights for the development of 
new strategies for BLCA treatment. Notwithstanding these findings, certain methodological limitations warrant 
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consideration. Firstly, the sample size included was insufficient and there was some heterogeneity in different 
datasets, which may lead to some bias in our results. Secondly, we only validated the expression of the biomarkers 
at the cellular level and lacked clinical sample validation. In this qRT-PCR experiment, no statistically significant 
difference in CTSK expression levels was observed. We hypothesize that this result may be attributed to two 
factors: first, the relatively limited sample size of the experiment resulted in insufficient statistical validity to 
detect potential expression differences; second, the qRT-PCR technique itself has limitations in detection 
sensitivity and experimental variability, which may have affected the accurate capture of the real expression 
changes of CTSK. In our future research, we plan to carry out immunohistochemistry (IHC) and Western blot 
experiments using animal models for in-depth validation of CTSK; overexpression and knockdown experiments 
to clarify the specific roles of CTSK in bladder cancer (BLCA); and functional experiments, such as autophagy 
activity assay and autophagy assessment in cellular models to verify our hypotheses in order to enhance the 
reliability and validity of our research findings. In addition, we will continue to focus on BLCA and conduct a 
large number of experimental mechanism studies and clinical application researches in order to provide new 
strategies and targets for the diagnosis and treatment of BLCA.

Materials and methods
Data acquisition
The bladder cancer (BLCA) dataset (TCGA-BLCA) was obtained from UCSC Xena ​(​​​h​t​t​p​s​:​/​/​x​e​n​a​b​r​o​w​s​e​r​.​n​e​t​/​d​a​t​
a​p​a​g​e​s​/​​​​​) (Accessed on May 9, 2024). This dataset included 411 BLCA tumor tissue samples (BLCA group) and 19 
adjacent normal tissue samples (Control group), with survival information available for 406 of the BLCA samples. 
Clinical feature data, survival information, somatic mutation data, as well as miRNAs, lncRNAs, and circRNAs 
data were also downloaded. GSE32894 (GPL6947) was downloaded from the GEO database as the training set. 
This dataset included 224 BLCA tumor tissue samples with complete survival information. Additionally, based 
on existing literature and results from public database searches, a total of 137 MRGs (Supplementary Table S7) 
were identified 48.

Candidate genes acquisition
DEGs between the BLCA and Control groups in the TCGA-BLCA dataset were identified using the DESeq2 
package (v 1.42.0) 49 (|log2 fold-change (FC)|> 0.5 and P < 0.05). The ggpubr package (v 0.6.0) 50 was used to 
generate a volcano plot of DEGs, with the top 10 upregulated and downregulated genes annotated. The pheatmap 
package (v 1.0.12) 51 was utilized to generate a heatmap of top 10 upregulated and downregulated genes. The 
clusterProfiler package (v 4.8.3) 52 was used to conduct the enrichment analysis of DEGs, including GO and 
KEGG enrichments (adj.P < 0.05). The top 5 GO terms for each category and the top 5 KEGG pathways were 
displayed based on adj.P-value.

Candidate genes were selected by intersecting the DEGs with MRGs using VennDiagram package (v 1.7.3) 53. 
A PPI network was established based on candidate genes using STRING database (confidence score > 0.4). The 
result was visualized using Cytoscape (v 3.10.2) 54.

Acquisition of biomarkers and construction of the risk model
In the TCGA-BLCA samples with survival information, a univariate Cox regression analysis was conducted 
using the survival package (HR ≠ 1, P < 0.05) (v 3.7.0) 55 to identify candidate biomarkers, and a forest plot was 
generated using the forestplot package (v 3.1.3) 56 to visualize the results. Within this research, the k-fold cross-
validation method was utilized to assess the performance of the Cox regression model across various values 
of k, ranging from 2 to 10. This approach systematically evaluates how well the model predicts outcomes and 
generalizes across different subsets of the data. For each iteration of cross-validation, the Cox model was fitted 
on the training dataset and the C-index, a measure of predictive accuracy, was determined on the corresponding 
validation dataset. The mean and standard deviation (SD) of the C-index were calculated for each value of k, and 
these results were graphically represented with error bars to illustrate trends. Then, candidate biomarkers were 
initially selected using the proportional hazards (PH) assumption test (P > 0.05). The LASSO method was then 
used to pinpoint biomarkers (lambda min), utilizing the glmnet package (v 4.1–8) 57. Biomarkers were used to 
develop a risk model, and the risk score was calculated based on the following formula:

	

n∑
i=1

Coef(genei) ∗ Expr(genei)

N represented the number of genes included in the scoring system, β_i denoted the LASSO regression coefficient 
of the i-th gene, and x_i represented the expression level of the i-th gene. Next, based on the median risk score, 
the 406 BLCA samples in the TCGA-BLCA dataset were divided into HRG and LRG. The survival package 
(v 3.7.0) was employed for survival analysis of HRG and LRG, as well as for plotting KM curve (Log-rank 
test, P < 0.05). In addition, risk curves and survival status maps were plotted to demonstrate the distribution of 
patients with BLCA. The timeROC package (v 0.4) 58 was used to generate ROC curves for the BLCA samples at 
1, 3, and 5 years and the AUC values (AUC > 0.6) were computed. To validate the risk model, the same analytical 
approach was used to assess the model in 224 BLCA samples from GSE32894 dataset.

Analysis of the association between risk score and clinical characteristics
In the TCGA-BLCA samples with survival information, the association between risk scores and clinical 
characteristics (including Age, T classification, Gender, N classification, Grade, M classification, TNM stage, 
and Status) was analyzed using the Wilcoxon test or Kruskal–Wallis test (P < 0.05).
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GSEA
The TCGA-BLCA dataset were analyzed using the DESeq2 package (v 1.42.0) to identify differences between the 
groups. The log2FC was calculated, and the genes were sorted by log2FC from largest to smallest, generating a 
list of genes associated with HRG and LRG. The reference gene set “c2.kegg.v7.4.symbols” downloaded from the 
MSigDB was used for GSEA with the clusterProfiler package (v 4.8.3) (|NES|> 1, FDR < 0.25, and adj.P < 0.05). 
The top 5 pathways were visualized based on |NES| value. The cnetplot function in the clusterProfiler package (v 
4.8.3) was also applied to visualize the potential regulatory relationships among the top 5 pathways.

Immune microenvironment analysis
To gain a comprehensive understanding of the immune microenvironment in BLCA, First, in the TCGA-BLCA 
samples with survival information, an immune infiltration analysis was meticulously conducted. The IOBR 
package (v 0.99.8) 59 was strategically employed to precisely determine the scores of 22 disparate immune cells 
present in various samples. The Wilcoxon test was methodically employed to meticulously assess the scores 
of infiltration between the HRG and LRG, with the specific aim of identifying those immune cells exhibiting 
significant differences (P < 0.05) for subsequent and more detailed investigation. Spearman correlation analysis 
was conducted to explore the relationships between biomarkers and immune cells using linkET package 
(|cor|> 0.30, P < 0.05) (v 0.0.7.4) 60. Furthermore, the correlation between biomarkers and 98 immune cell 
subtypes was analyzed using the TIMER database.

Immune therapy analysis
In the TCGA-BLCA samples with survival information, the Wilcoxon test (P < 0.05) was employed to analyze the 
expression of immune checkpoints (BTNL2, HHLA2, IDO2, ADORA2A, CD160, BTLA, CD40LG, TNFSF14, 
TNFRSF8, CD200R1, CD244, CD28, CD70, ICOS, TMIGD2, PDCD1, TNFSF4, TIGIT, TNFSF9, CTLA4, 
LAG3, LAIR1, CD48, CD27, TNFRSF4, CD200, CD276, CD44) between the HRG and LRG. Additionally, 
immune phenotype scores of BLCA patients (including anti-PD-1/PD-L1 treatment and anti-CTLA-4 treatment 
scores) were obtained from the TCIA database. BLCA patients were divided into high and low expression groups 
based on the median value of biomarker expression. The immune phenotype scores between the high and low 
expression groups of biomarkers were compared using the Wilcoxon test (P < 0.05).

Somatic mutation analysis
BLCA samples from the TCGA-BLCA dataset, which included somatic mutation data, were analyzed for 
mutation frequencies in HRG and LRG using the maftools package (v 2.18.0) 61. The top 20 genes with the 
highest mutation frequencies were displayed using a waterfall plot. At the same time, bar plots were used to 
display the different mutation locations of the most common mutated genes between the HRG and LRG.

Drug sensitivity analysis
To assess the drug sensitivity of HRG and LRG from the TCGA-BLCA dataset, half-maximal inhibitory 
concentration (IC50) values for 198 conventional drugs, obtained from the Genomics of GDSC database were 
calculated using the oncoPredict package (v 1.2) 62. Subsequently, differences between groups were compared 
using Wilcoxon test (P < 0.05). The top 5 drugs were displayed based on P-value.

Regulation network analysis
The DESeq2 package (v 1.42.0) was utilized to identify differentially expressed miRNAs, lncRNAs, and circRNAs 
between the BLCA and Control groups in the TCGA-BLCA dataset (The threshold was kept consistent with 
the differential analysis). The ENCORI and the miRWalk were used to predict miRNAs associated with the 
biomarkers. The VennDiagram package (v 1.7.3) was employed to integrate the results from the 2 databases 
and the differentially expressed miRNAs to obtain the key miRNAs. ENCORI and miRNet were used to predict 
lncRNAs associated with the key miRNAs. The VennDiagram package (v 1.7.3) was employed to integrate the 
results from the 2 databases and the differentially expressed lncRNAs to obtain the key lncRNAs. The ENCORI 
was used to predict circRNAs associated with the key miRNAs. The VennDiagram package (v 1.7.3) was 
employed to integrate the results from the database and the differentially expressed circRNAs to obtain the key 
circRNAs. Igraph package (v 2.0.3) 63 was utilized to visualize the ceRNA network.

Expression levels and survival analysis
The mRNA expression of biomarkers in the BLCA and Control groups was analyzed using the Wilcoxon test 
(P < 0.05) in all samples of the TCGA-BLCA dataset. Meanwhile, the BLCA patient samples with survival 
information from the TCGA-BLCA training set were split into high and low expression groups according to 
the median expression levels of the biomarkers. Subsequently, the survminer package (v 0.4.9) 64 was used to 
plot the KM curve (P < 0.05) to assess the differences in OS between the high and low expression groups of the 
biomarkers.

Cell culture
The normal human ureteral epithelial immortalised cell line SV-HUC-1 and the human bladder cancer cell line 
5637 were used in this study, with F-12 K medium for the SV-HUC-1 cell line and 1640 medium for the 5637 cell 
line. Both culture media contained 1% penicillin solution and 10% fetal bovine serum as supplements. Both cell 
lines were purchased from Procell (Wuhan, China).
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qRT-PCR
The isolation of RNA from SV-HUC-1 and 5637 cells was performed with Trizol reagent (Servicebio), and cDNA 
was synthesized following the manufacturer’s protocol provided by the Hifair® AdvanceFast One-step RT-gDNA 
Digestion SuperMix for qPCR(Yeasen, China). qRT-PCR carried out using LightCycler® 96 (Roche Applied 
Science) with an SYBR Green-based reagent (Yeasen,China). Primer sequences were designed as follows: 
CTSK,Forward: ​G​G​C​T​C​A​A​G​G​T​T​C​T​G​C​T​G​C​T​A​C, Reverse: ​T​G​T​T​A​T​A​T​T​G​C​T​T​C​C​T​G​T​G​G​G​T​C​T​T​C; SRC, 
Forward: ​T​C​C​A​A​G​C​C​G​C​A​G​A​C​T​C​A​G​G, Reverse: ​C​A​T​C​C​A​C​A​C​C​T​C​G​C​C​A​A​A​G​C; MTERF3, Forward: ​G​C​
A​G​C​C​A​A​T​T​T​C​A​G​A​G​G​A​A​G​A​G​G, Reverse: ​C​A​G​A​G​T​C​T​C​A​G​A​A​T​G​A​T​C​C​A​C​A​T​A​G​T​C; CSNK2B, Forward: ​
G​A​G​C​C​T​G​A​T​G​A​A​G​A​A​C​T​G​G​A​A​G​A​C, Reverse: ​C​A​C​G​G​T​T​G​G​T​A​A​G​G​A​T​G​T​A​G​C​G.

Statistical assessment
The qRT-PCR results were analyzed and reported as mean ± standard error of the mean (SEM). Statistical 
comparisons between the two groups were performed using Student’s t-test with GraphPad Prism 10.1.2 
(GraphPad Software, Inc.). Statistical significance was set at p < 0.05, with all experiments repeated three times. 
The bioinformatics analysis was carried out using R (v 4.3.1). The Wilcoxon test (P < 0.05) was employed to 
evaluate the differences between the two groups. In addition, a multiple comparison correction was performed 
to ensure the reliability of the results: firstly, the significance level for acceptance or rejection of the original 
hypothesis in a single hypothesis test was determined, then the appropriate multiple comparison correction 
method was selected, and finally, the adjusted p-value was compared to the significance level to determine the 
results of the significance test. In this study, to control the risk of false positives from multiple hypothesis tests, 
all original p-values were corrected for false discovery rate (FDR) using the Benjamini–Hochberg method. The 
significance levels are set based on the corrected p-values: p.adj < 0.001 is marked as “***”, p.adj < 0.01 as “**”, 
p.adj < 0.05 as “*”, indicating significant differences, while the rest are marked as “ns” (no significant difference).

Data availability
The datasets analysed during the current study are available in the [GEO] repository, ​[​​​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​
.​g​o​v​/​g​e​o​/​​​​​]​, and [UCSC Xena] repository, [https://xenabrowser.net/datapages/].
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